Summer Workshop on the Reaction Theory Exercise sheet 3

Team 2: Andrew Jackura and Marc Vanderhaeghen
Contact: http://www.indiana.edu/~ssrt/index.html
June 12 - June 22
To be discussed on Wednesday of Week-I.

Classwork

πN States

(a) Consider elastic πN scattering in the center-of-momentum frame. Construct states of definite angular momentum J in the $L S$ basis.
(b) Write the allowed J^{P} quantum numbers.
(c) Up through F-wave, write all the allowed states in the spectroscopic notation ${ }^{2 s+1} \ell_{J}$.
(d) Construct states of total isospin. What are the allowed isospin quantum numbers? Combining isospin states with partial waves, write all the allowed states in the spectroscopic notation $\ell_{2 J 2 I}$ through F-wave.

πN Scattering

The amplitude for elastic πN scattering may be written

$$
\begin{equation*}
\mathcal{A}(s, t)=8 \pi \sqrt{s}[f(\theta) \mathbb{1}+i g(\theta) \boldsymbol{\sigma} \cdot \widehat{\mathbf{n}}], \tag{1}
\end{equation*}
$$

where $\widehat{\mathbf{n}}=\mathbf{p} \times \mathbf{p}^{\prime} /\left|\mathbf{p} \times \mathbf{p}^{\prime}\right|$ and $f(\theta)$ is the non-spin-flip amplitude and $g(\theta)$ is the spin-flip amplitude. We can write the differential cross section in terms of two functions $f(\theta)$ and $g(\theta)$,

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=|f(\theta)|^{2}+|g(\theta)|^{2} \tag{2}
\end{equation*}
$$

The functions $f(\theta)$ and $g(\theta)$ may be expanded in partial waves:

$$
\begin{equation*}
f(\theta)=\frac{1}{|\mathbf{p}|} \sum_{\ell=0}^{\infty}\left((\ell+1) a_{\ell, \ell+1 / 2}(s)+\ell a_{\ell, \ell-1 / 2}\right) P_{\ell}(\cos \theta) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
g(\theta)=\frac{1}{|\mathbf{p}|} \sum_{\ell=0}^{\infty}\left(a_{\ell, \ell+1 / 2}(s)-a_{\ell, \ell-1 / 2}\right) \sin \theta P_{\ell}^{\prime}(\cos \theta) \tag{4}
\end{equation*}
$$

Keeping only the $\ell=1, J=3 / 2$ term $(J=\ell \pm 1 / 2)$, write the differential cross section in terms of $a_{1,3 / 2}$. In an experiment (see Fig. 1), at $\sqrt{s}=1235.4 \mathrm{MeV}$, the angular distribution was measured. Note that $|\mathbf{p}|^{-2} \approx 7.34 \mathrm{mb}$ at this energy. Assuming only the $\ell=1, J=3 / 2$ term, what is the magnitude of the partial wave amplitude $\left|a_{1,3 / 2}\right|$? In terms of the phase shift and inelasticity, what can you determine? The phase shift here is defined as

$$
\begin{equation*}
a_{\ell, J}(s)=\frac{1}{2 i}\left(\eta_{\ell, J}(s) e^{2 i \delta_{\ell, J}(s)}-1\right) . \tag{5}
\end{equation*}
$$

πN Resonances

We consider the Δ^{++}baryon as an example of resonance phenomena. The Δ^{++}baryon can be found in the scattering of $\pi^{+} p \rightarrow \pi^{+} p$ (see Fig. 2). Let s be the invariant mass of the πN system.

The amplitude for such a process is approximated by the Breit-Wigner form, when s is near the resonance position.

$$
\begin{equation*}
a_{J=3 / 2}(s) \sim \frac{1}{s-M^{2}+i M \Gamma(s)} \tag{6}
\end{equation*}
$$

where in general $\Gamma(s)$ is a function of s.
The pole position is found from $s_{p}-M^{2}+i M \Gamma\left(s_{p}\right)=0$, where $\sqrt{s_{p}} \equiv M_{R}-i \Gamma_{R} / 2$ is the definition for the mass and width of the resonance. Find the pole mass and width in terms of M and $\Gamma(M)$ and it's derivative $\Gamma^{\prime}(M)$ for s near M^{2}.

Figure 1: Experimental data for the angular distribution for elastic $\pi^{+} p$ scattering at the center-ofmomentum energy $\sqrt{s}=1235.4 \mathrm{MeV}$ (Bussey 1973 [2]). The curve corresponds to the maximum of $d \sigma / d \Omega$ under the assumption that only the partial wave with $\ell=1, J=3 / 2$ contributes.

References

[1] V. Mathieu, I. V. Danilkin, C. Fernández-Ramírez, M. R. Pennington, D. Schott, A. P. Szczepaniak and G. Fox, Phys. Rev. D 92, no. 7, 074004 (2015) doi:10.1103/PhysRevD.92.074004 [arXiv:1506.01764 [hep-ph]].
[2] P. J. Bussey, J. R. Carter, D. R. Dance, D. V. Bugg, A. A. Carter and A. M. Smith, Nucl. Phys. B 58, 363 (1973). doi:10.1016/0550-3213(73)90589-0

Figure 2: Cross sections for πN scattering [1].

