Summer Workshop on the Reaction Theory Exercise sheet 4

Team 2: Andrew Jackura and Marc Vanderhaeghen
Contact: http://www.indiana.edu/~ssrt/index.html
June 12 - June 22
To be discussed on Wednesday of Week-I.

Classwork

Elastic Unitarity for Partial Waves

Consider the $2 \rightarrow 2$ elastic scattering of scalar particles a and b. We consider an energy range where only the two particles a and b can be produced, nothing more. The amplitude for this process is denoted $\mathcal{A}\left(s, \widehat{\mathbf{p}} \cdot \widehat{\mathbf{p}}^{\prime}\right)$, where $s=\left(p_{a}+p_{b}\right)^{2}$, and $\widehat{\mathbf{p}}=(\theta, \varphi)$ is the orientation of the initial a in the center-of-momentum system (CMS), and $\widehat{\mathbf{p}}^{\prime}=\left(\theta^{\prime}, \varphi^{\prime}\right)$ is the orientation of the final a in the CMS. Note that $\cos \Theta=\widehat{\mathbf{p}} \cdot \widehat{\mathbf{p}}^{\prime}$, where Θ is the scattering angle in the CMS (see Fig. 1).
(1) The elastic unitarity equation for the amplitude (see Fig. 2)

$$
\begin{equation*}
\operatorname{Im} \mathcal{A}\left(s, \widehat{\mathbf{p}} \cdot \widehat{\mathbf{p}}^{\prime}\right)=\rho(s) \int \frac{d \widehat{\mathbf{p}}^{\prime \prime}}{4 \pi} \mathcal{A}\left(s, \widehat{\mathbf{p}}^{\prime} \cdot \widehat{\mathbf{p}}^{\prime \prime}\right) \mathcal{A}\left(s, \widehat{\mathbf{p}} \cdot \widehat{\mathbf{p}}^{\prime \prime}\right), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho(s)=\frac{1}{2} \frac{1}{8 \pi} \frac{2\left|\mathbf{p}^{\prime \prime}\right|}{\sqrt{s}}, \tag{2}
\end{equation*}
$$

and $\left|\mathbf{p}^{\prime \prime}\right|=\lambda^{1 / 2}\left(s, m_{a}^{2}, m_{b}^{2}\right) /(2 \sqrt{s})$ is the momentum of the intermediate state, and the orientation of particle a in the intermediate state is $\widehat{\mathbf{p}}^{\prime \prime}$. Verify the elastic unitarity relation for partial wave amplitudes,

$$
\begin{equation*}
\operatorname{Im} a_{\ell}(s)=\rho(s)\left|a_{\ell}(s)\right|^{2}, \tag{3}
\end{equation*}
$$

where the partial waves are defined by the expansion

$$
\begin{equation*}
\mathcal{A}\left(s, \widehat{\mathbf{p}} \cdot \widehat{\mathbf{p}}^{\prime}\right)=\sum_{\ell=0}^{\infty}(2 \ell+1) a_{\ell}(s) P_{\ell}\left(\widehat{\mathbf{p}} \cdot \widehat{\mathbf{p}}^{\prime}\right) . \tag{4}
\end{equation*}
$$

One can write the unitarity relation for the inverse partial wave amplitude $a_{\ell}^{-1}(s)$. Derive the elastic unitarity relation for the inverse partial wave amplitude $a_{\ell}^{-1}(s)$.
(2) Show that elastic partial wave amplitudes can be written in terms of one function, the phase shift $\delta_{\ell}(s)$, in the form

$$
\begin{equation*}
a_{\ell}(s)=\frac{e^{i \delta_{\ell}(s)} \sin \delta_{\ell}(s)}{\rho(s)} . \tag{5}
\end{equation*}
$$

(Hint: The complex partial wave amplitude can be written as $a_{\ell}(s)=\left|a_{\ell}(s)\right| e^{i \delta_{\ell}(s)}$. Substitute this into Eq. (3).)
(3) Show that the real and imaginary parts satisfy the equation of a circle. Where is the center of the circle? What is the radius of the circle?

Figure 1: Center-of-momentum system (CMS) elastic scattering of $a b \rightarrow a b$. The scattering angle Θ (between initial a and final a) in terms of the initial and final orientaions is $\cos \Theta=\widehat{\mathbf{p}} \cdot \widehat{\mathbf{p}}^{\prime}=\cos \theta \cos \theta^{\prime}+$ $\sin \theta \sin \theta^{\prime} \cos \left(\varphi-\varphi^{\prime}\right)$.
Im

Figure 2: Diagram representing the elastic unitarity equation (1).

Källén Triangle function

The Källén triangle function, denoted $\lambda(x, y, z)$, is totally symmetric in the arguments, has the form

$$
\begin{align*}
\lambda(x, y, z) & =x^{2}+y^{2}+z^{2}-2(x y+x z+y z), \tag{6}\\
& =\left[x-(\sqrt{y}+\sqrt{z})^{2}\right]\left[x-(\sqrt{y}-\sqrt{z})^{2}\right], \tag{7}\\
& =(x-y-z)^{2}-4 y z . \tag{8}
\end{align*}
$$

Some special cases:

$$
\begin{align*}
& \lambda(x, y, y)=x(x-4 y) \tag{9}\\
& \lambda(x, y, 0)=(x-y)^{2} \tag{10}\\
& \lambda(x, 0,0)=x^{2} \tag{11}
\end{align*}
$$

Properties of Legendre functions P_{ℓ}.

Orthogonality relation

$$
\begin{equation*}
\int d \widehat{\mathbf{p}}^{\prime \prime} P_{\ell}\left(\widehat{\mathbf{p}}^{\prime} \cdot \widehat{\mathbf{p}}^{\prime \prime}\right) P_{\ell^{\prime}}\left(\widehat{\mathbf{p}} \cdot \widehat{\mathbf{p}}^{\prime \prime}\right)=\frac{4 \pi}{2 \ell+1} \delta_{\ell^{\prime} \ell} P_{\ell}\left(\widehat{\mathbf{p}} \cdot \widehat{\mathbf{p}}^{\prime}\right) \tag{12}
\end{equation*}
$$

