Summer Workshop on the Reaction Theory Exercise sheet 3

Team 2: Andrew Jackura and Marc Vanderhaeghen
Contact: http://www.indiana.edu/~ssrt/index.html
June 12 - June 22
To be discussed on Wednesday of Week-I.

Classwork

Partial Waves of the Born Amplitude

Consider the $2 \rightarrow 2$ process $a a \rightarrow b b$, with $m_{a}<m_{b}$, where the a and b particles are pseudoscalars $\left(J^{P}=0^{-}\right)$. The process includes a t-channel exchange of particle c, which is a scalar meson $\left(J^{P}=0^{+}\right)$, with mass M. The amplitude is of the form

$$
\begin{equation*}
\mathcal{A}(s, t)=\frac{g^{2}}{t-M^{2}} \tag{1}
\end{equation*}
$$

where g is the coupling between the a, b, and c particles (see Fig. 1). Work in the center-of-momentum system (CMS).

$3.1 s$-channel

(1) Write t in terms of the masses, s, and $z_{s}=\cos \theta_{s}$, where θ_{s} is the scattering angle in the s-channel CMS.
(2) Write the allowed J^{P} quantum numbers of the (bb) two-particle system.
(3) The partial wave expansion is defined as

$$
\begin{equation*}
\mathcal{A}(s, t)=\sum_{\ell=0}^{\infty}(2 \ell+1) a_{\ell}(s) P_{\ell}\left(\cos \theta_{s}\right) \tag{2}
\end{equation*}
$$

where P_{ℓ} are the Legendre functions of the $1^{\text {st }}$ kind. Write the S-wave partial wave amplitude of the Born amplitude Eq. (1).
(4) Write the partial wave amplitudes $a_{\ell}(s)$ of the Born amplitude Eq. (1) in terms of the Legendre functions of the $2^{\text {nd }}$ kind,

$$
\begin{equation*}
Q_{\ell}(z)=\frac{1}{2} \int_{-1}^{+1} d z^{\prime} \frac{P_{\ell}\left(z^{\prime}\right)}{z-z^{\prime}} \tag{3}
\end{equation*}
$$

(5) For $s \rightarrow s_{t h}^{b} \equiv 4 m_{b}^{2}$, what is the behavior of $a_{\ell}(s)$?
(6) Where do the branch cuts occur for the $\ell=0$ partial wave? Draw the branch cuts for $a_{\ell=0}(s)$ in the complex s-plane.

$3.2 t$-channel

Now consider the t-channel process of the above reaction $(a \bar{b} \rightarrow \bar{a} b)$. The t-channel partial wave expansion is

$$
\begin{equation*}
\mathcal{A}(s, t)=\sum_{L=0}^{\infty}(2 L+1) a_{L}(t) P_{L}\left(\cos \theta_{t}\right) \tag{4}
\end{equation*}
$$

where θ_{t} is the scattering angle in the t-channel CMS. Find the t-channel partial wave amplitudes $a_{L}(t)$ for the Born amplitude Eq. (1).

Figure 1: Diagram for Born amplitude in (1).

Properties of P_{ℓ}

In the following we consider only ℓ integer. The first few P_{ℓ} functions are (see Fig. 2)

$$
\begin{align*}
P_{0}(z) & =1 \tag{5}\\
P_{1}(z) & =z \tag{6}\\
P_{2}(z) & =\frac{1}{2}\left(3 z^{2}-1\right) \tag{7}
\end{align*}
$$

In general, all $P_{\ell}(z)$ can be found by the recursion relation

$$
\begin{align*}
& P_{0}(z)=1, \quad P_{1}(z)=z \tag{8}\\
& P_{\ell}(z)=z\left(2-\ell^{-1}\right) P_{\ell-1}(z)-\left(1-\ell^{-1}\right) P_{\ell-2}(z) \text { for } \ell>1 \tag{9}
\end{align*}
$$

The functions are orthogonal

$$
\begin{equation*}
\int_{-1}^{+1} d z P_{\ell^{\prime}}(z) P_{\ell}(z)=\frac{2}{2 \ell+1} \delta_{\ell^{\prime} \ell} \tag{10}
\end{equation*}
$$

Figure 2: P_{ℓ} for $\ell=0,1,2$.

Properties of Q_{ℓ}

In the following we consider only ℓ integer. The first few Q_{ℓ} functions are (see Fig. 3)

$$
\begin{align*}
& Q_{0}(z)=\frac{1}{2} \ln \left(\frac{1+z}{1-z}\right) \tag{11}\\
& Q_{1}(z)=\frac{z}{2} \ln \left(\frac{1+z}{1-z}\right)-1 \tag{12}\\
& Q_{2}(z)=\frac{3 z^{2}-1}{4} \ln \left(\frac{1+z}{1-z}\right)-\frac{3 z}{2} . \tag{13}
\end{align*}
$$

In general, all $Q_{\ell}(z)$ can be found by the recursion relation

$$
\begin{align*}
& Q_{0}(z)=\frac{1}{2} \ln \frac{z+1}{z-1}, Q_{1}(z)=z Q_{0}(z)-1 \tag{14}\\
& Q_{\ell}(z)=z\left(2-\ell^{-1}\right) Q_{\ell-1}(z)-\left(1-\ell^{-1}\right) Q_{\ell-2}(z) \text { for } \ell>1 . \tag{15}
\end{align*}
$$

The asymptotic behavior of the Q_{ℓ} function is

$$
\begin{equation*}
Q_{\ell}(z) \rightarrow \frac{\pi^{1 / 2}}{(2 z)^{\ell+1}} \frac{\ell!}{\left(\ell+\frac{1}{2}\right)!} \quad \text { as } z \rightarrow \infty . \tag{16}
\end{equation*}
$$

Note the completeness condition

$$
\begin{equation*}
\sum_{\ell=0}^{\infty}(2 \ell+1) Q_{\ell}\left(z^{\prime}\right) P_{\ell}(z)=\frac{1}{z^{\prime}-z} . \tag{17}
\end{equation*}
$$

Figure 3: Q_{ℓ} for $\ell=0,1,2$.

