Joint Physics Analysis Center

Summer Workshop on the Reaction Theory Exercise sheet 3

Team 2: Andrew Jackura and Marc Vanderhaeghen

Contact: http://www.indiana.edu/~ssrt/index.html

June 12 - June 22

To be discussed on Wednesday of Week-I.

Classwork

Partial Waves of the Born Amplitude

Consider the $2 \rightarrow 2$ process $aa \rightarrow bb$, with $m_a < m_b$, where the a and b particles are pseudoscalars $(J^P = 0^-)$. The process includes a *t*-channel exchange of particle c, which is a scalar meson $(J^P = 0^+)$, with mass M. The amplitude is of the form

$$\mathcal{A}(s,t) = \frac{g^2}{t - M^2},\tag{1}$$

where g is the coupling between the a, b, and c particles (see Fig. 1). Work in the center-of-momentum system (CMS).

3.1 *s*-channel

- (1) Write t in terms of the masses, s, and $z_s = \cos \theta_s$, where θ_s is the scattering angle in the s-channel CMS.
- (2) Write the allowed J^P quantum numbers of the (bb) two-particle system.
- (3) The partial wave expansion is defined as

$$\mathcal{A}(s,t) = \sum_{\ell=0}^{\infty} (2\ell+1) a_{\ell}(s) P_{\ell}(\cos\theta_s),$$
(2)

where P_{ℓ} are the Legendre functions of the 1st kind. Write the *S*-wave partial wave amplitude of the Born amplitude Eq. (1).

(4) Write the partial wave amplitudes $a_{\ell}(s)$ of the Born amplitude Eq. (1) in terms of the Legendre functions of the 2nd kind,

$$Q_{\ell}(z) = \frac{1}{2} \int_{-1}^{+1} dz' \frac{P_{\ell}(z')}{z - z'}.$$
(3)

- (5) For $s \to s_{th}^b \equiv 4m_b^2$, what is the behavior of $a_\ell(s)$?
- (6) Where do the branch cuts occur for the $\ell = 0$ partial wave? Draw the branch cuts for $a_{\ell=0}(s)$ in the complex *s*-plane.

3.2 *t*-channel

Now consider the *t*-channel process of the above reaction $(a\bar{b} \rightarrow \bar{a}b)$. The *t*-channel partial wave expansion is

$$\mathcal{A}(s,t) = \sum_{L=0}^{\infty} (2L+1) a_L(t) P_L(\cos \theta_t), \tag{4}$$

where θ_t is the scattering angle in the *t*-channel CMS. Find the *t*-channel partial wave amplitudes $a_L(t)$ for the Born amplitude Eq. (1).

Figure 1: Diagram for Born amplitude in (1).

Properties of P_{ℓ}

In the following we consider only ℓ integer. The first few P_{ℓ} functions are (see Fig. 2)

$$P_0(z) = 1 \tag{5}$$

$$P_1(z) = z \tag{6}$$

$$P_2(z) = \frac{1}{2}(3z^2 - 1). \tag{7}$$

In general, all $P_\ell(z)$ can be found by the recursion relation

$$P_0(z) = 1$$
, $P_1(z) = z$ (8)

$$P_{\ell}(z) = z(2 - \ell^{-1})P_{\ell-1}(z) - (1 - \ell^{-1})P_{\ell-2}(z) \text{ for } \ell > 1.$$
(9)

The functions are orthogonal

$$\int_{-1}^{+1} dz \, P_{\ell'}(z) P_{\ell}(z) = \frac{2}{2\ell+1} \delta_{\ell'\ell}.$$
(10)

Figure 2: P_ℓ for $\ell = 0, 1, 2$.

Properties of Q_ℓ

In the following we consider only ℓ integer. The first few Q_ℓ functions are (see Fig. 3)

$$Q_0(z) = \frac{1}{2} \ln\left(\frac{1+z}{1-z}\right)$$
(11)

$$Q_1(z) = \frac{z}{2} \ln\left(\frac{1+z}{1-z}\right) - 1$$
(12)

$$Q_2(z) = \frac{3z^2 - 1}{4} \ln\left(\frac{1+z}{1-z}\right) - \frac{3z}{2}.$$
(13)

In general, all $Q_\ell(z)$ can be found by the recursion relation

$$Q_0(z) = \frac{1}{2} \ln \frac{z+1}{z-1} , \quad Q_1(z) = z Q_0(z) - 1$$
(14)

$$Q_{\ell}(z) = z(2 - \ell^{-1})Q_{\ell-1}(z) - (1 - \ell^{-1})Q_{\ell-2}(z) \text{ for } \ell > 1.$$
(15)

The asymptotic behavior of the Q_ℓ function is

$$Q_{\ell}(z) \to \frac{\pi^{1/2}}{(2z)^{\ell+1}} \frac{\ell!}{(\ell + \frac{1}{2})!} \quad \text{as } z \to \infty.$$
 (16)

Note the completeness condition

$$\sum_{\ell=0}^{\infty} (2\ell+1)Q_{\ell}(z')P_{\ell}(z) = \frac{1}{z'-z}.$$
(17)

Figure 3: Q_ℓ for $\ell = 0, 1, 2$.