Joint Physics Analysis Center

Summer Workshop on the Reaction Theory Exercise sheet 1

Team 2: Andrew Jackura and Marc Vanderhaeghen

Contact: http://www.indiana.edu/~ssrt/index.html

June 12 - June 22

To be discussed on Wednesday of Week-I.

Classwork

Meson Quantum Numbers in the Quark Model

Consider a two particle system, the $q\bar{q}$ system, which in the quark model form the mesons. Denote the quark q as particle 1 and the anitquark \bar{q} as particle 2. The quarks have spin $s_q = 1/2$, mass m_q , and intrinsic parity $\eta_q = +1$. Let the four momentum and spin projection for the quark q be p_1 and σ_1 , and for the \bar{q} p_2 , σ_2 . A two quark system may be written in their center-of-momentum frame

$$|q(\mathbf{p}_1, \sigma_1) \,\bar{q}(\mathbf{p}_2, \sigma_2)\rangle \to |\widehat{\mathbf{p}} \,\sigma_1 \sigma_2\rangle \tag{1}$$

where $\widehat{\mathbf{p}} = (\theta, \varphi)$ is the orientation of q with respect to a defined coordinate system.

- (1) In the LS coupling scheme, write the two particle state in the total angular momentum basis $|JM\ell s\rangle$.
- (2) Determine the allowed quantum numbers for s, ℓ , and J
- (3) Using the action of the parity \mathcal{P} and c-parity \mathcal{C} operators on the state $|JM\ell s\rangle$, determine the allowed parity and c-parity quantum numbers P and C. Determine the allowed J^{PC} numbers for the $q\bar{q}$ system through J = 3. List the states through J = 3 that are not allowed, the so-called 'exotic' states.

$$\mathcal{P}|JM\ell s\rangle = (-1)^{\ell+1}|JM\ell s\rangle \tag{2}$$

$$\mathcal{C} \left| JM\ell s \right\rangle = (-1)^{\ell+s} \left| JM\ell s \right\rangle \tag{3}$$