Summer Workshop on the Reaction Theory Exercise sheet 1

Team 2: Andrew Jackura and Marc Vanderhaeghen
Contact: http://www.indiana.edu/~ssrt/index.html
June 12 - June 22
To be discussed on Wednesday of Week-I.

Classwork

Meson Quantum Numbers in the Quark Model

Consider a two particle system, the $q \bar{q}$ system, which in the quark model form the mesons. Denote the quark q as particle 1 and the anitquark \bar{q} as particle 2 . The quarks have spin $s_{q}=1 / 2$, mass m_{q}, and intrinsic parity $\eta_{q}=+1$. Let the four momentum and spin projection for the quark q be p_{1} and σ_{1}, and for the $\bar{q} p_{2}, \sigma_{2}$. A two quark system may be written in their center-of-momentum frame

$$
\begin{equation*}
\left|q\left(\mathbf{p}_{1}, \sigma_{1}\right) \bar{q}\left(\mathbf{p}_{2}, \sigma_{2}\right)\right\rangle \rightarrow\left|\widehat{\mathbf{p}} \sigma_{1} \sigma_{2}\right\rangle \tag{1}
\end{equation*}
$$

where $\widehat{\mathbf{p}}=(\theta, \varphi)$ is the orientation of q with respect to a defined coordinate system.
(1) In the $L S$ coupling scheme, write the two particle state in the total angular momentum basis $|J M \ell s\rangle$.
(2) Determine the allowed quantum numbers for s, ℓ, and J
(3) Using the action of the parity \mathcal{P} and c-parity \mathcal{C} operators on the state $|J M \ell s\rangle$, determine the allowed parity and c-parity quantum numbers P and C. Determine the allowed $J^{P C}$ numbers for the $q \bar{q}$ system through $J=3$. List the states through $J=3$ that are not allowed, the so-called 'exotic' states.

$$
\begin{align*}
\mathcal{P}|J M \ell s\rangle & =(-1)^{\ell+1}|J M \ell s\rangle \tag{2}\\
\mathcal{C}|J M \ell s\rangle & =(-1)^{\ell+s}|J M \ell s\rangle \tag{3}
\end{align*}
$$

