Joined Physics Analysis Center

Summer Workshop on the Reaction Theory Exercise sheet 9

Alessandro Pilloni, Andrew Jackura, Misha Mikhasenko, Vincent Mathieu

Contact: http://www.indiana.edu/~ssrt/index.html

June 12 - June 22

To be discussed on Thursday of Week-II.

Quick Quiz

- (a) In the full amplitude, can you have singularities on the first sheet? If so, which and where?
- (b) Show an example of isospin breaking reaction, involving no photons.
- (c) Is the phase of the scattering amplitude unambiguosly determined? Why?
- (d) Resonances are poles of the amplitude. However, causality says you cannot have poles. How is this resolved?
- (e) Consider the coupled channel system $\pi\pi \to \pi\pi$, $\pi\pi \to KK$, and $KK \to KK$. How many Riemann sheets are there? On what sheets could resonance poles lie?
- (f) Consider a simple t-channel exchange $A(s,t) = g^2/(t M^2)$. Does this amplitude produce cuts? Consider the s-channel partial waves of this amplitude. Does it produce cuts? Which way?
- (g) Dalitz plot of the decay $M \rightarrow m_1 + m_2 + m_3$, $m_1 > m_2 > m_3$ drawn at the Mandelstam plane (s, t, u). What is the closest point inside the decay kinematic region to the sides of the triangle s=0, t=0, u=0?
- (h) Dalitz plot in the Cartesian coordinates m_{12}^2 along x and m_{23}^2 along y. What does a horizontal band indicate?
- (i) Consider equation

$$f(x) = 3 + \frac{x^2}{\pi} \int_1^7 \frac{\mathrm{Im}f(x')}{x'^2(x'-x)} \mathrm{d}x'$$

Can it be satisfied? How many subtractions are made in the dispersive relation? Draw the analytic structure of the f(x) in the complex x plane.

- (j) How does the cross section changes with energy in the black disc model?
- (k) Why there is no left-hand-cut in the case of a form factor $N \rightarrow \gamma^* N$?
- (I) Consider Regge trajectory $\alpha(t) = \alpha_0 + \alpha' t$? Are there any restrictions on the intercept α_0 ? What is the phenomenological intercept of the Pomeron trajectory?
- (m) What are the possible $I^G J^{PC}$ quantum numbers of the $\pi^-\eta$ system?