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Classwork

1. Derive all the quantum numbers IGJPC in the t�channel of the following reactions

(a) ⇡⇡ ! ⇡⇡ and K ¯K ! K ¯K

(b) ⇡N ! ⇡N , ⇡N ! ⌘N and KN ! KN

(c) �N ! ⌘N and �N ! ⇡N

(d) ⇡⇢! ⇢⇡

Notation: ⇡ = (⇡+,⇡�,⇡0); ⇢ = (⇢+, ⇢�, ⇢0) ; K = (K+,K0
) ; N = (p, n).

2. Assume that the Regge exchange form a SU(3) octet and a SU(3) singlet with the coupling for the
octet and the singlet being different. Consider a vector and a tensor nonet (octet plus singlet). From
the duality hypothesis and the absence of double charge meson, find the combination of octet-singlet
tensor that decouples from ⇡⇡. Use the SU(3) Clebsch-Gordan coefficients from Rev.Mod.Phys. 36
(1964) 1005. What are the quark content and the K ¯K couplings of these states?

3. Assuming ideal mixing for the vector and tensor, derive the exchange degeneracy relations coming
duality and the absence of resonance in the following reactions

(a) ⇡⇡ ! ⇡⇡

(b) K ¯K ! K ¯K

(c) KN ! KN

(d) ⇡⇢! ⇢⇡ (and ⇡⇡ ! ⇢⇢)

4. Derive a Lorentz-covariant basis, the isospin decomposition and the crossing properties for the following
reactions

(a) ⇡N ! ⇡N and KN ! KN

(b) NN ! NN

(c) ! ! ⇡⇡⇡ and B ! J/ K⇡

(d) ⇡⇢! ⇡⇢

(e) �N ! ⇡N and �⇤N ! ⇡N (use Fµ⌫
= ✏µk⌫ � ✏⌫kµ)
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Solution

1. The list of exchanges having only I = 0, 1 is presented on Table 1. Notation: signature ⌧ = (�1)

J

and naturality ⌘ = P (�1)

J . In the quark model, P = (�1)

`+1 and C = (�1)

`+S , hence 0

��,
(1, 3, 5, . . .)�+ and (0, 2, 4, . . .)+� are forbidden in the quark model. Let’s refer to these quantum
numbers as “exotic".

Table 1: Regge Trajectories
IG⌧⌘ JPC IG⌧⌘ JPC

0

+++ f+ (0, 2, 4, . . .)++
0

+�� f� (1, 3, 5, . . .)++

0

��+ !� (1, 3, 5, . . .)��
0

�+� !+ (0, 2, 4, . . .)��

1

�++ a+ (0, 2, 4, . . .)++
1

��� a� (1, 3, 5, . . .)++

1

+�+ ⇢� (1, 3, 5, . . .)��
1

++� ⇢+ (0, 2, 4, . . .)��

0

++� ⌘+ (0, 2, 4, . . .)�+
0

+�+ ⌘� (1, 3, 5, . . .)�+

0

��� h� (1, 3, 5, . . .)+�
0

�++ h+ (0, 2, 4, . . .)+�

1

�+� ⇡+ (0, 2, 4, . . .)�+
1

��+ ⇡� (1, 3, 5, . . .)�+

1

+�� b� (1, 3, 5, . . .)+�
1

+++ b+ (0, 2, 4, . . .)+�

(a) for ⇡⇡: G = +, ⌘ = + and ⌘(�1)

I
= + (Bose symmetry) ) f+ and ⇢�.

for K ¯K: ⌘ = + and ⌘(�1)

I
= + ) f+, a+, !� and ⇢�.

(b) for ⇡⌘: G = �, ⌘ = +, I = 1 ; for NN : I = 0, 1 and no exotic ) a+.
for K ¯K: ⌘ = + ; for NN : I = 0, 1 and no exotic ) f+, a+, !� and ⇢�.

(c) for �⌘ and �⇡0: C = � ; for NN : I = 0, 1 and no exotic. ) !±, ⇢±, b� and h�.
for �⇡+: I = 1 ; for NN : I = 0, 1 and no exotic. ) a±, ⇢±, b� and ⇡�.

(d) for ⇡⇢: G = � ) a±, ⇡±, !± and h±

Table 2: Exchanges
(a) ⇡+⇡⌥ ! ⇡+⇡⌥ f+ ± ⇢�

⇡0⇡0 ! ⇡0⇡0 f+
K+K⌥ ! K+K⌥ f+ ± !� + a+ ± ⇢�
K+K0 ! K0K+ a+ � ⇢�

(b) ⇡�p ! ⌘n a+
⇡�p ! ⇡0n

p
2⇢+

⇡⌥p ! ⇡⌥p f+ ± ⇢+
⇡⌥n ! ⇡⌥n f+ ⌥ ⇢+
K�p ! ¯K0p

p
2 (⇢� + a+)

K+n ! K0p
p
2 (⇢� � a+)

K⌥p ! K⌥p f+ ± ⇢� + a+ ± !�
K⌥n ! K⌥n f+ ⌥ ⇢� � a+ ± !�

(c) �p ! ⌘p (!� + ⇢�) + (h� + b� + !+ + ⇢+)
�p ! ⇡0p (!� + ⇢�) + (h� + b� + !+ + ⇢+)
�p ! ⇡+n (⇢� + a+) + (b� + ⇡+ + ⇢+ + a�)
�n ! ⇡�p (⇢� � a+) + b� � ⇡+ + ⇢+ � a�)

(d) ⇡+⇢0 ! ⇢0⇡+ (a+ + ⇡�) + (a� + ⇡+)
⇡+⇢+ ! ⇢+⇡+ (!� � a+ + h+ � ⇡�) + (!+ � a� + h� � ⇡+)
⇡+⇢+ ! ⇡+⇢+ f+ � ⇢�

2. For a general treatment of exchange degeneracy using group theory, see Ref. [1].
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We assume that the residues obey a SU(3) symmetry:

�Rac(t) / h8Ya Ia Ia3;8Y ⇤
c Ic I

⇤
c3|8YR IR IR3i , (1)

where Y ⇤
= �Y and I⇤3 = �I3. The hypercharge Y is the strangeness and I3 is the isospin projection.

The Clebsch-Gordan coefficients for SU(3) are listed in Ref. [2]. Note the extra minus sign for the
⇡+ and K�.

The four couplings are �8V ,�8T ,�1V and �1T for the octet/ singlet for the tensor and vector tra-
jectories. The absence of isospin 2 meson in ⇡+K+ ! K+⇡+ and in ⇡+⇡+ ! ⇡+⇡+ lead to

⇡+K+ ! K+⇡+ :

3

10

�28T s
↵8T � 1

6

�28V s
↵8V

= 0 (2a)

⇡+⇡+ ! ⇡+⇡+ :

1

8

�21T s
↵1T

+

1

5

�28T s
↵8T � 1

3

�28V s
↵8T

= 0 (2b)

We combine them to get ↵8V = ↵8V = ↵1T and (2/5)�28T = (1/8)�21T , I choose by convention
r

1

8

�1T = �
r

2

5

�1V . (3)

Let us define the octet-singlet mixing
✓
f
f 0

◆
=

✓
cos ✓T sin ✓T
� sin ✓T cos ✓T

◆✓
f8
f1

◆
(4)

The states are f8 = |8; 000i and f1 = |1; 000i. The notation is |R;Y II3i. Let us impose that the
f 0 coupling to ⇡+⇡+ vanishes

� sin ✓T

 
�
r

1

5

�8T

!
+ cos ✓T

 r
1

8

�1T

!
= 0. (5)

With the relation between the couplings, we obtain sin ✓T =

p
2 cos ✓T or tan2 ✓T = 1/2. The quark

content are then
0

@
uū+d ¯dp

2

ss̄

1

A
=

0

@

q
1
3

q
2
3

�
q

2
3

q
1
3

1

A

0

@
uū+d ¯d�2ss̄p

6

uū+d ¯d+ss̄p
3

1

A (6)

The couplings are

�f⇡⇡ = �
r

1

5

�8T cos ✓T +

r
1

8

�1T sin ✓T = �
r

3

5

�8T (7a)

�fK+K+ =

r
1

20

�8T cos ✓T +

r
1

8

�1T sin ✓T = �1

2

r
3

5

�8T (7b)

�f
0

K+K+ = �
r

1

20

�8T sin ✓T +

r
1

8

�1T cos ✓T = � 1p
2

r
3

5

�8T (7c)

3. In this section, I only wrote the relative sign, not the relative magnitude given by SU(2) and SU(3)

Clebsch-Gordan coefficients. In the ⇡+⇡+ ! ⇡+⇡+ case we obtain

0 = �f+(t)s↵f+ (t) � �⇢�(t)s↵⇢� (t). (8)

Since this relation is valid in a range of s and t, we obtain ↵⇢�(t) = ↵f+(t) and �⇢�(t) = �f+(t).
For particles with spin, one can repeat the argument with specific combination of helicity amplitudes
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having good naturality. Hence we obtain EXD relations between exchanges with the same naturality.
In the case of ⇡+⇢+ ! ⇢+⇡+ case we obtain for the natural exchanges

0 = �!�
(t)s↵!� (t) � �a+(t)s↵a+ (t)

+ �h+
(t)s↵h+ (t) � �⇡�

(t)s↵⇡� (t) (9a)

= (�!�
(t)� �a+(t)) s↵N (t)

+

⇣
�h+

(t)� �⇡�
(t)
⌘
s↵EN (t), (9b)

and for the unnatural exchanges

0 = �!+
(t)s↵!+ (t) � �a�(t)s↵a� (t)

+ �h�
(t)s↵h� (t) � �⇡+

(t)s↵⇡+ (t) (9c)

=

⇣
�!�

(t)� �a+(t) + �h�
(t)� �⇡+

(t)
⌘
s↵U (t), (9d)

In the reaction ⇡+⇡+ ! ⇢+⇢+, the exchanges pick up a sign equal to PC, we obtain

0 = (�!�
(t)� �a+(t)) s↵N (t)

+

⇣
�h+

(t)� �⇡�
(t)
⌘
s↵EN (t) (9e)

0 =

⇣
�!�

(t)� �a+(t)� �h�
(t) + �⇡+

(t)
⌘
s↵U (t) (9f)

There are then EXD relation between exchanges with same naturality, same PC, same G�parity and
opposite signature. The Regge trajectories are indicated on Fig. 1. The exchange degeneracy relations
are summarized in Table 3 and in Fig. 1
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Figure 1: Regge trajectories.The solid lines are ↵N (t) = 0.9(t�m2
⇢) + 1 and ↵U (t) = 0.7(t�m2

⇡) + 0.

Table 3: Exchange degneracy relation
⇡+⇡+ ! ⇡+⇡+ ↵f+ = ↵⇢� �f+⇡+⇡+ = �⇢�⇡+⇡+

K+K0 ! K0K+ ↵a+ = ↵⇢� �a+K+K0 = �⇢�K+K0

K+K+ ! K+K+ ↵f+ = ↵!� �f+K+K+ = �!�
K+K+

K+n ! K+n ↵a+ = ↵⇢� �a+pp = �⇢�pp

K+p ! K+p ↵f+ = ↵!� �f+pp = �!�
pp

⇡+⇢+ ! ⇢+⇡+ ↵h+ = ↵⇡� �h+

⇡+⇢+ = �⇡�
⇡+⇢+

⇡+⇡+ ! ⇢+⇢+ ↵h� = ↵⇡+ �h�
⇡+⇢+ = �⇡+

⇡+⇢+

↵a+ = ↵!� �a+⇡+⇢+ = �!�
⇡+⇢+

↵a� = ↵!+ �a�⇡+⇢+ = �!+

⇡+⇢+
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4. (a) For pion-nucleon scattering, the covariant basis is [3]

hNj(p4)⇡
b
(p3)|Ni(p2)⇡

a
(p1)i = ū(p4)

h
Aba

ji + (p1/+ p3/ )Bba
ji

i
u(p2) (10a)

Aba
ji = �ba�jiA

(+)
+ i✏abc(⌧ c)jiA

(�) (10b)

A(±)
(⌫, t) = ±A(±)

(�⌫, t) (10c)

B(±)
(⌫, t) = ⌥B(±)

(�⌫, t) (10d)

The crossing variable is ⌫ = (s � u)/2 with s = (p1 + p2)2 and u = (p1 � p4)2. To derive the
crossing relation, use C invariance T = C�1TC, v = �CūT , v̄ = ūTC, C�1�µC = ��Tµ and
C�1�5C = +�T5 and take the transpose complexe conjugate.
For kaon-nucleon scattering, the covariant basis is

hNj(p4)K
l
(p3)|Ni(p2)K

k
(p1)i = ū(p4)

h
Alk

ji + (p1/+ p3/ )Blk
ji

i
u(p2) (11)

and the isospin decomposition is

Alk
ji = �lk�jiA

(0)
+ (⌧a)ji (⌧

a
)kl A

(1) (12)

A(0) and A(1) have isospin 0 and 1 in the t�channel. The crossing relations are

A(0)
(�⌫, t) = +A(0)

(⌫, t) B(0)
(�⌫, t) = �B(0)

(⌫, t) (13a)

A(1)
(�⌫, t) = �A(1)

(⌫, t) B(1)
(�⌫, t) = +B(1)

(⌫, t) (13b)

(b) In nucleon-nucleon scattering there are five independent Lorentz structures. One possible solution
is to use a t�channel base

hNj(p4)Nl(p3)|Ni(p2)Nk(p1)i =
5X

n=1

(An)
lk
ji ū3�

A
nu1 ū2�

A
nu4 (14)

The index A is a collective representation of Lorentz indices. The tensor structures are

�1 = 1 �2 = �5 �µ3 = �µ �µ4 = �5�
µ �µ⌫5 =

i

2

[�µ, �⌫ ] (15a)

In this base, the scalar amplitudes An have good t�channel quantum numbers.
One could also use a s�channel base

hNj(p4)Nl(p3)|Ni(p2)Nk(p1)i =
5X

n=1

(Bn)
lk
ji ū2�

A
nu1 ū3�

A
nu4 (16)

Fiertz identities relate the two basis. The transformation is
0

BBBB@

B1

B2

B3

B4

B5

1

CCCCA
=

0

BBBB@

1/4 1/4 �1/4 �1/4 1/4
1 �1/2 0 �1/2 �1

�3/2 0 �1/2 0 �3/2
�1 �1/2 0 �1/2 1

1/4 �1/4 �1/4 1/4 1/4

1

CCCCA

0

BBBB@

A1

A2

A3

A4

A5

1

CCCCA
(17)

The isospin decomposition is the same as in KN scattering and the crossing relations are

A(0,1,2)
1 (�⌫, t) = +A(0,1,2)

1 (�⌫, t) (18a)

A(0,1,2)
2 (�⌫, t) = +A(0,1,2)

2 (�⌫, t) (18b)

A(0,1,2)
3 (�⌫, t) = �A(0,1,2)

3 (�⌫, t) (18c)

A(0,1,2)
4 (�⌫, t) = �A(0,1,2)

4 (�⌫, t) (18d)

A(0,1,2)
5 (�⌫, t) = +A(0,1,2)

5 (�⌫, t) (18e)

A3 and A4 pick up a minus sign because they correspond to negative signature exchanges (vector
and axial-vector exchange). That’s a good cross-check of the method.
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(c) The reactions involve a vector with momentum pV and polarization tensor ✏µ(pV ,�) and three
pseudoscalar with momenta p1,2,3. We need a Levi-Civita tensor ✏ for parity (an odd number of
unnatural parity mesons) if parity is conserved. If parity is not conserved (weak decay) there are
two additional structures. In the parity conserving decay ! ! ⇡⇡⇡ the Lorentz structure is

h⇡a(p1)⇡b(p2)⇡a(p3)|!(pV ,�)i = Aabc
(⌫, t)i"↵�µ⌫✏

↵
(pV ,�)p

�
1p

µ
2p

⌫
2 . (19)

The only isospin structure is Aabc
(⌫, t) = "abcA(⌫, t). Two pions are always in isospin 1. The

scalar function is odd under crossing (p1,2 ! p2,1 if t = (pV �p3)2), A(�⌫, t) = �A(⌫, t), since
only vector are allowed.
The decay B ! J/ K⇡ can violate parity. There are then three Lorentz structures

h⇡(p1)K(p2)J/ (pV )|B(p1,�)i = A1(⌫, t)i"↵�µ⌫✏
↵
(pV ,�)p

�
1p

µ
2p

⌫
2

+A2(⌫, t)✏
µ
(pV ,�)(p1 � p2)µ

+A3(⌫, t)✏
µ
(pV ,�)(p1 + p2)µ (20)

Isospin is not conserved, so the isospin structure is irrelevant. This base is relavant to study
crossing under p1,2 ! p2,1. We obtain A1(�⌫, t) = �A1(⌫, t), A2(�⌫, t) = +A2(⌫, t) and
A3(�⌫, t) = �A3(⌫, t). So the exchanges (or resonances) in the 12 channel are (⌘ = +, ⌧ = �)

in A1, (⌘ = +, ⌧ = +) in A2 and (⌘ = �, ⌧ = �) in A3.

(d) There are four independent structures. With the notation P = (p1 + p2)/2, ✏1 ⌘ ✏(k1,�1) and
✏2 ⌘ ✏(k2,�2), they are

h⇡d(p2)⇢c(k2,�2)|⇡a(p1)⇢b(k1,�1)i = Aabcd
1 (⌫, t) ✏1 · ✏2

+Aabcd
2 (⌫, t) P · ✏1 P · ✏2

+Aabcd
3 (⌫, t) [k2 · ✏1 P · ✏2 + P · ✏1 k1 · ✏2]

+Aabcd
4 (⌫, t) k2 · ✏1 k1 · ✏2. (21)

The isospin decomposition is

Aabcd
= �ac�bdA

(0)
+

1

2

⇣
�ab�cd � �ad�bc

⌘
A(1)

+

1

2

⇣
�ab�cd + �ad�bc

⌘
A(2) (22)

The Lorentz and isospin bases are chosen to have good properties under crossing the two pions
(or the two ⇢’s). We obtain, for i = 1, 2, 3, 4

A(0,2)
i (�⌫, t) = +A(0,2)

i (⌫, t) A(1)
i (�⌫, t) = �A(1)

i (⌫, t) (23)

(e) The momenta are �(⇤)(k)+N(p1) ! ⇡(q)+N(p2) and p = (p1+p2)/2. Use Fµ⌫ = ✏µk⌫�kµ✏⌫ .
Parity requires a �5 or an "↵�µ⌫ . The matrix element is

hNj(p2)⇡
a
(q)|�(k)Ni(p1)i =

X

n

(An)
a
jiMn (24)

We found in the notation of Ref. [4]

M1 =
1

2

�5�µ�⌫F
µ⌫ (25a)

M2 = 2�5qµp⌫F
µ⌫ (25b)

M3 = �5�µq⌫F
µ⌫ (25c)

M4 =
i

2

✏↵�µ⌫�
↵q�Fµ⌫ (25d)

M5 = �5�
µk⌫Fµ⌫ (25e)

M6 = �5q
µk⌫Fµ⌫ (25f)
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The last M5,6 are zero for photoproduction. The isospin decomposition is

(An)
a
ji = A(+)�a3�ji +A(�) 1

2

[⌧a, ⌧3]ji +A(0)⌧aji (26)

Finally the crossing properties are

A(0,+)
i (�⌫, t) = +A(0,+)

i (⌫, t) A(�)
i (�⌫, t) = �A(�)

i (⌫, t) i = 1, 2, 4 (27a)

A(0,+)
3 (�⌫, t) = �A(0,+)

3 (⌫, t) A(�)
3 (�⌫, t) = +A(�)

3 (⌫, t) (27b)
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