Summer Workshop on the Reaction Theory Exercise sheet 7

Vincent Mathieu and Cesar Fernández-Ramírez

Contact: http://www.indiana.edu/~ssrt/index.html
To be discussed on Tuesday of Week-II.

Classwork

1. Using $\int_{0}^{\infty} e^{-a x} d x=1 / a$, compute the series (and make the factor s^{α} appear)

$$
\begin{equation*}
F(s, \alpha)=\sum_{J=0}^{\infty} \frac{s^{J}}{J-\alpha} . \tag{1}
\end{equation*}
$$

2. Consider $\pi \pi \rightarrow \pi \pi$ with m being the pion mass. The reduce amplitude φ_{ℓ} is defined by removing the barrier factor $B_{\ell}=\left(t-4 m^{2}\right)^{\ell}$ from the (elastic) partial amplitude $t_{\ell}(s)=B_{\ell}(s) \varphi_{\ell}$. The phase space factor is $\rho(s)=(1 / 16 \pi) \sqrt{1-4 m^{2} / s}$. Use the unitarity equation $\operatorname{Im} t_{\ell}(s)=\rho(s)\left|t_{\ell}\right|^{2}$ to deduce the unitarity equation for the reduce amplitude.
3. Consider $\pi \pi \rightarrow \pi \pi$ and $\pi \pi \rightarrow K \bar{K}$ with m_{1} being the pion mass and m_{2} being the kaon mass. Let us denote by 1 (2) the $\pi \pi(K \bar{K})$ channel so that $t_{\ell}^{i j}(s)$ is the partial wave for the scattering $i \rightarrow j$. The reduce amplitude $\varphi_{\ell}^{i j}$ is defined by removing the barrier factors $B_{\ell}^{i}(s)=\left(s-4 m_{i}^{2}\right)^{\ell}$ from the (elastic) partial amplitude $t_{\ell}^{i j}(s)=\sqrt{B_{\ell}^{i}(s) B_{\ell}^{j}(s)} \varphi_{\ell}^{i j}(s)$. Note that $t_{\ell}^{j i}(s)=t_{\ell}^{i j}(s)$. The phase space factors are $\rho_{i}(s)=(1 / 16 \pi) \sqrt{1-4 m_{i}^{2} / s}$. Use the unitarity equation $\operatorname{Im} t_{\ell}^{i j}(s)=\sum_{k=1,2} \rho_{k}(s) t_{\ell}^{i k *}(s) t_{\ell}^{k j}(s)$ or equivalently

$$
\begin{align*}
& \operatorname{Im} t_{\ell}^{11}(s)=\rho_{1}(s)\left|t_{\ell}^{11}(s)\right|^{2}+\rho_{2}(s)\left|t_{\ell}^{12}(s)\right|^{2} \tag{2a}\\
& \operatorname{Im} t_{\ell}^{12}(s)=\rho_{1}(s) t_{\ell}^{11 *}(s) t_{\ell}^{12}(s)+\rho_{2}(s) t_{\ell}^{12 *}(s) t_{\ell}^{22}(s) \tag{2b}\\
& \operatorname{Im} t_{\ell}^{22}(s)=\rho_{1}(s)\left|t_{\ell}^{12}(s)\right|^{2}+\rho_{2}(s)\left|t_{\ell}^{22}(s)\right|^{2} \tag{2c}
\end{align*}
$$

to derive the unitarity equations for the reduce amplitudes $\varphi_{\ell}^{i j}$.
4. In the single channel case $\pi \pi \rightarrow \pi \pi$, assume the following form for the reduce amplitude $\varphi_{\ell}(s)=$ $\beta(s) /(\ell-\alpha(s))$ and derive the unitarity equation for the Regge trajectory $\alpha(s)$ using the unitarity equation for the reduce amplitude, assuming the residue $\beta(s)$ is real.
5. In the coupled channel case $\pi \pi \rightarrow \pi \pi, K \bar{K}$, assume the following form for the reduce amplitude $\varphi_{\ell}^{i j}(s)=\beta_{i j}(s) /(\ell-\alpha(s))$. Derive the unitarity equation for the Regge trajectory $\alpha(s)$ using the three unitarity equations for the reduce amplitudes $\varphi^{11}, \varphi^{12}$ and φ^{22}, assuming the residues $\beta_{i j}(s)$ are real (and $\beta_{12}=\beta_{21}$). Since these unitarity equations are equal, what are the resulting constraints on the residues $\beta_{i j}(s)$?

Solution

1. Use the trick given and the change of variable $t=s e^{-x}$ to obtain

$$
\begin{equation*}
F(s, \alpha)=\sum_{J}^{\infty} \int_{0}^{\infty}\left(s e^{-x}\right)^{J} e^{\alpha x} d x=\int_{0}^{\infty} \frac{e^{\alpha x} d x}{1-s e^{-x}}=s^{\alpha} \int_{0}^{s} \frac{t^{-\alpha-1}}{1-t} d t \tag{3}
\end{equation*}
$$

2. By remplacement we obtain

$$
\begin{equation*}
\operatorname{Im} \varphi_{\ell}(s)=\rho(s) B_{\ell}(s)|\varphi(s)|^{2} \tag{4}
\end{equation*}
$$

or $\operatorname{Im} \varphi_{\ell}^{-1}(s)=-\rho(s) B_{\ell}(s)$.
3. By remplacement we obtain

$$
\begin{align*}
\operatorname{Im} t_{\ell}^{i j}(s) & =\rho_{1}(s) t_{\ell}^{i 1 *}(s) t_{\ell}^{1 j}(s)+\rho_{2}(s) t_{\ell}^{i 2 *}(s) t_{\ell}^{2 j}(s) \tag{5a}\\
\operatorname{Im} \sqrt{B_{\ell}^{i}(s) B_{\ell}^{j}(s)} \varphi_{\ell}^{i j}(s) & =\rho_{1}(s) \sqrt{B_{\ell}^{i}(s) B_{\ell}^{1}(s)} \varphi_{\ell}^{i 1 *}(s) \sqrt{B_{\ell}^{1}(s) B_{\ell}^{j}(s)} \varphi_{\ell}^{1 j}(s) \\
& +\rho_{2}(s) \sqrt{B_{\ell}^{i}(s) B_{\ell}^{2}(s)} \varphi_{\ell}^{i 2 *}(s) \sqrt{B_{\ell}^{2}(s) B_{\ell}^{j}(s)} \varphi_{\ell}^{2 j}(s) \tag{5b}\\
\operatorname{Im} \varphi_{\ell}^{i j}(s) & =\rho_{1}(s) B_{\ell}^{1}(s) \varphi_{\ell}^{i 1 *}(s) \varphi_{\ell}^{1 j}(s)+\rho_{2}(s) B_{\ell}^{2}(s) \varphi_{\ell}^{i 2 *}(s) \varphi_{\ell}^{2 j}(s) \tag{5c}\\
\operatorname{Im} \varphi_{\ell}^{i j}(s) & =\sum_{k=1,2} \rho_{k}(s) B_{\ell}^{k}(s) \varphi_{\ell}^{i k *}(s) \varphi_{\ell}^{k j}(s) \tag{5d}
\end{align*}
$$

We can equivalently perform the same derivation in a matrix form. Let us define the matrices $\left(\boldsymbol{t}_{\ell}\right)_{i j}=t_{\ell}^{i j}(s),\left(\boldsymbol{\varphi}_{\ell}\right)_{i j}=\varphi_{\ell}^{i j}(s),(\boldsymbol{\rho})_{i j}=\rho_{i}(s) \delta_{i j}$ and $\left(\boldsymbol{B}_{\ell}^{1 / 2}\right)_{i j}=\sqrt{B_{\ell}^{i}}(s) \delta_{i j}$. Note that $\boldsymbol{t}_{\ell}^{T}=\boldsymbol{t}_{\ell}$ and $\boldsymbol{B}_{\ell}^{-1}=\boldsymbol{B}_{\ell}$. The unitarity equations read $\operatorname{Im} \boldsymbol{t}_{\ell}=\boldsymbol{t}_{\ell}^{\dagger} \boldsymbol{\rho} \boldsymbol{t}_{\ell}$ or $\operatorname{Im} \boldsymbol{t}_{\ell}^{-1}=-\boldsymbol{\rho}$ (by writing $\operatorname{Im} \boldsymbol{t}_{\ell}=$ $(1 / 2 i)\left(\boldsymbol{t}_{\ell}^{\dagger}-\boldsymbol{t}_{\ell}\right)$ and multiplying to left by $\left(\boldsymbol{t}_{\ell}^{\dagger}\right)^{-1}$ and to the right by $\left.\boldsymbol{t}_{\ell}^{-1}\right)$. Since $\boldsymbol{t}_{\ell}=\boldsymbol{B}_{\ell}^{1 / 2} \boldsymbol{\varphi}_{\ell} \boldsymbol{B}_{\ell}^{1 / 2}$, we obtain $\operatorname{Im} \boldsymbol{\varphi}_{\ell}=\boldsymbol{\varphi}_{\ell}^{\dagger} \boldsymbol{B}_{\ell}^{1 / 2} \boldsymbol{\rho} \boldsymbol{B}_{\ell}^{1 / 2} \boldsymbol{\varphi}_{\ell}$ or $\operatorname{Im} \boldsymbol{\varphi}_{\ell}^{-1}=-\boldsymbol{B}_{\ell}^{1 / 2} \boldsymbol{\rho} \boldsymbol{B}_{\ell}^{1 / 2}=-\boldsymbol{\rho} \boldsymbol{B}_{\ell}$.
4. The trajectory is $\alpha(s)=\ell-\beta(s) / \varphi_{\ell}(s)$. We obtain

$$
\begin{equation*}
\operatorname{Im} \alpha(s)=-\operatorname{Im} \frac{\beta(s)}{\varphi_{\ell}(s)}=\beta(s) \frac{\operatorname{Im} \varphi_{\ell}(s)}{\left|\varphi_{\ell}(s)\right|^{2}}=\rho(s) B_{\ell}(s) \beta(s) \tag{6}
\end{equation*}
$$

as expected since $\operatorname{Im} \varphi^{-1}=-\operatorname{Im} \alpha / \beta=-\rho B_{\ell}$.
5. The trajectory is $\alpha(s)=\ell-\beta_{i j}(s) / \varphi_{\ell}^{i j}(s)$. We obtain

$$
\begin{equation*}
\operatorname{Im} \alpha(s)=\beta_{i j}(s) \frac{\operatorname{Im} \varphi_{\ell}^{i j}(s)}{\left|\varphi_{\ell}^{i j}(s)\right|^{2}}=\beta_{i j}^{-1}(s) \sum_{k=1,2} \rho_{k}(s) B_{\ell}^{k}(s) \beta_{i k}(s) \beta_{k j}(s) \tag{7}
\end{equation*}
$$

More explicitly the three equations are $(i j=\{11,12,22\})$

$$
\begin{align*}
\operatorname{Im} \alpha(s) & =\left[\rho_{1}(s) B_{\ell}^{1}(s) \beta_{11}^{2}(s)+\rho_{2}(s) B_{\ell}^{2}(s) \beta_{12}^{2}(s)\right] / \beta_{11}(s) \tag{8a}\\
& =\rho_{1}(s) B_{\ell}^{1}(s) \beta_{11}(s)+\rho_{2}(s) B_{\ell}^{2}(s) \beta_{22}(s) \tag{8b}\\
& =\left[\rho_{1}(s) B_{\ell}^{1}(s) \beta_{12}^{2}(s)+\rho_{2}(s) B_{\ell}^{2}(s) \beta_{22}^{2}(s)\right] / \beta_{22}(s) \tag{8c}
\end{align*}
$$

We then derive the factorization of residues

$$
\begin{equation*}
\beta_{12}^{2}(s)=\beta_{11}(s) \beta_{22}(s) \tag{9}
\end{equation*}
$$

