Joined Physics Analysis Center

Summer Workshop on the Reaction Theory Exercise sheet 7

Vincent Mathieu and Cesar Fernández-Ramírez

Contact: http://www.indiana.edu/~ssrt/index.html

June 12 - June 22

To be discussed on Tuesday of Week-II.

Classwork

1. Using $\int_0^\infty e^{-ax} dx = 1/a$, compute the series (and make the factor s^α appear)

$$F(s,\alpha) = \sum_{J=0}^{\infty} \frac{s^J}{J-\alpha}.$$
(1)

- 2. Consider $\pi\pi \to \pi\pi$ with m being the pion mass. The reduce amplitude φ_{ℓ} is defined by removing the barrier factor $B_{\ell} = (t 4m^2)^{\ell}$ from the (elastic) partial amplitude $t_{\ell}(s) = B_{\ell}(s)\varphi_{\ell}$. The phase space factor is $\rho(s) = (1/16\pi)\sqrt{1 4m^2/s}$. Use the unitarity equation $\operatorname{Im} t_{\ell}(s) = \rho(s)|t_{\ell}|^2$ to deduce the unitarity equation for the reduce amplitude.
- 3. Consider $\pi\pi \to \pi\pi$ and $\pi\pi \to K\bar{K}$ with m_1 being the pion mass and m_2 being the kaon mass. Let us denote by 1 (2) the $\pi\pi$ $(K\bar{K})$ channel so that $t_{\ell}^{ij}(s)$ is the partial wave for the scattering $i \to j$. The reduce amplitude φ_{ℓ}^{ij} is defined by removing the barrier factors $B_{\ell}^i(s) = (s 4m_i^2)^{\ell}$ from the (elastic) partial amplitude $t_{\ell}^{ij}(s) = \sqrt{B_{\ell}^i(s)B_{\ell}^j(s)}\varphi_{\ell}^{ij}(s)$. Note that $t_{\ell}^{ji}(s) = t_{\ell}^{ij}(s)$. The phase space factors are $\rho_i(s) = (1/16\pi)\sqrt{1 4m_i^2/s}$. Use the unitarity equation $\operatorname{Im} t_{\ell}^{ij}(s) = \sum_{k=1,2} \rho_k(s)t_{\ell}^{ik*}(s)t_{\ell}^{kj}(s)$ or equivalently

$$\operatorname{Im} t_{\ell}^{11}(s) = \rho_1(s) |t_{\ell}^{11}(s)|^2 + \rho_2(s) |t_{\ell}^{12}(s)|^2,$$
(2a)

$$\operatorname{Im} t_{\ell}^{12}(s) = \rho_1(s) t_{\ell}^{11*}(s) t_{\ell}^{12}(s) + \rho_2(s) t_{\ell}^{12*}(s) t_{\ell}^{22}(s),$$
(2b)

$$\operatorname{Im} t_{\ell}^{22}(s) = \rho_1(s) |t_{\ell}^{12}(s)|^2 + \rho_2(s) |t_{\ell}^{22}(s)|^2,$$
(2c)

to derive the unitarity equations for the reduce amplitudes $arphi_\ell^{ij}$.

- 4. In the single channel case $\pi\pi \to \pi\pi$, assume the following form for the reduce amplitude $\varphi_{\ell}(s) = \beta(s)/(\ell \alpha(s))$ and derive the unitarity equation for the Regge trajectory $\alpha(s)$ using the unitarity equation for the reduce amplitude, assuming the residue $\beta(s)$ is real.
- 5. In the coupled channel case $\pi\pi \to \pi\pi, K\bar{K}$, assume the following form for the reduce amplitude $\varphi_{\ell}^{ij}(s) = \beta_{ij}(s)/(\ell \alpha(s))$. Derive the unitarity equation for the Regge trajectory $\alpha(s)$ using the three unitarity equations for the reduce amplitudes $\varphi^{11}, \varphi^{12}$ and φ^{22} , assuming the residues $\beta_{ij}(s)$ are real (and $\beta_{12} = \beta_{21}$). Since these unitarity equations are equal, what are the resulting constraints on the residues $\beta_{ij}(s)$?

Solution

1. Use the trick given and the change of variable $t = se^{-x}$ to obtain

$$F(s,\alpha) = \sum_{J}^{\infty} \int_{0}^{\infty} (se^{-x})^{J} e^{\alpha x} dx = \int_{0}^{\infty} \frac{e^{\alpha x} dx}{1 - se^{-x}} = s^{\alpha} \int_{0}^{s} \frac{t^{-\alpha - 1}}{1 - t} dt$$
(3)

2. By remplacement we obtain

$$\operatorname{Im} \varphi_{\ell}(s) = \rho(s) B_{\ell}(s) |\varphi(s)|^2 \tag{4}$$

or $\operatorname{Im} \varphi_{\ell}^{-1}(s) = -\rho(s)B_{\ell}(s).$

3. By remplacement we obtain

Im

$$\operatorname{Im} t_{\ell}^{ij}(s) = \rho_1(s) t_{\ell}^{i1*}(s) t_{\ell}^{1j}(s) + \rho_2(s) t_{\ell}^{i2*}(s) t_{\ell}^{2j}(s)$$

$$\sqrt{B_{\ell}^i(s) B_{\ell}^j(s)} \varphi_{\ell}^{ij}(s) = \rho_1(s) \sqrt{B_{\ell}^i(s) B_{\ell}^1(s)} \varphi_{\ell}^{i1*}(s) \sqrt{B_{\ell}^1(s) B_{\ell}^j(s)} \varphi_{\ell}^{1j}(s)$$
(5a)

$$+ \rho_2(s) \sqrt{B_{\ell}^i(s) B_{\ell}^2(s)} \varphi_{\ell}^{i2*}(s) \sqrt{B_{\ell}^2(s) B_{\ell}^j(s)} \varphi_{\ell}^{2j}(s)$$
(5b)

$$\operatorname{Im} \varphi_{\ell}^{ij}(s) = \rho_1(s) B_{\ell}^1(s) \varphi_{\ell}^{i1*}(s) \varphi_{\ell}^{1j}(s) + \rho_2(s) B_{\ell}^2(s) \varphi_{\ell}^{i2*}(s) \varphi_{\ell}^{2j}(s)$$
(5c)

$$\operatorname{Im} \varphi_{\ell}^{ij}(s) = \sum_{k=1,2} \rho_k(s) B_{\ell}^k(s) \varphi_{\ell}^{ik*}(s) \varphi_{\ell}^{kj}(s)$$
(5d)

We can equivalently perform the same derivation in a matrix form. Let us define the matrices $(t_{\ell})_{ij} = t_{\ell}^{ij}(s)$, $(\varphi_{\ell})_{ij} = \varphi_{\ell}^{ij}(s)$, $(\rho)_{ij} = \rho_i(s)\delta_{ij}$ and $(B_{\ell}^{1/2})_{ij} = \sqrt{B_{\ell}^i}(s)\delta_{ij}$. Note that $t_{\ell}^T = t_{\ell}$ and $B_{\ell}^{-1} = B_{\ell}$. The unitarity equations read $\operatorname{Im} t_{\ell} = t_{\ell}^{\dagger}\rho t_{\ell}$ or $\operatorname{Im} t_{\ell}^{-1} = -\rho$ (by writing $\operatorname{Im} t_{\ell} = (1/2i)(t_{\ell}^{\dagger} - t_{\ell})$ and multiplying to left by $(t_{\ell}^{\dagger})^{-1}$ and to the right by t_{ℓ}^{-1}). Since $t_{\ell} = B_{\ell}^{1/2}\varphi_{\ell}B_{\ell}^{1/2}$, we obtain $\operatorname{Im} \varphi_{\ell} = \varphi_{\ell}^{\dagger}B_{\ell}^{1/2}\rho B_{\ell}^{1/2}\varphi_{\ell}$ or $\operatorname{Im} \varphi_{\ell}^{-1} = -B_{\ell}^{1/2}\rho B_{\ell}^{1/2} = -\rho B_{\ell}$.

4. The trajectory is $\alpha(s) = \ell - \beta(s)/\varphi_\ell(s)$. We obtain

$$\operatorname{Im} \alpha(s) = -\operatorname{Im} \frac{\beta(s)}{\varphi_{\ell}(s)} = \beta(s) \frac{\operatorname{Im} \varphi_{\ell}(s)}{|\varphi_{\ell}(s)|^2} = \rho(s) B_{\ell}(s) \beta(s),$$
(6)

as expected since $\operatorname{Im} \varphi^{-1} = -\operatorname{Im} \alpha / \beta = -\rho B_{\ell}.$

5. The trajectory is $\alpha(s) = \ell - \beta_{ij}(s) / \varphi_{\ell}^{ij}(s)$. We obtain

$$\operatorname{Im} \alpha(s) = \beta_{ij}(s) \frac{\operatorname{Im} \varphi_{\ell}^{ij}(s)}{|\varphi_{\ell}^{ij}(s)|^2} = \beta_{ij}^{-1}(s) \sum_{k=1,2} \rho_k(s) B_{\ell}^k(s) \beta_{ik}(s) \beta_{kj}(s)$$
(7)

More explicitly the three equations are $(ij = \{11, 12, 22\})$

$$\operatorname{Im} \alpha(s) = \left[\rho_1(s)B_\ell^1(s)\beta_{11}^2(s) + \rho_2(s)B_\ell^2(s)\beta_{12}^2(s)\right]/\beta_{11}(s)$$
(8a)

$$= \rho_1(s)B^1_{\ell}(s)\beta_{11}(s) + \rho_2(s)B^2_{\ell}(s)\beta_{22}(s)$$
(8b)

$$= \left[\rho_1(s)B_\ell^1(s)\beta_{12}^2(s) + \rho_2(s)B_\ell^2(s)\beta_{22}^2(s)\right]/\beta_{22}(s)$$
(8c)

We then derive the factorization of residues

$$\beta_{12}^2(s) = \beta_{11}(s)\beta_{22}(s) \tag{9}$$