# Summer Workshop on the Reaction Theory Exercise sheet 6 

Mikhail Mikhasenko, Emilie Passemar<br>Contact: http://www.indiana.edu/~ssrt/index.html

June 12 - June 22
To be discussed on Thursday of Week-II.

## Classwork

### 6.1 Analytic functions

A Real (Hermitian) Analytic function is an analytic function which satisfies Schwarz reflection principle.

- Check whether the following functions are real (Hermitian) analytic functions, investigate their analytic structure:
- $\sqrt{s}$ with the standard definition of the square root function (as in any programming language: $\sqrt{ \pm i}=(1 \pm i) / \sqrt{2})$.
- the two-body phase space $\Phi(s)=\frac{1}{8 \pi} \sqrt{1-\frac{4 m^{2}}{s}}$,
- $\log (x)$ with the standard definition of the argument function (as in any programming language $\log ( \pm i)= \pm \pi / 2)$.
- What are the asymptotic limits $s \rightarrow \infty$ for the functions above. Write down the integral representations using subtraction if needed. Prove the relation explicitly for the function $\log (s)$.
- Reconstruct function $\Sigma(s)$ which is real analytic everywhere except the unitarity cut $s>4 m^{2}$. The imaginary part of $\Sigma(s)$ just above the cut is equal to $\theta\left(s-4 m^{2}\right) \rho(s)=\theta\left(s-4 m^{2}\right) \Phi(s) / 2$. Compare the analytic structures of $\Sigma(s)$ and $i \rho(s)$.


### 6.2 Omnès problem for the Breit-Wigner amplitude

The Omnès function $\Omega(s)$ is a solution of the equation

$$
\Delta \Omega(s)=2 i \rho(s) t^{*}(s) \Omega(s)
$$

where $\Delta \Omega(s)=\Omega(s+i \epsilon)-\Omega(s-i \epsilon)$. The right hand part of the equation is calculated in the physical $s$-channel, therefore, the real value of $s$ is approached from above. The phase space factor $\rho(s)$ is introduced above. The amplitude $t(s)$ satisfies elastic unitarity.

- Derive the expression for the omnès function

$$
\Omega(s)=\Omega_{0} \exp \left(\frac{s}{\pi} \int_{4 m^{2}}^{\infty} \frac{\delta\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)} \mathrm{d} s^{\prime}\right)
$$

- Calculate the phase shift and the Omnès function explicitly for a Breit-Wigner amplitude in the limit of zero width.
- The Breit-Wigner amplitude with the finite energy-dependent width follows.

$$
\begin{equation*}
F_{\mathrm{BW}}(s)=\frac{g^{2}}{m^{2}-s-i m \Gamma(s)}, \quad \Gamma(s)=\frac{g^{2}}{2 m} \Phi(s) \tag{1}
\end{equation*}
$$

What is the value of the phase at threshold? What is the limit of the phase when $s \rightarrow \infty$ ? Sketch the phase a function of $s$.

- How does the phase change when the width gets smaller? Find a function to approximate the phase in the limit $\Gamma \rightarrow 0$.
- Calculate the integral for the phase explicitly.
- Consider the most fancy modification of the Breit-Wigner amplitude where the left-hand cut in the phase space is removed by replacing the phase space by the dispersive integral.

$$
\begin{equation*}
F_{\mathrm{BW}}(s)=\frac{g^{2}}{m^{2}-s-i m \tilde{\Gamma}(s)}, \quad \tilde{\Gamma}(s)=\frac{g^{2}}{2 m} \frac{s}{\pi i} \int_{4 m^{2}}^{\infty} \frac{\Phi\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)} \mathrm{d} s^{\prime} \tag{2}
\end{equation*}
$$

- Show that the imaginary part of the denominator in Eq. 2 is the same as the one in Eq. 1
- Guess the Omnès function which can be calculated from Eq. 2 without evaluating it.


### 6.3 Dalitz plot for $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decay

The Dalitz plot of $\eta \rightarrow 3 \pi$ is usually drawn in the symmetric triangle coordinates (see sheet 4): the kinetic energies of the pions $h_{1}=T_{+}, h_{2}=T_{-}$and $h_{3}=T_{0}$ are given by the distances to the sides of the equilateral triangle.


- Find out the side length of the triangle for the decay $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$.
- What are the relations between the kinetic energies and the Cartesian coordinates, say $T_{x}, T_{y}$.

Usually the axes are linearly rescalled to fit the Dalitz plot to the range $X \in[-1,1], Y \in[-1,1] . X=$ $p_{1} T_{x}+q_{1}, Y=p_{2} T_{x}+q_{2}$.

- What is the minimal and maximal values for $T_{+}, T_{-}, T_{0}$ ? What are ranges for $T_{x}$ and $T_{y}$ ?
- Find out the transformation $T_{x}, T_{y} \rightarrow X, Y$, namely $p_{1}, q_{1}, p_{2}, q_{2}$.
- Calculate $\mathrm{d}^{2} \Gamma /(\mathrm{d} X \mathrm{~d} Y)$.


Figure 1: The Dalitz plots for the decay $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ measured at KLOE [JHEP 0805 (2008) 006] The density of the dalitz plot is proportional to square of the matrix element.

- What is reason of the symmetry with respect to $X \rightarrow-X$ reflection?
- Why does the intensity change towards $Y$ axis?
- How would the Dalitz plot differ to the one for $\eta \rightarrow 3 \pi$ ?


## $6.4 \quad \eta \rightarrow 3 \pi$ decay

- Consider the decay channels of the $\eta$-meson:
- $\eta \xrightarrow{?} \pi^{+} \pi^{-} / \pi^{0} \pi^{0}$ : find possible $J^{P}$ quantum numbers of the system of two pions.
$-\eta \stackrel{?}{\rightarrow} \gamma \gamma$ : find possible $J^{P}$ quantum numbers of the system of two gamma quanta.
- Which quantum number is violated in the decay $\eta \rightarrow 3 \pi$.


### 6.5 Black disc model

In 1935, Hideki Yukawa postulated that the short-range nuclear force may be mediated by massive particles.
-What are those particles?

- What is the range of the interaction?
- How long is the mean free path length of these particles in iron $\rho_{\mathrm{Fe}}=7.8 \mathrm{~g} / \mathrm{cm}^{3}$ given that the absorption cross section is 500 mbarn ?
- How many partial waves are expected to be significant when those particles with energy 30 GeV are scattered off iron.
- Calculate the scattering cross section under the assumption that the iron nucleus can be regarded as a total absorbing disk.

Hints:

- the mass of the iron atom is $m_{0}=55.85 \mathrm{u}$,
- the radius of the iron atom is 140 pm .
- The nucleus radius is approximately $r=1.25 A^{1 / 3} \mathrm{fm}$.

