Summer Workshop on the Reaction Theory Exercise sheet 2

Adam Szczepaniak
Contact: http://www.indiana.edu/~ssrt/index.html
June 12 - June 22
To be discussed on Thursday of Week-I.

Classwork

2.1 Elementary complex algebra

- Find solution $z^{8}=1$.
- Simplify $\frac{1+i}{2+i}, \sqrt{1+\sqrt{i}}$.
- Show that maximum absolute value of $z^{2}+1$ in a unit disk $|z|<1$ is 2 .
- Show that

$$
1+\cos \phi+\cos 2 \phi+\cdots+\cos n \phi=\frac{1}{2}+\frac{\sin \left(n+\frac{1}{2}\right) \phi}{2 \sin \frac{\phi}{2}}
$$

- solve the equation

$$
\frac{\mathrm{d}^{2} x(t)}{\mathrm{d} t^{2}}+\omega^{2} x^{2}(t)=0
$$

2.2 Complex functions

- Show that $\cos z=\frac{1}{2}$ has only real solutions.
- Find all values of i^{i}.
- Show that $\sin \left(z_{1}+z_{2}\right)=\sin z_{1} \cos z_{2}+\sin z_{2} \cos z_{1}$ using that $e^{i z}=\cos z+i \sin z$.
- Show that under the $\operatorname{map} z \rightarrow \sin z$ lines parallel to the real axis are mapped to ellipses and that lines parallel the imaginary axis are mapped to hyperbolas.

2.3 Complex integrals

We define the paths in the complex plane: γ is a right hand unit circle $|z|=1, \gamma^{\prime}$ is a unit square passed in counter-clockwise direction.

- $\int_{\gamma} \mathrm{d} z$ and $\int_{\gamma^{\prime}} \mathrm{d} z$,
- $\int_{\gamma} \frac{\mathrm{d} z}{z}$ and $\int_{\gamma^{\prime}} \frac{\mathrm{d} z}{z}$,
- $\int_{\gamma} \frac{\mathrm{d} z}{z^{2}}$.

2.4 More integrals

Calculate real integrals using the Cauchy theorem in the complex plane:

$$
\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}}, \quad \int_{1}^{\infty} \mathrm{d} x \frac{1}{x \sqrt{x^{2}-1}} .
$$

