Joint Physics Analysis Center

Summer Workshop on the Reaction Theory Exercise sheet 1

Alessandro Pilloni

Contact: http://www.indiana.edu/~ssrt/index.html

June 12 — June 22

To be discussed on Monday of Week-I.

Classwork

1.1 $2 \rightarrow 2$ scattering

Consider the scattering of $12 \rightarrow 34$, with $m_1 \neq m_2 \neq m_3 \neq m_4$. In the center of mass frame, derive the relations between incoming momentum p_i , the outgoing momentum p_f , the energies of the particles, the scattering angle, and the Mandelstam variables $s = (p_1 + p_2)^2$, $t = (p_1 - p_3)^2$, $u = (p_1 - p_4)^2$.

1.2 n - body phase space

- (a) Calculate the two-body phase space, $\frac{d^3p_1}{(2\pi)^3 2E_1} \frac{d^3p_2}{(2\pi)^3 2E_2} (2\pi)^4 \delta^4 (P p_1 p_2).$
- (b) Use the previous result to calculate the three-body phase space, by inserting $d^4q\delta^4(p_2+p_3-q)$.
- (c) What if identical particles are present?

1.3 Wigner rotations

Consider a state with helicity μ moving in the x direction, $|\vec{p}, \mu\rangle$. We want to boost the state in the z direction with β .

- (a) Calculate the new momentum of the state $|\vec{p'}|$, and the angle θ' with respect to the z-axis. Check that the non-relativistic limit is reasonable.
- (b) Remember the definition of helicity state. We are calculating $L_z(b) R(0, \pi/2, 0) L_z(p) |\vec{0}, \mu\rangle$. If the state were equal to $|\vec{p'}, \mu\rangle = R(0, \theta', 0) L_z(p') |\vec{0}, \mu\rangle$, the two combinations of boost and rotation would coincide. Check that this is not the case.
- (c) The right answer is realized by adding another rotation $R(0, \theta', 0) L_z(p') R(0, \omega, 0) |\vec{0}, \mu\rangle$. Calculate the ω you need for the two combinations to match.
- (d) What's the relation between the boosted $L_z(b) | \vec{p}, \mu \rangle$ and $| \vec{p'}, \mu \rangle$?