Summer Workshop on the Reaction Theory Exercise sheet 1

Alessandro Pilloni
Contact: http://www.indiana.edu/~ssrt/index.html

June 12 - June 22
To be discussed on Monday of Week-I.

Classwork

1.1 $2 \rightarrow 2$ scattering

Consider the scattering of $12 \rightarrow 34$, with $m_{1} \neq m_{2} \neq m_{3} \neq m_{4}$. In the center of mass frame, derive the relations between incoming momentum p_{i}, the outgoing momentum p_{f}, the energies of the particles, the scattering angle, and the Mandelstam variables $s=\left(p_{1}+p_{2}\right)^{2}, t=\left(p_{1}-p_{3}\right)^{2}, u=\left(p_{1}-p_{4}\right)^{2}$.

$1.2 n-b o d y$ phase space

(a) Calculate the two-body phase space, $\frac{d^{3} p_{1}}{(2 \pi)^{3} 2 E_{1}} \frac{d^{3} p_{2}}{(2 \pi)^{3} 2 E_{2}}(2 \pi)^{4} \delta^{4}\left(P-p_{1}-p_{2}\right)$.
(b) Use the previous result to calculate the three-body phase space, by inserting $d^{4} q \delta^{4}\left(p_{2}+p_{3}-q\right)$.
(c) What if identical particles are present?

1.3 Wigner rotations

Consider a state with helicity μ moving in the x direction, $|\vec{p}, \mu\rangle$. We want to boost the state in the z direction with β.
(a) Calculate the new momentum of the state $\left|\overrightarrow{p^{\prime}}\right|$, and the angle θ^{\prime} with respect to the z-axis. Check that the non-relativistic limit is reasonable.
(b) Remember the definition of helicity state. We are calculating $L_{z}(b) R(0, \pi / 2,0) L_{z}(p)|\overrightarrow{0}, \mu\rangle$. If the state were equal to $\left|\overrightarrow{p^{\prime}}, \mu\right\rangle=R\left(0, \theta^{\prime}, 0\right) L_{z}\left(p^{\prime}\right)|\overrightarrow{0}, \mu\rangle$, the two combinations of boost and rotation would coincide. Check that this is not the case.
(c) The right answer is realized by adding another rotation $R\left(0, \theta^{\prime}, 0\right) L_{z}\left(p^{\prime}\right) R(0, \omega, 0)|\overrightarrow{0}, \mu\rangle$. Calculate the ω you need for the two combinations to match.
(d) What's the relation between the boosted $L_{z}(b)|\vec{p}, \mu\rangle$ and $\left|\overrightarrow{p^{\prime}}, \mu\right\rangle$?

