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• Applies to high-energy scattering at small angles 

• Nuclear shadowing is the result of quantum-mechanical interference among 
scattering amplitudes for the interaction with 1, 2, …, A nucleons of the 
nuclear target. 

• At high energies the amplitudes are predominantly imaginary (recall Ch. 8 of 
Gribov’s book) →  this interference is destructive → σA < A σN 

R.J. Glauber, 2005 Nobel Prize in Physics 
for “quantum theory of optical coherence”
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• I explained in my seminar 1 that at high energies, one recovers the 
approximation of geometrical optics: particles move essentially along straight 
trajectories acquiring only an additional phase:
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scattering amplitude scattering amplitude in impact 
parameter space = profile Γ(b)  accumulated phase 

• This representation is useful not only in non-relativistic quantum mechanics, 
but also in field theory:
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• Specifically, for a nucleus target: 

-  the nuclear potential changes slowly during the 
interaction time → nucleons can be considered 
“frozen” in their positions (recall seminar 1, when it 
was formally derived)

Glauber approximation for scattering off nuclei

Why do we care about Glauber approximation? Because it give a clear geometrical
picture of nuclear shadowing in the rest frame of the nucleus.

Generalize proton Glauber formulas to the case of nucleus:
•incoming momentum is large, scattering angles are small
•the nuclear potential changes slowly during the interaction time,
i.e, nucleons can be considered to be frozen at their positions

Scattering amplitude on frozen nucleons (depends on coordinates of nucleons):

Integration over positions of the nucleons (using nuclear wave function):
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Scattering amplitude on “frozen” nucleons, which depends on nucleon coordinates: 

Integration over nucleon positions with nuclear wave function:   
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• Specifically, for a nucleus target: 

-  pair-wise nuclear forces → total phase on 
nucleus is sum of phases on individual nucleons

�A(b,~r1,~r2, . . . ,~rA) =
AX

i=1
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Glauber approximation for scattering off nuclei (2)

When nuclear forces are pair-wise (normal situation):

Nuclear scattering amplitude (in impact parameter space) can be expressed in
terms of the elementary nucleon amplitudes.

After integration with the nuclear wave function squared:
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Nuclear cross section as a series of A terms, where the expansion parameter is
the number of interactions (Glauber series).  

• Nuclear scattering amplitude in impact parameter space (profile) in terms 
of nucleon amplitudes:
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• Averaging over the nuclear wave function squared → Glauber series for 
nuclear cross section, where each term corresponds to interaction with 1, 
2, .. A nucleons:  
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Born (impulse) approximation shadowing correction
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Glauber method for pion-deuteron scattering
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• Nuclear profile function:

• Scattering amplitude on deuteron:
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• Substitute                                                           and do integrals over r:�p,n(~b) =
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Glauber method for pion-deuteron scattering (5)

Collecting all contributions:

Each term in the Glauber series corresponds to a diagram
(these are not Feynman diagrams since it is not perturbation theory since coupling is large)

• GD(q) is the deuteron form factor: GD(~q) ⌘
Z

d3~r ei~q~r |�D(~r)|2

effective Feynman diagrams from seminar 1
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• Optical theorem:

�D = �p + �n � 1
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characterizes p-n overlap in D

• Physics of shadowing: incoming particle scatters on first nucleon, gets 
absorbed and, thus, cannot interact with the second nucleon. The effect 
depends on the geometric overlap of the two nucleons — hence, the term 
“shadowing”. 

• Magnitude of the shadowing effect: σp,n=70 mb (Tevatron), <1/r2>D=0.05 mb-1:

�D = 140� 70⇥ 70

4⇡
0.05 = 140� 20 = 120 mbarn

Nuclear shadowing is ~15% effect at Tevatron energies.
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• Glauber: non-rel. QM, successive interactions, elastic intermediate states 

• Gribov: QFT, coherent interactions, inelastic intermediate states 

• Based on Gribov’s picture of the strong interaction at high energies, seminar 1 

• Fast hadrons are superpositions of fluctuations with long lifetime:

lc /
p

µ2
� target size

• These fluctuations describe diffractive production, Good, Walker, 

1960; the momentum transfer to nucleon is small.

• Two contributions to nuclear shadowing, Gribov, Sov. Phys. JETP 29 (1969) 483:
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• At high energies, graph “a” for elastic intermediate state → 0                                                                          

as a result of cancellation of the planar (AFS) diagram, Amati, Fubini, Stanghellini; 
Mandelstam 1963; Frankfurt, Strikman, arXiv:1304.4308; Gribov’s book, chapter 12 

• In physics terms, configurations of the projective do not have time to 
recombine in the elastic state (pion) between two successive interactions. 

• At high energies (BDL), elastic scattering = diffractive scattering → 
diffractive intermediate state. 

• At high energies, elastic cross section → 0 due to shrinkage of diffractive 
cone, recall our discussion of BDL, when lmax~bmax ~ ln(s). 

a a

b b

a

b

(a)

×

×

a a

b b

(b)

Figure 5: (a) The planar diagram for double scattering. (b) A non-planar
diagram for double scattering.

There are two independent theoretical proofs that the contribution of pla-
nar diagrams to the double Pomeron scattering amplitude is actually zero.
It was found that in the case of high energy scattering in a quantum field
theory, the contribution of the planar diagrams with intermediate states cor-
responding to the projectile on its mass shell drops with the incident energy
as 1/s. Indeed, the integral over the square of the mass of hadrons pro-
duced in the IP–hadron collision, M2, is zero in the case when the Feynman
diagrams have only s or u cuts because the contour of integration can be
moved in the direction where there are no singularities in M2 [41, 42]. The
integral over the large circle is zero as a consequence of a decrease of the
amplitude with M2. The eikonal diagram (Fig. 5a) belongs to the class
of Feynman diagrams where the cancellation occurs. Crossed (non-planar)
diagrams (Fig. 5b), which have cuts both in s and u, give a non-zero contri-
bution.

Taking in account energy–momentum conservation leads to the same con-
clusion [53]. Indeed, the eikonal diagrams correspond to an inelastic interme-
diate state described by the Pomeron exchange at the double energy 2s. On
the contrary, in the crossed diagram the energy is divided between constituents

before the collision. If one parton carries the fraction z of the incident hadron
momentum and another parton carries the fraction z0  1 � z, the total en-
ergy of the produced hadronic state is sz + sz0  s. Both arguments can be
easily generalized to the case when the wave function of the initial hadron
contains many constituents.

Using the technique of the Pomeron calculus, V. Gribov showed that in a

33

=
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• Thus, shadowing correction is given by the non-planar ladder diagram, which 
does not vanish as s → ∞                                                                         

=
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as 1/s. Indeed, the integral over the square of the mass of hadrons pro-
duced in the IP–hadron collision, M2, is zero in the case when the Feynman
diagrams have only s or u cuts because the contour of integration can be
moved in the direction where there are no singularities in M2 [41, 42]. The
integral over the large circle is zero as a consequence of a decrease of the
amplitude with M2. The eikonal diagram (Fig. 5a) belongs to the class
of Feynman diagrams where the cancellation occurs. Crossed (non-planar)
diagrams (Fig. 5b), which have cuts both in s and u, give a non-zero contri-
bution.

Taking in account energy–momentum conservation leads to the same con-
clusion [53]. Indeed, the eikonal diagrams correspond to an inelastic interme-
diate state described by the Pomeron exchange at the double energy 2s. On
the contrary, in the crossed diagram the energy is divided between constituents

before the collision. If one parton carries the fraction z of the incident hadron
momentum and another parton carries the fraction z0  1 � z, the total en-
ergy of the produced hadronic state is sz + sz0  s. Both arguments can be
easily generalized to the case when the wave function of the initial hadron
contains many constituents.

Using the technique of the Pomeron calculus, V. Gribov showed that in a

33

• The corresponding expression, Gribov, Sov. Phys. JETP 29 (1969) 483 (recall also derivation 
using effective Feynman diagrams of seminar 1)                                                                        
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Fig. 4. The momentum flow in the right graph in Fig. 2 and in Eq. (10).

off by the wave function of the deuteron. As a result, the shadowing contribution is controlled by the small internucleon
distances ⌧rD = 1/

p
✏Dm (cf. Eq. (20)). Consequently, in the numerical calculations of nuclear shadowing, the nucleon

momenta up to ⇠400 MeV/c are important. In particular, the D-wave gives a large fraction of the shadowing correction in
spite of the small probability of the D-wave in the deuteron, cf. the discussion in Section 4.

In the non-relativistic approximation, the vertex functions � depend only on the absolute value of the relative three-
momentum of the nucleons,
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Another quantity in Eq. (10), the scattering amplitude f , depends only on the five indicated variables, which is a
consequence of the assumption that f depends only on the momentum transfer to the nucleons. This approximation means
that we neglected the effects of themotion of the nucleons (Fermi motion), see e.g., [111]. In addition, in the non-relativistic
approximation, the term proportional to k0 in the expression for s0 can be neglected.

Integration over k0 and k0 0 in Eq. (10) gives
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Eq. (12) can be written in a compact form by introducing the deuteron form factor ⇢(q2):
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Indeed, integrating over k0 in Eq. (8), one obtains
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A comparison of Eqs. (14) and (12) leads to Eq. (13).
Let us now consider the q = 0 forward scattering case. The shadowing correction becomes:
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deuteron form factor

double scattering
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• Assume that the asymptotic behavior is determined by a Pomeranchuk pole 
(Pomeron) and the cuts connected with it:                                                                    
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Fig. 5. Graphical representation of the imaginary part of the scattering amplitude f in terms of Pomeron exchanges in the t-channel.

Fig. 6. An example of the contribution to the pion–deuteron cross section that vanishes at large energies.

The optical theorem relates the imaginary part of the scattering amplitude f to the ⇡N ! XN cross section. Since at high
energies inelastic processes are determined by the Pomeron exchange in the t-channel, =m f is determined by the diagram
presented in Fig. 5. A direct evaluation gives

=m f (s1, Ek2, s0) = �4p0m2(2⇡)3
d3�⇡N

diff (
Ek)

d3Ek , (16)

where �⇡N
diff is the cross section of all diffractive processes (⇡N ! XN) with a small momentum transfer Ek to the nucleon.

Note that =m f < 0 since each of the Pomeron exchange amplitudes is purely imaginary.
Applying the optical theorem to the pion–deuteron scattering amplitude at q = 0 and using Eqs. (9) and (16), we obtain

the total pion–deuteron cross section,

�⇡D
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Z

dEk2⇢
⇣
4Ek2

⌘ d�⇡N
diff (

Ek)
dEk2 . (17)

Eq. (17) expresses the shadowing correction to the total hadron–deuteron cross section in terms of the hadron–nucleon
diffractive cross section.

As derived by Gribov, Eq. (17) assumes that the real part of the scattering amplitude f is zero (this corresponds to
the intercept of the Pomeron trajectory ↵P(0) = 1). However, this assumption is not necessary and Eq. (17) can be
straightforwardly generalized:

�⇡D
tot = 2�⇡N

tot � 2
1 � ⌘2

1 + ⌘2

Z
dEk2⇢

⇣
4Ek2

⌘ d�⇡N
diff (

Ek)
dEk2 , (18)

where ⌘ is the ratio of the real to imaginary parts of the scattering amplitude f . The fast convergence of the integral over
dEk2 in Eq. (18) allows us to neglect a weak dependence of ⌘ on k2.

It should be noted that the graphs in Fig. 2 give the complete answer for the pion–deuteron scattering amplitude at
high pionmomenta. Other contributions, for instance, the diagram presented in Fig. 6, vanish as p ! 1 [112]. The physical
reason for the negligibly small contribution of the diagram in Fig. 6 is that during the short time required for the pion to cover
the distance between the two nucleons, the slow nucleons in the deuteron cannot (do not have enough time to) interact.

It is possible to extend the Gribov analysis to include the relativistic motion of the nucleons using the light-cone
formalism. One finds that the corrections due to the nucleon Fermi motion are very small due to the dominance of the
pn intermediate states in the deuteronwave function up to the internal momenta⇠500MeV/c. Note here that a small value
of the admixture of non-nucleonic states in the nucleus wave function is confirmed by the smallness of the EMC effect due
to hadronic effects up to x ⇠ 0.55, see the discussion in Section 5.17.

• Abramovsky-Gribov-Kacheli (AGK) cutting rules, Chapter 15 of Gribov’s book → 
shadowing is given by the diffractive cut, which enters with minus sign:                                                                    
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Fig. 8. The cuts of Fnp that contribute to =mFnp .

the eigenstates of the strong Hamiltonian, contains both the original hadron (elastic scattering) as well as diffractively
excited states (coherent diffraction). The Gribov approach is essentially field-theoretical and the creation of particles in the
intermediate state is properly taken into account, see Figs. 2 and 5. Hence, although the final answer for nuclear shadowing
in the Glauber and Gribov approaches is expressed through topologically different diagrams, it has the structure of the sum
of the eikonal term and the same-sign term corresponding to the contribution of other diffractive states.
Comment. A simple picture of the scattering eigenstates by Feinberg and Pomeranchuk [104] and Good and Walker [115]
provides an s-channel model for the picture of high-energy scattering employed in the Gribov approach. In particular, a
projectile being in different eigenstates interactswith the two nucleons of the deuteron. The contribution of this interactions
to the elastic scattering amplitude at t = 0 is given by the overlapping integral between the final state and projectile wave
functions.Whenexpressed through the cross section of diffractivehN scattering at t = 0withhelp of theMiettinen–Pumplin
relation [116], one finds [117] the same expression as found byGribov, see Eq. (17).Wewill further discuss the Good–Walker
picture later on.

It is worth noting that in the Gribov–Glauber approximation, the nucleus is treated as a dilute system. Namely, it is
assumed that the characteristic impact parameters for the projectile–nucleon interaction are much smaller than the typical
transverse distance between the interacting nucleon and its neighbor. The corrections to this approximation are difficult
to estimate in a model-independent way, although they may become important at the LHC energies, where the typical
impact parameters in the pp interaction are as large as 1.5 fm, which is close to the average distance to the nearest neighbor.
However, phenomenological analyses indicate that the Gribov–Glauber approximation works well for fixed-target energies
in nucleon–nucleus scattering at the beam energies EN  400 GeV, for a recent analysis, see Ref. [118]. Since in the energy
range that we discuss in the present review the impact parameters in � ⇤p diffraction do not exceed those in NN scattering
at fixed-target energies, we will neglect these effects in our analysis.

2.4. The AGK cutting rules and nuclear shadowing

In the Gribov approach, the nuclear shadowing correction to the total pion–deuteron cross section is given by the
diffractive cut of the graph, where the fast pion exchanges two Pomeronswith the target, see Fig. 5. The resulting shadowing
correction is negative and given in terms of the pion–nucleon diffractive cross section. These two features of theGribov result
can be understood using the Abramovsky–Gribov–Kancheli (AGK) cutting rules in the Reggeon field theory [119].

Let us consider the part of the pion–deuteron scattering amplitude that gives rise to the shadowing correction by
assuming that the high-energy pion interacts with the target nucleons by the Pomeron exchanges. In the symbolic form
(omitting the integration over the transverse momentum of exchanged Pomerons in the loop which does not change the
AGK rules), the amplitude reads:

Fnp = �iN(iD1)N(iD2), (24)
where D1,2 denote the complex Reggeon amplitudes; N is the real-valued particle-Reggeon vertex function which is an
operator in the space of diffractively produced particles (see below). The imaginary part of Fnp is then readily found:

=mFnp = �2N2 (=mD1=mD2 � <eD1<eD2) , (25)
where N2 = P

nhi|N|nihn|N|f id⌧n (in this expression, |ni denotes the diffractively produced state; d⌧n is its phase volume).
The additional factor of two originates from the fact that the deuteron consists of two nucleons.

Alternatively, the imaginary part of Fnp can be evaluated by summing all possible cuts of the diagram corresponding
to Fnp, see Fig. 8. Graph a corresponds to the diffractive final state in the ⇡N ! XN reaction, when the pion diffractively
dissociates into the hadronic states X . Hence, this cut is called diffractive. Graph b corresponds to the single multiplicity of
the final state Y in the ⇡D ! Y reaction; graph c corresponds to the double multiplicity in the ⇡D ! Y reaction.

Denoting the results of the cutting of graphs a, b and c in Fig. 8 as=mFa
np,=mFb

np and=mFc
np, respectively, a direct evaluation

gives [119]:
=mFa

np = 2N2 (=mD1=mD2 + <eD1<eD2) = 2N2|D1D⇤
2|,

=mFb
np = �8N2 =mD1=mD2,

=mFc
np = 4N2 =mD1=mD2. (26)

diffractive cut single-multiplicity cut double-multiplicity cut
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• Total pion-deuteron cross section:                                                                    

• While space-time pictures in Glauber and Gribov approaches are very different, 
Gribov’s result superficially looks like a generalization of Glauber formula:   

- assume elastic intermediate state  
- relate coordinate and momentum deuteron wf                                                              
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Fig. 5. Graphical representation of the imaginary part of the scattering amplitude f in terms of Pomeron exchanges in the t-channel.

Fig. 6. An example of the contribution to the pion–deuteron cross section that vanishes at large energies.

The optical theorem relates the imaginary part of the scattering amplitude f to the ⇡N ! XN cross section. Since at high
energies inelastic processes are determined by the Pomeron exchange in the t-channel, =m f is determined by the diagram
presented in Fig. 5. A direct evaluation gives

=m f (s1, Ek2, s0) = �4p0m2(2⇡)3
d3�⇡N

diff (
Ek)

d3Ek , (16)

where �⇡N
diff is the cross section of all diffractive processes (⇡N ! XN) with a small momentum transfer Ek to the nucleon.

Note that =m f < 0 since each of the Pomeron exchange amplitudes is purely imaginary.
Applying the optical theorem to the pion–deuteron scattering amplitude at q = 0 and using Eqs. (9) and (16), we obtain

the total pion–deuteron cross section,

�⇡D
tot = 2�⇡N

tot � 2
Z

dEk2⇢
⇣
4Ek2

⌘ d�⇡N
diff (

Ek)
dEk2 . (17)

Eq. (17) expresses the shadowing correction to the total hadron–deuteron cross section in terms of the hadron–nucleon
diffractive cross section.

As derived by Gribov, Eq. (17) assumes that the real part of the scattering amplitude f is zero (this corresponds to
the intercept of the Pomeron trajectory ↵P(0) = 1). However, this assumption is not necessary and Eq. (17) can be
straightforwardly generalized:

�⇡D
tot = 2�⇡N

tot � 2
1 � ⌘2

1 + ⌘2

Z
dEk2⇢

⇣
4Ek2

⌘ d�⇡N
diff (

Ek)
dEk2 , (18)

where ⌘ is the ratio of the real to imaginary parts of the scattering amplitude f . The fast convergence of the integral over
dEk2 in Eq. (18) allows us to neglect a weak dependence of ⌘ on k2.

It should be noted that the graphs in Fig. 2 give the complete answer for the pion–deuteron scattering amplitude at
high pionmomenta. Other contributions, for instance, the diagram presented in Fig. 6, vanish as p ! 1 [112]. The physical
reason for the negligibly small contribution of the diagram in Fig. 6 is that during the short time required for the pion to cover
the distance between the two nucleons, the slow nucleons in the deuteron cannot (do not have enough time to) interact.

It is possible to extend the Gribov analysis to include the relativistic motion of the nucleons using the light-cone
formalism. One finds that the corrections due to the nucleon Fermi motion are very small due to the dominance of the
pn intermediate states in the deuteronwave function up to the internal momenta⇠500MeV/c. Note here that a small value
of the admixture of non-nucleonic states in the nucleus wave function is confirmed by the smallness of the EMC effect due
to hadronic effects up to x ⇠ 0.55, see the discussion in Section 5.17.

• Main result: shadowing correction for nucleus is given 
by diffractive cross section on nucleon.                                                                
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Fig. 7. Graphs for pion–deuteron scattering in the Glauber approach.

2.3. Comparison of the Gribov and Glauber results for nuclear shadowing

Originally the nuclear shadowing correction to the pion–deuteron cross section was calculated by Glauber in 1955 [113]
for the energy range E⇡ ⇠ 1 GeV, where the Lorentz dilationwas not important. In the Glauber approach, the pion–deuteron
scattering amplitude receives contributions from the impulse approximation term and from the term corresponding to the
subsequent interactions of the pion with the two nucleons of the target; the both terms are presented in Fig. 7.

The corresponding expression for the total pion–deuteron cross section reads [113]:

�⇡Dtot = 2�⇡Ntot �
�
�⇡Ntot

�2

4⇡

⌧
1
r2

�

D
, (19)

where h1/r2iD is the average inverse radius squared of the deuteron,
⌧
1
r2

�

D
=

Z
d3Er | D(Er)|2 1

Er2 , (20)

with  D(Er) the deuteron wave function.
TheGribov formula for the nuclear shadowing correction (17) is the generalization of that of Glauber (19) to high energies.

Noticing that in Eq. (17), the |Ek|2 dependence of the deuteron form factor is much faster than that of the diffractive cross
section and assuming that only the elastic intermediate state contributes, Eq. (17) can be written as

�⇡Dtot ⇡ 2�⇡Ntot � d�⇡Nel (Ek)
dEk2

�����|Ek|2=0

2
Z

dEk2⇢
⇣
4Ek2

⌘
. (21)

Using the S-matrix unitarity condition,

d�⇡Nel (Ek)
dEk2

�����|Ek|2=0

=
�
�⇡Ntot

�2

16⇡
, (22)

and the expression for h1/r2iD in the momentum representation,
Z

dEk2⇢
⇣
4Ek2

⌘
= 2

⌧
1
r2

�

D
, (23)

one readily sees that the Gribov (21) and Glauber (19) formulas coincide, if the intermediate state is purely elastic. However,
when inelastic diffraction is important, the Gribov formula leads to larger shadowing.

Despite the similarity of the results obtainedwithin the Gribov andGlauber approaches, the two approaches are based on
very different pictures of high-energy hadron–nucleus scattering. The Glauber approach neglects the Lorentz time dilation
effects related to the hadron production. Indeed, themethod is essentially quantum-mechanical and the creation of particles
in the intermediate states is not possible. As a result, the incoming hadron is formed after each interaction and scatters
successively on the target nucleons, see Fig. 7.

More generally, in the p ! 1 limit, the shadowing correction in theGlauber approach (the right graph in Fig. 7) vanishes.
This can be proven by exact calculations in any quantum field theory which accounts for particle production. Using analytic
properties of the scattering amplitudewith respect to themass squared of the produced state, one can demonstrate the exact
cancellation of the diagrams with the eikonal topology [112,114] (the right graph in Fig. 7 is an example of such diagrams).
The physical reason for this cancellation is that during the finite time it takes for the partonic fluctuation to traverse the
nucleus, the fluctuation does not have enough time (which is of the order of lc / p) to form back into the projectile.

In the Gribov approach, the projectile interacts with the target as a superposition of different configurations that interact
with different strengths, but which evolve very little during the passage through the nucleus. These configurations emerge
behind the nucleus as a distorted – but still a coherent – superposition of configurations, which, when decomposed over

Author's personal copy

L. Frankfurt et al. / Physics Reports 512 (2012) 255–393 265

Fig. 7. Graphs for pion–deuteron scattering in the Glauber approach.

2.3. Comparison of the Gribov and Glauber results for nuclear shadowing

Originally the nuclear shadowing correction to the pion–deuteron cross section was calculated by Glauber in 1955 [113]
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subsequent interactions of the pion with the two nucleons of the target; the both terms are presented in Fig. 7.

The corresponding expression for the total pion–deuteron cross section reads [113]:

�⇡Dtot = 2�⇡Ntot �
�
�⇡Ntot

�2

4⇡

⌧
1
r2

�

D
, (19)

where h1/r2iD is the average inverse radius squared of the deuteron,
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one readily sees that the Gribov (21) and Glauber (19) formulas coincide, if the intermediate state is purely elastic. However,
when inelastic diffraction is important, the Gribov formula leads to larger shadowing.

Despite the similarity of the results obtainedwithin the Gribov andGlauber approaches, the two approaches are based on
very different pictures of high-energy hadron–nucleus scattering. The Glauber approach neglects the Lorentz time dilation
effects related to the hadron production. Indeed, themethod is essentially quantum-mechanical and the creation of particles
in the intermediate states is not possible. As a result, the incoming hadron is formed after each interaction and scatters
successively on the target nucleons, see Fig. 7.

More generally, in the p ! 1 limit, the shadowing correction in theGlauber approach (the right graph in Fig. 7) vanishes.
This can be proven by exact calculations in any quantum field theory which accounts for particle production. Using analytic
properties of the scattering amplitudewith respect to themass squared of the produced state, one can demonstrate the exact
cancellation of the diagrams with the eikonal topology [112,114] (the right graph in Fig. 7 is an example of such diagrams).
The physical reason for this cancellation is that during the finite time it takes for the partonic fluctuation to traverse the
nucleus, the fluctuation does not have enough time (which is of the order of lc / p) to form back into the projectile.

In the Gribov approach, the projectile interacts with the target as a superposition of different configurations that interact
with different strengths, but which evolve very little during the passage through the nucleus. These configurations emerge
behind the nucleus as a distorted – but still a coherent – superposition of configurations, which, when decomposed over
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2.3. Comparison of the Gribov and Glauber results for nuclear shadowing

Originally the nuclear shadowing correction to the pion–deuteron cross section was calculated by Glauber in 1955 [113]
for the energy range E⇡ ⇠ 1 GeV, where the Lorentz dilationwas not important. In the Glauber approach, the pion–deuteron
scattering amplitude receives contributions from the impulse approximation term and from the term corresponding to the
subsequent interactions of the pion with the two nucleons of the target; the both terms are presented in Fig. 7.

The corresponding expression for the total pion–deuteron cross section reads [113]:
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, (19)

where h1/r2iD is the average inverse radius squared of the deuteron,
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d3Er | D(Er)|2 1

Er2 , (20)

with  D(Er) the deuteron wave function.
TheGribov formula for the nuclear shadowing correction (17) is the generalization of that of Glauber (19) to high energies.

Noticing that in Eq. (17), the |Ek|2 dependence of the deuteron form factor is much faster than that of the diffractive cross
section and assuming that only the elastic intermediate state contributes, Eq. (17) can be written as

�⇡Dtot ⇡ 2�⇡Ntot � d�⇡Nel (Ek)
dEk2
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2
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dEk2⇢
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. (21)

Using the S-matrix unitarity condition,
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and the expression for h1/r2iD in the momentum representation,
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dEk2⇢
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D
, (23)

one readily sees that the Gribov (21) and Glauber (19) formulas coincide, if the intermediate state is purely elastic. However,
when inelastic diffraction is important, the Gribov formula leads to larger shadowing.

Despite the similarity of the results obtainedwithin the Gribov andGlauber approaches, the two approaches are based on
very different pictures of high-energy hadron–nucleus scattering. The Glauber approach neglects the Lorentz time dilation
effects related to the hadron production. Indeed, themethod is essentially quantum-mechanical and the creation of particles
in the intermediate states is not possible. As a result, the incoming hadron is formed after each interaction and scatters
successively on the target nucleons, see Fig. 7.

More generally, in the p ! 1 limit, the shadowing correction in theGlauber approach (the right graph in Fig. 7) vanishes.
This can be proven by exact calculations in any quantum field theory which accounts for particle production. Using analytic
properties of the scattering amplitudewith respect to themass squared of the produced state, one can demonstrate the exact
cancellation of the diagrams with the eikonal topology [112,114] (the right graph in Fig. 7 is an example of such diagrams).
The physical reason for this cancellation is that during the finite time it takes for the partonic fluctuation to traverse the
nucleus, the fluctuation does not have enough time (which is of the order of lc / p) to form back into the projectile.

In the Gribov approach, the projectile interacts with the target as a superposition of different configurations that interact
with different strengths, but which evolve very little during the passage through the nucleus. These configurations emerge
behind the nucleus as a distorted – but still a coherent – superposition of configurations, which, when decomposed over

• Resulting approach is called Gribov-Glauber theory of nuclear shadowing.                                                                    
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Deep Inelastic Scattering (DIS)

Unpolarized structure functions

large

fixed

Bjorken
limit

Terms “deep inelastic” or  “hard” denote
Processes with large Q2 ≥ 1 GeV2

Evolution of our understanding of sf’s:
• theoretically predicted to scale, i.e. depend 
only on x by J. Bjorken
• confirmed by experiments at SLAC
•explained in the parton model by R. 
Feynman
• parton model is improved by QCD: 
scaling is only approximate, structure 
functions depend logarithmically on Q2 due 
to parton emission
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Parton distributions

In the Bjorken limit, α
s
(Q2) is small (asymptotic freedom) and one can

use the perturbation theory to prove the factorization theorem:

Perturbative coefficient function Non-perturbative parton distribution

functions (PDFs) defined via matrix

elements of parton operators between

nucleon states with equal momenta

-- nucleon momentum

-- longit. momentum fraction

-- factorization scale
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Parton distributions: Interpretation

Interpretation is simplest in the infinite momentum frame:

Fast moving nucleon
with P+=E+pz very large

P+
xP+

Parton distributions are probabilities*
to find a parton with the light-cone
fraction x of the nucleon P+ 

momentum.

Q2 is the resolution of the 
“microscope”

Information about the transverse position
of the parton is integrated out.

*This is true only at leading order in αs(Q2) 



Leading twist nuclear shadowing model  
• Combination of Gribov-Glauber nuclear shadowing model with QCD 
factorization theorems for inclusive and diffractive DIS → shadowing for 
individual partons j, Frankfurt, Strikman (1999); Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012)  255
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Fig. 10. Graphs corresponding to sea quark nuclear PDFs. Graphs a, b, and c correspond to the interaction with one, two, and three nucleons, respectively.
Graph a gives the impulse approximation; graphs b and c contribute to the shadowing correction.

Fig. 11. Graphs corresponding to the gluon nuclear PDF. For the legend, see Fig. 10.

in the case of the deuteron target. One should also note that Eqs. (43) and (44) do not require the decomposition over
twists. The only requirement is that the nucleus is a system of color neutral objects—nucleons. The data on the EMC ratio
F2A(x,Q 2)/[AF2N(x,Q 2)] for x > 0.1 indicate that the corrections to the multinucleon picture of the nucleus do not exceed
few percent for x  0.5, see the discussion in Section 3.2.

The next crucial step in the derivation of ourmaster equation for nuclear PDFs is the use of theQCD factorization theorems
for inclusive DIS and hard diffraction in DIS. According to the QCD factorization theorem for inclusive DIS (for a review, see,
e.g., [58]) the inclusive structure function F2(x,Q 2) (of any target) is given by the convolution of hard scattering coefficients
Cj with the parton distribution functions of the target fj (j is the parton flavor):

F2(x,Q 2) = x
X

j=q,q̄,g

Z 1

x

dy
y
Cj

✓
x
y
,Q 2

◆
fj(y,Q 2). (45)

Since the coefficient functions Cj do not depend on the target, Eq. (34) leads to the relation between nuclear PDFs of flavor
j, which are evaluated in the impulse approximation, f (a)

j/A , and the nucleon PDFs fj/N ,

xf (a)
j/A (x,Q 2) = Axfj/N(x,Q 2). (46)

In the graphical form, f (a)
j/A is given by graph a in Figs. 10 and 11.

Note also that one can take into account the difference between the proton and neutron PDFs by replacing Afj/N !
Zfj/p + (A � Z)fj/n, where Z is the number of protons, and the subscripts p and n refer to the free proton and neutron,
respectively.

Similarly to the inclusive case, the factorization theorem for hard diffraction in DIS states that, at given fixed t and xP

and in the leading twist (LT) approximation, the diffractive structure function FD(4)
2 can be written as the convolution of the

same hard scattering coefficient functions Cj with universal diffractive parton distributions f D(4)
j :

FD(4)
2 (x,Q 2, xP, t) = �

X

j=q,q̄,g

Z 1

�

dy
y
Cj

✓
�

y
,Q 2

◆
f D(4)
j (y,Q 2, xP, t), (47)

— + —
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our numerical studies described below, � decreases with decreasing x, which reflects the onset of the strong interaction
regime for the increasing fraction of the configurations contributing to the PDFs.

We shall postpone the detailed discussion of � j
soft until Section 5.1.2. At this point, to get the feeling about the meaning

and magnitude of �
j
soft, we note that if diffraction were described by the aligned jet model, we would expect the typical

strength of the interaction of a large-size qq̄ configuration with the nucleon to be compatible to that for pions (⇢ mesons,
etc.), i.e., �aligned jet�N ⇡ 25 mb at x = 0.01 and �aligned jet�N ⇡ 40 mb at x = 10�5.

Applying the color fluctuation approximation to Eq. (61), we obtain our final expression for the nuclear parton distribu-
tion modified by nuclear shadowing,

xfj/A(x,Q 2
0 ) = Axfj/N(x,Q 2

0 ) � 8⇡A(A � 1) <e
(1 � i⌘)2

1 + ⌘2 Bdiff

Z 0.1

x
dxP�f D(3)

j (�,Q 2
0 , xP)

⇥
Z

d2b
Z 1

�1
dz1

Z 1

z1
dz2⇢A(Eb, z1)⇢A(Eb, z2)ei(z1�z2)xPmN e� A

2 (1�i⌘)�
j
soft(x,Q

2
0 )

R z2
z1 dz0⇢A(Eb,z0), (64)

where Afj/N ⌘ Zfj/p + (A � Z)fj/n; Q 2
0 is a low scale at which the color fluctuation approximation is applicable (see below).

The nuclear PDFs fj/A given by Eq. (64) are next-to-leading (NLO) PDFs since the nucleon diffractive PDFs f D(3)
j are obtained

from the NLO QCD fit.
Our master Eq. (64) determines the nuclear PDFs fj/A at a particular input scale Q 2 = Q 2

0 , which is explicitly present in
fj/N , f

D(3)
j and �

j
soft. The color fluctuation approximation is more accurate if the fluctuations are more hadron-like, i.e., when

the contribution of the point-like configurations (PLCs) is small. This demands that Q 2
0 is not too large. At the same time, we

would like to stay within the perturbative regime, where higher twist contributions to the diffractive structure functions
are still small and where the fits to diffractive PDFs do not have to be extrapolated too strongly. (In the extraction of the
diffractive PDFs from the HERA data on diffraction, only the data with Q 2 > 8.5 GeV2 were used [61]. However, it has been
checked that the extrapolation down to Q 2 = 4 GeV2 works with a good accuracy.) Accordingly, in our numerical analysis,
we use Q 2

0 = 4 GeV2. We will demonstrate that our results depend weakly on the choice of Q 2
0 , even if we keep �

j
soft fixed.

This is because the approximations discussed above are needed only for the interactions with three and more nucleons of
the target; the double rescattering contribution is evaluated in a model-independent way.

It is important to emphasize that while Eq. (61) gives a general expression for the effect of cross section (color)
fluctuations on themultiple interactions, Eq. (64) presents a particular approximation—the color fluctuation approximation.
In this approximation, the interaction cross section with N � 3 nucleons is �

j
soft(x,Q

2) = h� 3ij/h� 2ij, see Eq. (63). Eq. (64)
allows for a simple interpretation: the factor Bdiff

R 0.1
x dxP�f D(3)

j (�,Q 2, xP) describes the probability for a photon to diffract
into diffractive states in the interaction with a target nucleon at point (z1, Eb) and to be absorbed in the interaction with
another nucleon at point (z2, Eb), while the factor in the third line of Eq. (64) describes the interaction of the diffractive states
with other nucleons of the nucleus with the cross section �

j
soft between points z1 and z2.

It is important to note that �
j
soft(x,Q

2) can be determined experimentally by measuring nuclear shadowing with a light
nucleus, for instance, with 4He. Alternatively, �

j
soft(x,Q

2) can be extracted directly from coherent diffraction in DIS on
deuterium [128]. After �

j
soft(x,Q

2) will have been determined, the leading twist theory will contain no model-dependent
parameters and can be used to predict nuclear shadowing for an arbitrary nucleus in a completely model-independent way.
The discussed measurements can be carried out at a future Electron–Ion Collider.

In the treatment of multiple rescatterings in the leading twist theory of nuclear shadowing in Ref. [76], we used the
so-called quasi-eikonal approximation, which neglects color fluctuations and, hence, uses �

j
soft(x,Q

2) = �
j
2(x,Q

2) ⌘
h� 2ij/h� ij in Eq. (64). Such an approximation gives the results identical to Eq. (64) for the interaction with one and two
nucleons of the nuclear target. However, it neglects the presence of point-like configurations in the virtual photon wave
function and, hence, overestimates shadowing at x ⇠ 10�3, where the contribution of the interactionswithN > 2 is already
important, while the contribution of the point-like configurations is still significant. We will use a comparison between
the color fluctuation and quasi-eikonal approximations to illustrate the role of color fluctuations in Section 5.8. (Note that
the quasi-eikonal approximation is popular in the literature in spite of its deep shortcomings discussed above and also in
Section 3.1.4.)

In the very small-x limit, which for practical purposes means x < 10�2 (see Fig. 44), the factor ei(z1�z2)xPmN in Eq. (64) can
be safely neglected. This results in a significant simplification of the master formula after the integration by parts two times
(cf. [80]):

xfj/A(x,Q 2
0 ) = A xfj/N(x,Q 2

0 ) � 8⇡A(A � 1)Bdiff <e
(1 � i⌘)2

1 + ⌘2

Z 0.1

x
dxP�f D(3)

j (�,Q 2
0 , xP)

⇥
Z

d2Eb e�LTA(b) � 1 + LTA(b)
L2

, (65)

where L = A/2 (1 � i⌘)�
j
soft(x,Q

2
0 ); TA(b) = R 1

�1 dz ⇢A(z).

Seminar 1: all nucleons at same impact parameter, eikonal phase

Hard 
Pomerons
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• Main input: diffractive parton distributions fjD(3) 

measured in diffractive deep inelastic scattering on 
proton at Hadron Electron Ring Accelerator, H1, ZEUS    
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Fig. 17. Diffractive production of a hadron with momentum p0 in the nucleon fragmentation region in DIS.

increases the contribution of higher-twist effects, and (ii) the products of the hard parton fragmentation tend to fill the
rapidity gap between the photon and target fragmentation regions, especially in the case when this parton carries a small
fraction z of the photon momentum. Thus, larger Q0 is necessary to suppress the both effects.

Similarly to the inclusive case, the factorization theorem for diffraction (production of a hadron with fixed z and t) in DIS
states that, at given fixed t and xP and in the leading twist approximation, the diffractive structure function FD(4)

2 is given by
the convolution of the same hard scattering coefficient functions Cj with universal diffractive parton distributions f D(4)

j :

FD(4)
2 (x,Q 2, xP, t) = �

X

j=q,q̄,g

Z 1

�

dy
y
Cj

✓
�

y
,Q 2

◆
f D(4)
j (y,Q 2, xP, t), (85)

where � = x/xP. The diffractive PDFs f D(4)
j are conditional probabilities to find a parton of flavor jwith a light-cone fraction

� in the proton that undergoes diffractive scattering characterized by the longitudinal momentum fraction xP and the
momentum transfer t , see Sections 3.5 and 3.6 for details.

3.5.3. Diffractive dynamics in DIS
DIS at finite x creates a color flow between the current and target fragmentation regions leading to a strong break-up of

the nucleon since a typical nucleon carries a relatively small light-cone fraction of the initial nucleonmomentum (remember
that z > 1 � x is kinematically forbidden in this case). Hence, the HERA observation of the significant diffraction in DIS at
small x came as a surprise to the theorists not used to the small x dynamics since pQCD and the confinement of color do not
allow rapidity gaps.

The key to resolving this puzzle has been provided long time ago by the aligned jet model (AJM) [122]. The model was
proposed to address the Gribov paradox consisting in the observation that if all configurations in the virtual photon wave
function interacted with large hadronic strengths with nuclei, the Bjorken scaling would be grossly violated at small x.
Bjorken has demonstrated that if one follows the spirit of the parton model and allows only the interactions of the partons
with small kt , the scaling is restored. The dominant configurations in the photon wave function are the qq̄ pairs with the
invariant masses of the order of Q 2 and transverse momenta ksoft. In the rest frame of the target, the partons carry the
momenta p1 ⇠ q0 and p2 = k2soft/(2xmN). In coordinate space, the process proceeds as follows: � ⇤ transforms into a qq̄ pair
with the momenta ±ksoft at a large distance 1/(2mNx) from the target. After covering this distance to the target, the qq̄ pair
has the transverse separation which is of the order of 1/ksoft and the system can interact with the typical hadronic strength.

In QCD one needs to modify the AJM to account for two effects [81]. One is the Sudakov form factor: � ⇤ cannot transform
into a qq̄ pair with small kt without gluon radiation. This effect is taken into account by the pQCD evolution (change of
x of the parton). It does not change the transverse size of the system and, as a result, the system interacts with the same
strength at largeQ 2. The secondmodification is the presence of large kt configurations that have small transverse sizes. Their
interaction is suppressed by the factor↵s(kt)2/k2t —the color transparency effect. However, due to a large phase volume, these
configurations give a contribution comparable to that of the AJM. (The estimate of [81,82] suggested that the AJM contributes
about 70% to F2p(x ⇠ 10�2,Q 2

0 ⇠ 2–3 GeV2).)
While diffraction for the AJM configurations is expected to be comparable to that of hadrons, it is strongly suppressed for

small size configurations for moderate x > 10�3 since the strength of the interaction enters quadratically in the diffractive
cross section.

The dominance of the AJM configurations leads to the expectation that the W dependence of diffraction at fixed Q 2 and
M2

X should be close to that for soft processes [138]. Another important contribution to diffraction is due to large size color
octet dipoles (qq̄g configurations in the virtual photon). These predictions are in a good agreement with the current HERA
data, see below.
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Fig. 17. Diffractive production of a hadron with momentum p0 in the nucleon fragmentation region in DIS.

increases the contribution of higher-twist effects, and (ii) the products of the hard parton fragmentation tend to fill the
rapidity gap between the photon and target fragmentation regions, especially in the case when this parton carries a small
fraction z of the photon momentum. Thus, larger Q0 is necessary to suppress the both effects.

Similarly to the inclusive case, the factorization theorem for diffraction (production of a hadron with fixed z and t) in DIS
states that, at given fixed t and xP and in the leading twist approximation, the diffractive structure function FD(4)

2 is given by
the convolution of the same hard scattering coefficient functions Cj with universal diffractive parton distributions f D(4)

j :

FD(4)
2 (x,Q 2, xP, t) = �

X

j=q,q̄,g

Z 1

�

dy
y
Cj

✓
�

y
,Q 2

◆
f D(4)
j (y,Q 2, xP, t), (85)

where � = x/xP. The diffractive PDFs f D(4)
j are conditional probabilities to find a parton of flavor jwith a light-cone fraction

� in the proton that undergoes diffractive scattering characterized by the longitudinal momentum fraction xP and the
momentum transfer t , see Sections 3.5 and 3.6 for details.

3.5.3. Diffractive dynamics in DIS
DIS at finite x creates a color flow between the current and target fragmentation regions leading to a strong break-up of

the nucleon since a typical nucleon carries a relatively small light-cone fraction of the initial nucleonmomentum (remember
that z > 1 � x is kinematically forbidden in this case). Hence, the HERA observation of the significant diffraction in DIS at
small x came as a surprise to the theorists not used to the small x dynamics since pQCD and the confinement of color do not
allow rapidity gaps.

The key to resolving this puzzle has been provided long time ago by the aligned jet model (AJM) [122]. The model was
proposed to address the Gribov paradox consisting in the observation that if all configurations in the virtual photon wave
function interacted with large hadronic strengths with nuclei, the Bjorken scaling would be grossly violated at small x.
Bjorken has demonstrated that if one follows the spirit of the parton model and allows only the interactions of the partons
with small kt , the scaling is restored. The dominant configurations in the photon wave function are the qq̄ pairs with the
invariant masses of the order of Q 2 and transverse momenta ksoft. In the rest frame of the target, the partons carry the
momenta p1 ⇠ q0 and p2 = k2soft/(2xmN). In coordinate space, the process proceeds as follows: � ⇤ transforms into a qq̄ pair
with the momenta ±ksoft at a large distance 1/(2mNx) from the target. After covering this distance to the target, the qq̄ pair
has the transverse separation which is of the order of 1/ksoft and the system can interact with the typical hadronic strength.

In QCD one needs to modify the AJM to account for two effects [81]. One is the Sudakov form factor: � ⇤ cannot transform
into a qq̄ pair with small kt without gluon radiation. This effect is taken into account by the pQCD evolution (change of
x of the parton). It does not change the transverse size of the system and, as a result, the system interacts with the same
strength at largeQ 2. The secondmodification is the presence of large kt configurations that have small transverse sizes. Their
interaction is suppressed by the factor↵s(kt)2/k2t —the color transparency effect. However, due to a large phase volume, these
configurations give a contribution comparable to that of the AJM. (The estimate of [81,82] suggested that the AJM contributes
about 70% to F2p(x ⇠ 10�2,Q 2

0 ⇠ 2–3 GeV2).)
While diffraction for the AJM configurations is expected to be comparable to that of hadrons, it is strongly suppressed for

small size configurations for moderate x > 10�3 since the strength of the interaction enters quadratically in the diffractive
cross section.

The dominance of the AJM configurations leads to the expectation that the W dependence of diffraction at fixed Q 2 and
M2

X should be close to that for soft processes [138]. Another important contribution to diffraction is due to large size color
octet dipoles (qq̄g configurations in the virtual photon). These predictions are in a good agreement with the current HERA
data, see below.
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twist theory of nuclear shadowing predicts for x = 10�4 and b = 0 that gA(x, b,Q 2)/[ATA(b)gN(x,Q 2)] = 0.33 (FGS10_H)
and gA(x, b,Q 2)/[ATA(b)gN(x,Q 2)] = 0.51 (FGS10_L), see Fig. 41.

The discussed results give another illustration of the observation that realistic nuclei can be treated as rather dilute
systems in the processes involving nuclear shadowing with large fluctuations of the number of involved nucleons, even at
small impact parameters.

3.5. Diffraction in DIS and the QCD factorization theorem

3.5.1. Nucleon fragmentation in DIS
In DIS a struck parton is removed from the nucleon and moves with a large momentum relative to the spectator system.

The struck parton and spectator system fragment into separate groups of hadrons. (Hadrons at the central rapidities may
belong to either of the groups.) It is convenient to consider the process in the Breit frame where the nucleon momentum
P ! 1 and the photon momentum is aligned along the same axis: Eq = �2xEP and qµ = 0 for all other components. In
the parton model approximation, the final quark flies with the momentum �xP in the opposite direction with respect to
the residual system that carries the momentum (1 � x)P . As a result, a hadron in the target fragmentation region can be
produced with the maximal light-cone fraction z relative to the incident nucleon: z  (1� x). For large x � 0.1, the process
corresponds to the removal of the valence quark from the nucleon and creation of a color flow between the current and
target fragmentation regions. As a result, for such x, the distribution in the variable xF = z/(1 � x) should go to zero at the
kinematic limit xF ! 1 [123,139]. (This kinematic limit follows from the requirement that theminus component of the four
momentum of the system X should be positive. The actual dependence on xF follows from details of the QCD dynamics and
is often parameterized in terms of quark counting rules.) With a decrease of x, the dynamics changes; hence, the shape of
the distribution z(xF ) should depend on x.

3.5.2. Diffractive structure functions and diffractive PDFs
Most of the HERA experimental studies were performed at small x. In this case, one often uses the variable xP = 1 � z.

The cross section for the process ep ! e + p + X (or production of any other hadron), see Fig. 17, is usually parameterized
in the following form:

d4� D
ep

dxP dt dx dQ 2 = 2⇡↵2

xQ 4

h�
1 + (1 � y)2

�
FD(4)
2 (x,Q 2, xP, t) � y2FD(4)

L (x,Q 2, xP, t)
i
, (83)

whereQ 2 is the virtuality of the exchanged photon; x = Q 2/(2p ·q) is the Bjorken variable; y = (p ·q)/(p ·k) is the fractional
energy loss of the incoming lepton. We follow here the notations commonly used for the description of phenomena in the
small x kinematics; in order to emphasize the role of small xP processes, one introduces the superscript ‘‘D’’ denoting FD(4)

2
and FD(4)

L as the diffractive structure functions (the superscript ‘‘(4)’’ denotes that the structure functions depend on four
variables). (Note that in the case of generic x and z, these quantities are often referred to as fracture functions [148].) The
variables xP and t are expressed through the experimentally measured quantities:

t = (p0 � p)2,

xP = q · (p � p0)
q · p ⇡ M2

X + Q 2

W 2 + Q 2 ,

� = Q 2

2q · (p � p0)
= x

xP
⇡ Q 2

Q 2 + M2
X
, (84)

whereMX is the invariant mass of the produced final state;W 2 is the invariant mass squared of the � ⇤p system (see Fig. 17).
The variable xP describes the fractional loss of the proton longitudinal momentum; we also defined here � which is the
longitudinal momentum fraction with respect to xP carried by the interacting parton (to the leading order in ↵s). Note that
the contribution of the termproportional to FD(4)

L in Eq. (83) is kinematically suppressed and usually neglected in the analysis
of diffraction.

In pQCD a partonwith a virtualityQ 2
0 is resolved at higherQ 2 leading to the scaling violations. If a parton at the resolution

scale (x,Q 2) is removed, the final state in the fragmentation region will be changed as compared to the removal of a parent
parton at the scale (x0,Q 2

0 ). The difference is due to the emission of partons in the evolution process and fragmentation of the
struck quark. However, partons produced in the hard process of the evolution from scale Q0 to scale Q have the transverse
momenta�Q0 and, hence, their overlapping integral with a low pt and finite z hadron is suppressed by a power of Q 2

0 [121].
The quark–gluon system produced in the hard interaction is well localized in the transverse directions and, hence, should
interactwith the target in the sameway as the parton at (x0,Q 2

0 ). As a result, theQ 2 evolution of the fragmentation functions
for fixed t and z is given by the same DGLAP equations as those for the nucleon PDFs [59,121]. This result follows from the
fact that QCD evolution occurs in both cases off a single parton. The kinematical window appropriate for the onset of the
applicability of the QCD factorization theorem depends on the interplay between z and x: (i) the selection of smaller x

• Diffractive parton distribution fjD(3) = conditional 
probability to find parton with momentum fraction β 
provided the proton doesn’t break  
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Fig. 21. The perturbative QCD description of the H1 FPS diffractive data on xP�
D(3)
r ⇡ xPF

D(3)
2 .

Source: The figure is from Ref. [62]. Reproduced with the kind permission of the H1 Collaboration and Springer.

Fig. 22. Diffractive productions of dijets in DIS.

sections), it is surprising that the factorization is similarly violated for the direct component of the real photon up to the
large transverse momenta ⇠7 GeV/c [64].

The ZEUS collaboration performed a combined QCD fit to the data on inclusive diffraction and diffractive dijet production
in DIS [70]. The resulting fit provides a good description of the dijet data throughout the whole kinematic region [73]. The

• One of main HERA results: diffraction in DIS 
can be described by pQCD, leading twist → 
hence the name “leading twist shadowing” 
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Fig. 18. A schematic representation of the factorization of the diffractive PDFs into the product of the Pomeron or Reggeon flux factor and the corresponding
PDFs, see Eq. (88).

Fig. 19. The diffractive quark and gluon PDFs fj/P(�,Q 2) at Q 2 = 2.5 GeV2 as functions of � .

In the following, we concentrate on the result of the QCD analysis of the hard inclusive diffraction at HERA by the H1
collaboration [61,62] since we used the H1 Fit B as an input for our calculations of nuclear shadowing (the QCD analysis
of hard diffraction by the ZEUS collaboration will be discussed in the end of this subsection).

TheH1QCD fit gives BP = 5.5GeV�2;↵0
P = 0.06GeV�2; BR = 1.6GeV�2;↵R(0) = 0.5;↵0

R = 0.3GeV�2. The coefficients
AP and AR are found from the conditions xPfP/p(xP) = 1 and xPfR/p(xP) = 1 at xP = 0.003. The intercept of the Pomeron
trajectory, ↵P(0), is a free parameter of the fit to the data.

The fit to the HERA data on hard diffraction in DIS is carried out as follows. One assumes a particular shape of fj/P at a
certain value of Q 2 = Q 2

0 (Q 2
0 = 1.75 � 2.5 GeV2),

�fj/P(�,Q 2
0 ) = Aj�

Bj(1 � �)Cj , (90)

where Aj, Bj and Cj are free parameters. Since the Pomeron exchange is a flavor-singlet, it is assumed that fu/P = fū/P = fd/P =
fd̄/P = fs/P = fs̄/P. The theoretical prediction for the diffractive structure function FD(3)

2 at given x, Q 2 and xP is obtained using
Eqs. (87)–(90). The �2 fit to the experimental values of FD(3)

2 determines the free parameters of the fit: nR, ↵P(0), Aj, Bj
and Cj.

The 2006 H1 data on diffraction in ep ! eXY DIS (Y denotes products of the proton dissociation) [61,62] covers the
following kinematics: 3.5  Q 2 < 1600 GeV2, 0.0003 < xP < 0.03, 0.0017 < � < 0.8, |t| < 1 GeV2. Since the diffractive
events were reconstructed using the rapidity gap selection method, the proton was allowed to dissociate into states with a
low invariant mass,MY < 1.6 GeV. In order to avoid the kinematic regions which are most likely to be influenced by higher
twist contributions, only the data with Q 2 � 8.5 GeV2 and M2

X > 2 GeV were included in the QCD analysis (fit).
The results of the H1 QCD fit in terms of the diffractive quark and gluon PDFs, fu/P(�,Q 2) and fg/P(�,Q 2), at Q 2 =

2.5 GeV2 as functions of � are presented in Fig. 19. The solid curves correspond to fit B; the dotted curves correspond to
fit A. The difference between fits A and B is that while the parameters Aj, Bj and Cj in Eq. (90) are free in fit A, Cg = 0 for the
gluon PDF in Fit B.

The need to have two types of fits is explained by the fact that the gluon diffractive PDF is determined from the scaling
violations of FD(3)

2 . However, at large � , the scaling violations of FD(3)
2 are predominantly determined by the quark diffractive

PDFs. Therefore, the gluon diffractive PDF at large � is very weakly constrained by the data, which allows one (requires) to
consider two scenarios (fits A and B) of the gluon diffractive PDFs with a different behavior in the large-� limit, see the right
panel of Fig. 19.



Leading twist nuclear shadowing model  
• Allows to calculate small-x sea quark and gluon distributions in nuclei at 
certain scale Q0 → can be used as input for DGLAP evolution to higher Q2 

• Main feature: large gluon shadowing (suppression) because the hard 
Pomeron is mostly made of gluons (recall the discussion of gluon ladders).
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• Gluon nuclear shadowing: gA(x,µ2) < A gN(x,µ2) for small x < 0.005. 

• Important for QCD phenomenology of hard processes with nuclei: cold 
nuclear matter effects (RHIC, LHC), gluon saturation (RHIC, LHC, EIC) 
• gA(x,µ2) is determined from global QCD fits using data on fixed-target DIS, 
hard processes in dA (RHIC) and pA (LHC) → gA(x,µ2) with large uncertainties

Gluon nuclear shadowing  
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RA
uV

(x,Q2
0) = RA

dV
(x,Q2

0) was made as only one type of data sensitive to the large-x valence quarks
was included in these fits. Indeed, at large x, one can approximate

dσℓ+A
DIS ∝

(
4

9

)

uAV +

(
1

9

)

dAV ∝ upV

[

RA
uV

+RA
dV

dpV
upV

Z + 4N

N + 4Z

]

≈ upV

[

RA
uV

+
1

2
RA

dV

]

, (4)

which underscores the fact that these data can constrain only a certain linear combination of RA
uV

and RA
dV

. Despite the lack of other type of data sensitive to the valence quarks, the assumption

RA
uV

(x,Q2
0) = RA

dV
(x,Q2

0) was released in a recent nCTEQ work leading to mutually wildly different

RA
uV

and RA
dV

(see Fig.1 in Ref.[18]). Other type of data sensitive to the valence quarks would
obviously be required to pin down them separately in a more realistic manner. Despite the fact
that some neutrino data (also sensitive to the valence quarks) was included in the dssz fit, the
authors did not investigate the possible difference between RA

uV
and RA

dV
in the paper.

In the case of RA
u , which here generally represents the sea quark modification, all parametriza-

tions are in a fair agreement in the data-constrained region. This is also true if the nCTEQ results
are considered (Fig.1 in Ref.[18]). Above the parametrization scale Q2 > Q2

0, the sea quark modi-
fications are also significantly affected, especially at large x (x ! 0.2), by the corresponding gluon
modification RA

g via the DGLAP evolution.
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Figure 3: Comparison of the gluon nuclear modification factors for the lead nucleus at Q2 = 10GeV2 (left), and the
nuclear modification for inclusive pion production in d+Au collisions at midrapidity.

The largest differences among eps09, hkn07, and dssz are in the nuclear effects for the gluon
PDFs, shown in Fig. 3. The origins of the large differences are more or less known: The DIS and
Drell-Yan data are mainly sensitive to the quarks, and thus leave RA

g quite unconstrained. To
improve on this, eps09 and dssz make use of the nuclear modification observed in the inclusive
pion production at RHIC [26, 27]. An example of these data are shown in Fig. 3. Although the
pion data included in eps09 and dssz are not exactly the same, it may still look surprising how
different the resulting RA

g are. The reason lies (as noted also e.g. in [28]) in the use of different

parton-to-pion fragmentation functions (FFs) Dk→π+X(z,Q2) in the calculation of the inclusive
pion production cross sections

dσd+Au→π+X =
∑

i,j,k

fd
i ⊗ dσ̂ij→k ⊗ fAu

j ⊗Dk→π+X . (5)

4

Rg(x,Q
2) =

gA(x,Q2)

Agp(x,Q2)
H. Pauukunen, NPA 926 (2014) 24

shadowing

• pA@LHC data can help little, Armesto et 
al, arXiv:1512.01528; Eskola et al, JHEP 1310 (2013) 
213, Eskola et al, EPJC 77 (2017) 163  (EPPS16 nPDFs)
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• In the future, gluon nuclear shadowing will be constrained at Electron-Ion 
Collider in the US, Accardi et al, EPJ A52 (2016) no.9, 268; LHeC@CERN, LHEC Study Group, J. Phys. 
G39 (2012) 075001

• Option right now: Charmonium photoproduction in Pb-Pb UPCs@LHC

high-energy scattering o↵ nuclei? One of the main predictions of saturation
physics is that the x-dependence of DIS cross-sections and structure functions, along
with other observables, is described by nonlinear evolution equations. Discovery of the
saturation regime would not be complete without unambiguous experimental evidence
in favor of these nonlinear equations.

• What is the momentum distribution of gluons and sea quarks in nuclei?
What is the spatial distribution of gluons and sea quarks in nuclei? The
physics of multiple rescatterings at larger-x, along with, if found, parton saturation,
would allow us to reconstruct the momentum and impact parameter distributions of
gluons and sea quarks in nuclei. At small-x the transverse momentum distribution
may allow us to identify the saturation scale Q

s

.

• Are there strong color (quark and gluon density) fluctuations inside a
large nucleus? How does the nucleus respond to the propagation of a
color charge through it? Our understanding of the spatial and momentum space
distributions of quarks and gluons inside the nuclei would not be complete without
studying their fluctuations. The typical size of color fluctuations can be measured
by sending a quark probe through the nucleus. Conversion of the quark probe into
a hadron (hadronization) may be a↵ected by the nuclear environment, giving us a
chance at a better understanding of the process.
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Figure 3.1: The kinematic acceptance in x and Q2 of completed lepton-nucleus (DIS) and
Drell-Yan (DY) experiments (all fixed target) compared to EIC energies. The acceptance bands
for the EIC are defined by Q2 = x y s with 0.01  y  0.95 and values of s shown.
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Deep Inelastic Scattering: Kinematics

k

p X

k'

q

Figure 2.3: Schematic diagram of the Deep
Inelastic Scattering (DIS) process.

Deep Inelastic Scattering,
e+ p �! e+X, proceeds through the ex-
change of a virtual photon between the elec-
tron and the proton. The kinematic descrip-
tion remains the same for the exchange of
Z or W boson, which becomes important at
high momentum transfer.

Depending on the physics situation, the pro-
cess is discussed in di↵erent reference frames:

the collider frame, where a proton with
energy E

p

and an electron with energy
E

e

collide head-on

the rest frame of the hadronic system X,
i.e. the center-of-mass of the �⇤p colli-
sion

the rest frame of the proton

Kinematic Variables:
In the following we neglect the proton mass
M where appropriate and the electron mass
throughout.

k, k

0 are the four-momenta of the incoming
and outgoing lepton
p is the four-momentum of a nucleon

Lorentz invariants:

• the squared ep collision energy s =
(p+ k)2 = 4E

p

E
e

• the squared momentum transfer to the
leptonQ

2 = �q2 = �(k�k0)2, equal to
the virtuality of the exchanged photon.
Large values of Q2 provide a hard scale
to the process, which allows one to re-
solve quarks and gluons in the proton.

• the Bjorken variable xB = Q2/(2p · q),
often simply denoted by x. It deter-
mines momentum fraction of the par-
ton on which the photon scatters. Note
that 0 < x < 1 for ep-collisions.

• the inelasticity y = (q · p)/(k · p) is
limited to values 0 < y < 1 and de-
termines in particular the polarization
of the virtual photon. In the collider
frame the energy of the scattered elec-
tron is E0

e

= E
e

(1� y)+Q2/(4E
e

); de-
tection of the scattered electron thus
typically requires a cut y < y

max

.

These invariants are related by Q2 = xys.
The available phase space is often repre-
sented in the plane of x and Q2. For a given
ep collision energy, lines of constant y are
then lines with a slope of 45 degrees in a
double logarithmic x�Q2-plot.

Two more important variables:

W

2 = (p+ q)2 = Q2(1� 1/x) is the squared
invariant mass of the produced hadronic sys-
tem X.
DIS is characterized by the Bjorken limit,
where Q2 and W 2 become large at a fixed
value of x. Note: for a given Q2, small x
corresponds to a high �⇤p collision energy.

⌫ = q ·p/M = ys/(2M) is the energy lost by
the lepton (i.e. the energy carried away by
the virtual photon) in the proton rest frame.

For scattering on a nucleus of atomic number
A replace the proton momentum p by P/A
in the definitions, where P is the momentum
of the nucleus. Note that for the Bjorken
variable one then has 0 < x < A.
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Ultraperipheral collisions (UPCs)
• Ions can interact at large impact parameters b >> RA+RB  → ultraperipheral 
collisions (UPCs) → strong interaction suppressed → interaction via quasi-
real photons, Fermi (1924), von Weizsäcker; Williams (1934)

- UPCs correspond to empty detector with only two lepton/pion 
tracks  

- Nuclear coherence by veto on neutron production by Zero 
Degree Calorimeters and selection of small pt 
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Figure 2: Three types of processes that can be used to study the gluon distributions in nuclei at small x in
UPCs: (a) inclusive photoproduction of two jets with large transverse momenta gives access to the usual gluon
PDF; (b) diffractive productions of two jets gives access to the diffractive gluon PDF; (c) exclusive coherent
photoproduction of heavy vector mesons probes the generalized gluon distributions (the impact-parameter-
dependent gluon PDF).

predicted using the leading twist theory of nuclear shadowing [17]. An example of it is presented in
Fig. 3 (left) where we plot the ratio of the gluon distribution in 208Pb over that in the free proton,
gA(x,Q2

0)/[AgN(x,Q
2
0)], as a function of x at Q2

0 = 4 GeV2 (the shaded band labeled FGS10). The
band corresponds to an intrinsic theoretical uncertainty of our approach, see details in [17]. Also, for
comparison, we show the results of the extraction of gA(x,Q2

0)/[AgN(x,Q
2
0)] using the global QCD fits:

EPS09 [14] and HKN07 [13].
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Figure 3: (Left) Predictions for ratio of the gluon distribution in 208Pb to that in the free proton,
gA(x,Q2

0)/[AgN (x,Q2
0)]. (Right) The ratio of the gluon impact-parameter-dependent distribution in 208Pb to

the gluon distribution in the free proton, gA(x,Q2
0, b)/[ATA(b)gN (x,Q2

0)], as a function of the impact parameter
b; TA(b) is the nucleon density.

In UPCs at the LHC, one can directly access the gluon distribution in nuclei through the process of

5

Photon flux from QED:  
- high intensity ~ Z2 
- high photon energy ~ 𝛾L

Photoproduction 
cross section = J/𝜓 rapidity

d�AA!AAJ/ (y)

dy
= N�/A(y)��A!AJ/ (y) +N�/A(�y)��A!AJ/ (�y)

• Coherent photoproduction of vector mesons in UPCs:                                        

UPCs@LHC = 𝛾p and 𝛾A interactions at unprecedentedly large 
energies, Baltz et al., The Physics of Ultraperipheral Collisions at the LHC, Phys. Rept. 480 (2008) 1

y = ln[W 2/(2�LmNMV )]



d��T!J/ T (W, t = 0)

dt

= C(µ2)
⇥
xGT (x, µ

2)
⇤2

x =
M

2
J/ 

W

2
, µ

2 = MJ/ /4 = 2.4 GeV2
C(µ2) = M

3
J/ �ee⇡

3
↵s(µ

2)/(48↵emµ

8)
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Coherent charmonium photoproduction  
• In leading logarithmic approximation of perturbative QCD and non-relativistic 
approximation for charmonium wave function (J/𝜓, 𝜓(2S)):

M. Ryskin (1993)

Z. Phys. C 57, 89-92 (1993) 
Zeitschrift P a r t i c ~  fur Physik C 

 9 Springer-Verlag 1993 
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Abstract. Cross section of diffractive J / ~  production in 
deep inelastic scattering in the Born and the leading-log 
approximations of perturbative QCD are calculated. 

I Introduction 

The process of J /7  j electroproduction arouses interest 
due to two reasons. First, it can be calculated within the 
perturbative QCD and second, its cross section is propor- 
tional to the gluon structure function. So, it is a good way 
to study the gluon distribution inside a proton [1, 2]. 

In the reactions of heavy-quark photoproduction 7N--, 
c6X, a popular approach is the "photon-gluon fusion" 
mechanism [3, 1, 4, 5] based on the subprocess 7g~cd. 
The amplitude and cross section of inelastic J~ 7 J produc- 
tion via the same mechanism was calculated in [6] and 
then discussed in [7]. This approach has been called [5] 
diffractive J~ 7 j production, as (in the first approximation) 
the cross section does not depend on energy and there is 
no flavour exchange. Strictly speaking, this is not a true 
diffractive process. There is a colour exchange in this case 
due to the colour of the gluon content in the target; as 

da 
a consequence, the inclusive J/qJ cross section ~zz ~const .  

at z ~  1, instead of the &(1 - z )  or 1/(1 - z )  behaviours that 
are usual for diffractive processes (z is the part of photon 
momenta carried away by the J /7  J meson). 

The goal of this paper is to consider the exclusive (in 
some sense elastic) diffractive J / ~  electroproduction that 
is described by the exchange of a colourless two-gluon 
system*; in the Born approximation by the diagrams in 
Fig. 1. In the leading-log approximation (LLA), instead of 
the simple two-gluon "pomeron" [9], one has to use the 
whole system of LLA ladder diagrams; for t -- 0 this repro- 
duces exactly the gluon structure function ~G(Y, ~2). 

* The model for elastic and diffractive J/~ production based on 
vector meson dominance and pomeron exchange was considered 
recently in [8]. 

Thus, our amplitude is proportional to ~G(Y, ~2) and the 
exclusive diffractive cross sec t ion- to  the square of the 
gluon structure function. Due to this fact, the reaction 
7*+N--*J/Tt+N feels the variation of 2G(Y, ~2) better 
than the inclusive J/~t' cross section, which depends on 
YG(Y, ~2) only linearly. Therefore, this process is one of 
the best ways to measure the role of absorptive correc- 
tions (pomeron cuts contributions) and to observe the 
saturation of gluon density predicted in the frame-work of 
perturbative QCD in 1-10]. 

In Sect. 2 we calculate the amplitude of diffractive J / 7  j 
photoproduction. In Sect. 3 we discuss the spin structure 
of this amplitude and correspondingly the distribution in 
azimuthal angle. In Sect. 4 the numerical estimates of the 
single and double diffractive dissociation cross sections 
are given. 

2 Amplitude of ~,* +p--,J/W+p 

The Born amplitude of 7*+p--*J/~+p reaction is de- 
scribed by the sum of the two diagrams in Fig. 1. As the 
binding energy of S-wave e6-quarks J /7  J system is small 
(much less than the charm quark mass me= m), one can 
follow I-6] and use the nonrelativistic approximation, 
writing the product of two propagators (k and k' in Fig. 1) 
and the J / 7  J vertex (i.e. J / 7  J wave function integrated 
over the relative momenta of c6^quarks k = k '  in J / 7  J 
rest-frame system) in the form g(k+m)Tu. The constant 

~ 7  

l +  

qJ 
k 

a b 

Fig. la, b. Feynman diagrams for diffractive J/7 J production 
• Corrections for quark and gluon kT, non-forward kinematics (use of GPDs), 
real part of amplitude → corrections to C(µ2) and µ2, Ryskin, Roberts, Martin, Levin, Z. Phys. 
(1997); Frankfurt, Koepf, Strikman (1997)  

2

• Our phenomenological approach: µ2  and C(µ2) from W-dependence of cross 
section on proton measured at HERA:  
- µ2 ≈ 3 GeV2  for J/𝜓, Guzey, Zhalov JHEP 1310 (2013) 207 
- µ2 ≈ 4 GeV2  for 𝜓(2S), Guzey, Zhalov, arXiv:1405.7529 
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Coherent charmonium photoproduction  
• Application to nuclear targets:

Small correction kA/N ≈ 0.90-95 From HERA and LHCb

�A(tmin) =

Z tmin

�1
dt|FA(t)|2

From nuclear 
form factor

• Nuclear suppression factor S  → direct access to Rg

Nucleus/proton 
gluon ratio Rg

S(W�p) =

"
��Pb!J/ Pb

�

IA
�Pb!J/ Pb

#1/2

= A/N
GA(x, µ2)

AGN (x, µ2)
= A/NRg

Guzey, Kryshen, Strikman, Zhalov, PLB 726 (2013) 290

• Well-defined impulse approximation (IA):

�IA
�A!J/ A(W�p) =

d��p!J/ p(W�p, t = 0)

dt
�A(tmin)

Model-independently from data on 
UPC@LHC (ALICE, CMS) and HERA

From global QCD fits of nPDFs or model 
of leading twist nuclear shadowing

��A!J/ A(W�p) = 

2
A/N

d��p!J/ p(W�p, t = 0)

dt


GA(x, µ2)

AGN (x, µ2)

�2
�A(tmin)
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Comparison to SPb from ALICE and CMS UPC data 

• Good agreement with ALICE data on coherent J/𝜓 photoproduction in Pb-Pb 
UPCs@2.76 TeV  → first direct evidence of large gluon NS, Rg(x=0.001) ≈ 0.6. 

• Similarly good description using central value of EPS09+CTEQ6L, large uncertainty. 

• Color dipole models generally fail to reproduce suppression, Goncalves, Machado PRC84 
(2011) 011902; Lappi, Mantysaari, PRC 87 (2013) 032201

LTA: Guzey, Zhalov JHEP 1310 (2013) 207 
EPS09: Eskola, Paukkunen, Salgado, JHEP 
0904 (2009) 065 
HKN07: Hirai, Kumano, Nagai, PRC 76 (2007) 
065207 
nDS: de Florian, Sassot, PRD 69 (2004) 074028 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• J/𝜓 photoproduction in Pb-Pb UPCs at LHC, Abelev et al. [ALICE], PLB718 (2013) 1273;            

Abbas et al. [ALICE], EPJ C 73 (2013) 2617; CMS Collab., arXiv:1605.06966 → suppression factor S



26

l Using the space-time picture of strong interaction, Gribov developed theory 
of nuclear shadowing for soft hadron-nucleus scattering, where shadowing on 
nucleus is expressed in terms of diffraction. 

l It uses methods of quantum field theory and supersedes Glauber theory → 
Gribov-Glauber theory of nuclear shadowing. 
   
l Using QCD factorizations theorems for DIS, Gribov theory can be 
generalized to calculate shadowing in nuclear parton distributions at small x. 
  
l Hard diffraction (hard Pomeron) is dominated by gluons → the model 
naturally predicts large nuclear gluon shadowing → important prediction for 
Electron-Ion Collider. 

l Nicely confirmed by J/𝜓 photoproduction in Pb-Pb UPCs at the LHC.

Summary


