Hadron-nucleus interactions at very
high energies: black disk limit

Vadim Guzey

Petersburg Nuclear Physics Institute (PNPI), I"I
National Research Center “Kurchatov Institute”,

Gatchina, Russia “’

Outline:

- Black disk limit in non-relativistic quantum mechanics

- Gribov derivation of black disk limit in hadron-nucleus scattering, v.N. Gribov,
Sov. Phys. JETP 30 (1970) 709; Bertocchi, Nuovo Cim. A11 (1972) 45

- Black disk limit in deep inelastic scattering (DIS) on nuclei, v.N. Gribov, Sov. Phys.
JETP 30 (1970) 709; Frankfurt, Guzey, McDermott, Strikman, Phys. Rev. Lett. 87 (2001) 192301

2017 International Summer Workshop on Reaction Theory
Bloomington, Indiana, USA, June 12-22, 2017



Black disk limit in quantum mechanics

e Black disk limit = high-energy scattering on a completely absorbing target

e Standard problem of non-relativistic (NR) quantum mechanics, Landau and Lifshitz,
v.3

e Asymptotic form of wave function:

* Formal general solution of Schrodinger equation for scattering amplitude for
potential V:
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* Not very helpful since we still do not know the wave function W(r’).



Black disk limit in quantum mechanics

e For scattering of fast particles, look for solution in form of plane wave
modified by a slow-changing function ¢(r):

Ui (7) = ™7 (7)
* Solving Schrodinger equation for ¢(r) and taking large r:
$(7) = e~ v I o V(@20

\. the phase that a fast particle with velocity v along e;
accumulates while crossing potential V

e Solution for scattering amplitude of a fast particle on potential V:
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Black disk limit in quantum mechanics

e For fast particles, momentum transfer g=k-k’ is transverse to particle
momentum k — natural to separate transverse (b) and longitudinal (z)

coordinates: _
r=>b+ ze,

* The scattering amplitude becomes:
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* Introducing the so-called eikonal phase: x(b) = _hi dz'V (b, 2")
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Black disk limit in quantum mechanics

e Thus, fast particles travel along essentially straight trajectories (geometrical
optics) and accumulate eikonal phase x depending on impact parameter b.

 Total cross section using optical theorem:
Otot = —Imf(E, E) — 2%€/d25 {1 — eiX(b)}

e For spherical potential of radius R and depth Vo:

2oR2 b2, b<R
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* For completely absorbing potential Vo —

Otot — 27TR2



Black disk limit in quantum mechanics

e Thus, owt=27R?in the black disk limit — twice the geometric cross section,
where mR? comes from full absorption and 7R? — from elastic scattering off the

sharp edge of potential.

e This is Babinet's (complementarity) principle of geometrical optics.



Black disk limit in quantum mechanics

e In this representation, it is very intuitive to formulate unitarity condition for
the profile function I'(b):

T(b) =1 — ex(®)

e The integrand of oin should not exceed unity — unitarity constrain on ['(b) at
given b (similarly to unitarity for partial waves f)

oRel'(b) — |T(B)|? < 1

e Powerful tool for analysis of very high-energy proton-proton and proton-
nucleus scattering (Large Hadron Collider — LHC), and photon-proton and

photon-nucleus scattering (HERA, Electron-lon Collider, Large Hadron
Electron Collider@CERN).



Black disk limit in quantum mechanics

* ['(b) describes the proton/nucleus density (or profile) in transverse plane

(impact parameter space) :

energy increase
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Black disk limit in quantum mechanics

 In Gribov lectures “Strong Interactions of Hadrons at High Energies”, black
disk limit is derived using partial waves. The two methods are equivalent.

* Starting from standard partial wave decomposition of scattering amplitude,

f(0) = 2k > (21 +1) fiP(cos 6)
1=0

e using large-l asymptotic of Legendre polynomials,
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* one can replace sum over | by integral over b=I/k, notice that g=kB and show

that
k2
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* The partial wave is then: f1 = - [1 — eiX(b)} =

o7 L 1(b)



Gribov space-time picture of hadron interactions
at high energy

* From non-relativistic guantum mechanics — relativistic quantum field theory

e Hadrons are composite particles that can create virtual particles
(fluctuations):
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e Characteristic time of such fluctuation is 1/u in rest frame (u is pion mass
proton beam) — large in the laboratory frame due to Lorentz time dilation:

[o % > target size
L4

* At high energies (E > 5-10 GeV), hadrons interact as superpositions of long-
lived virtual particles coherently (simultaneously) with all nucleons of nuclear
target, cribov, loffe, Pomeranchuk, 1966; Gribov, arxiv: 0006158 — Gribov theory of nuclear

shadowing, V.N. Gribov, Sov. Phys. JETP 29 (1969) 483 @nd black disk limit, v.N. Gribov, Sov. Phys.
JETP 30 (1970) 709.
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Hadron-nucleus scattering

* Consider interaction of high-energy hadron with n nucleons of a nuclear target
containing A nucleons, Vv.N. Gribov, Sov. Phys. JETP 30 (1970) 709; Bertocchi, Nuovo Cim. A11 (1972) 45

* Corresponding effective Feynman graph: all coupling are strong — use to
obtain the analytic structure of amplitudes
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p; = PaJA+ K
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Hadron-nucleus scattering

* Introduce relative and average momenta:

k; = s; + d,L-/2 energy-momentum Z s;i =20
conservation
k;, = 8¢ — di/Q at nuclear vertices Z d; =0
e For spectator nucleons: Pm = P = Sm

dy = d/A = (P, — Py)/A

e Assumption #1: non-relativistic nucleons in nuclear target.

e Assumption #2: all singularities are due to A+n-2 inverse propagators —
integration over energies

. d>s; fam
. n!(A —n)! 1;[ 2m(2m)3 H 2m(2m)° D(sn + dn/2)D(sn — dn/2)

12



Hadron-nucleus scattering

* Coordinate space nucleus wave function:

Ly = VA [ (5 e

D(s, —d/2 \/A'QmA1Hd3y53Z% €'y

e Assumption #3: T depends weakly on s;j —
corresponds to neglecting Fermi motion of
nucleons or “frozen nucleon approximation”

e S | Loty | IS
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Hadron-nucleus scattering

* Assumption #4: T does not depend of transverse component of momentum
transfer di — nucleus size >> particle “size”

* Transverse and longitudinal momenta and coordinates: di =t; +q
Ti =b; + 2

e Trivial integration over ti — all nucleons are at the same transverse position b
— recall our non-relativistic case in the beginning.
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* Short-hand notation: x(d, b, z;) = /d3:17n+1 e 3?A5(Z z;)e A Xiemnr T [
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Hadron-nucleus scattering

* Note the space ordering z1 < z2 ... < zn — need to pick up singularities of T
e To integrate over q;, introduce momenta I
J
h=q, b=qg+q, | :Z%‘
1=1

Z Q.zi = l1(z1 —22) +la(zg —23) + - + ln—1(2n-1 — 2n)

* Multiparticle intermediate states
for T, vi is their four-momenta

* Longitudinal momenta |; are linearly related to invariant mass of
intermediate states:
Li —v;

l; =
2p
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Hadron-nucleus scattering

e Assumption #5: singularities of T with respect to vi? are isolated singularities
(poles) — integration over li in upper half plane — corresponds to correct
propagation of intermediate states:
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* |Interaction with n nucleons = sum over all possible

intermediate state with mass mj, = m7, — 2ply,

in terms of multiparticle-nucleon amplitudes

A
 Total amplitude: F(p,d) = Z F)
n=1
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Hadron-nucleus scattering

* Within given approximations, we derived the general expression for hadron-
nucleus scattering amplitude.

* To calculate the cross section off a heavy nucleus, one often takes A —« to
obtain the optical model (approximation).

e The derivation is still non-trivial in the general case. As a simplifying example,
we consider only elastic intermediate states.

e Assuming independent nucleons with density p(b,z):

F(p,d) =) F"™ = A/d%e‘“’d/

A n
N dz,p(b, z,) f exp [z 4p;f1 /_OO dz' p(b, z’)]

— i4pm/d2b e~ tbd (1 — exp [z / / dz'p(b, z’)])
dpm J_

e Use the optical theorem: Smf =2mpon, SmF(p,d=0)=2mpoa

o
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Hadron-nucleus scattering

* Final expression for the total hadron-nucleus cross section in optical model:

y— 23%6 / d2b (1 — e_A/20'N(1_i7I)TA(b))

nuclear optical density

Tat) = [ dzp(o,2)

* Multiple interactions with target nucleons with imaginary amplitudes leads to
destructive interference causing oa < on, which is called nuclear shadowing.

* For complete absorption on— : o = szi Black disk limit

 Different regimes characterized by different A-dependence:

oa~A shadowing BDL: ga~A2/3
>

energy increase
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Photon-nucleus scattering

* Photons (real, virtual) take part in high-energy strong interactions through
their hadronic component (fluctuations).

e Each of these fluctuations interacts with the BDL cross section 2mRa?2

e Total photon-nucleus cross section, Gribov, Sov. Phys. JETP 30 (1970) 709:

M2

\ the fraction of time photon
spends in its hadronic state in
terms of spectral function

» Forward photon-nucleus amplitude= 2w R% [ [ 6(k: — k}) = i2rR% x (graph b)

— -

Graph b determines the
b charge renormalization
constant due to hadrons
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Photon-nucleus scattering

* To formally derive this result for virtual photons, consider dispersion relation
for forward Compton amplitude (recall the vector meson dominance model):

dM?M? d]\4’2]\4’2

N\

“vector meson’ propagator coupling VM scattering cross
constant section

* In BDL, off-diagonal transitions — 0 and ov=27wRa?2
e Also, note that g,2y*v x o(ete” — hadrons) = p(M?)/M?

O A = 27TR12462/ 07+ M2)2p(M2)

* This expression is logarithmically divergent at M? — 0 due to infinite charge
renormalization.
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Photon-nucleus scattering

* To study its asymptotic behavior, recall that we always assume that:

l. = >Ry — M?2< 2 — Q°
¢ pz =4 ~— R4 2mxRy

notation for deep

\ Inelastic scattering:
Q2=photon virtuality;

x=Bjorken x
* The virtual photon-nucleus cross section in black disk limit :

04 = 2mR% e’ p(00) In(zg /)
* Dramatic violation of experimentally-observed approximate Bjorken scaling,

oA ~1/Q?, and much slower x-dependence.

e For the proton target, the x-dependence is faster due to diffractive cone
shrinkage — bmax ~ In(1/x),

Oyrp = 2mR3e*p(00) (14 cn In” (z0/2)) In(zo/x)
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Photon-nucleus scattering

* |In practice, the total cross section is not sensitive to BDL since it occurs only
for a small fraction of all relevant fluctuations.

* BDL should be easier to see in diffractive processes, Frankfurt, Guzey, McDermott,
Strikman, Phys. Rev. Lett. 87 (2001) 192301

e Using the guiding principle that in BDL, oqi=1/201t and there are no off-
diagonal transition, one can predict diffractive structure functions, which can
be measured in the future in y*A DIS at Electron-lon Collider:

dFEP) (z,Q2, M?) _ wRY Q*p(M?)
dM? 1273 (M2 + Q2)2

e One also predicts enhanced production of diffractive jets with large pT and
“restoration” of VMD for electroproduction of vector mesons — both in stark
contrast with usual leading-twist approximation:

dg¥rtAZVEA MG do i tATVEA L QaRY)? 3TyMy 4l (V=1 Rl

dt 02 di 167 a(Mi + Q2)? — 1R
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BDL and color dipole phenomenology

* In phenomenological studies of BDL (saturation) in photon-hadron scattering
at high energies, one often uses the color dipole model:

v:, v, p, JI¥Y

e Analysis of HERA data on t-dependence of y*p — J/Wp — possibility to
reconstruct the dipole profile function I'(b) and study its proximity to BDL T = 1,

Rogers et al, Phys, Rev, D69 (2004) 074011.

d=.1(fm) d = .2 (fm) d = .3 (fm) d = .4(fm)
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Summary

« The black disk limit (BDL) of hadron (photon)-nucleus scattering is
characterized by complete absorption for central (all) impact parameters
leading to Owi=27RT?.

* In pp scattering at the LHC, the proximity to BDL is examined using the
profile function I'(b) in the impact parameter space.

* In DIS off nuclei, BDL signals violation of approximation Bjorken scaling of
o,*a and its slow, logarithmic x-dependence.

* It is suggested in the literature that a promising way to look for BDL
(saturation) in DIS on nuclei is to study inclusive and exclusive diffraction.

« BDL is an important subject in view of ongoing efforts to strengthen the
physics case for a future Electron-lon Collider in the US.

* It is also relevant for studies of photon-nucleus scattering at high-energy in
ultraperipheral collisions of ions at the LHC.
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