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• Black disk limit = high-energy scattering on a completely absorbing target 

• Standard problem of non-relativistic (NR) quantum mechanics, Landau and Lifshitz, 
v.3 

• Asymptotic form of wave function:

 k(~r) = ei
~k~r + f(~k0,~k)

eikr

r

• Formal general solution of Schrodinger equation for scattering amplitude for 
potential V:

k
k’

f(~k0,~k) = � m

2⇡~2

Z
d3~r0 e�i~k0 ~r0 V (~r0) k(~r0)

• Not very helpful since we still do not know the wave function Ψk(r’).
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• For scattering of fast particles, look for solution in form of plane wave 
modified by a slow-changing function ɸ(r):

• Solving Schrodinger equation for ɸ(r) and taking large r:

 k(~r) = ei
~k~r�(~r)

�(~r) = e�
i

~v

R z
�1 dz

0
V (x,y,z0)

the phase that a fast particle with velocity v along ez 
accumulates while crossing potential V

• Solution for scattering amplitude of a fast particle on potential V:

f(~k0,~k) = � m

2⇡~2

Z
d3~r ei(

~

k�~

k

0)~r V (~r) e�
i

~v

R z
�1 dz

0
V (x,y,z0)
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• For fast particles, momentum transfer q=k-k’ is transverse to particle 
momentum k → natural to separate transverse (b) and longitudinal (z) 
coordinates: 

• The scattering amplitude becomes:

• Introducing the so-called eikonal phase:

~r = ~b+ zez

f(~k0,~k) = � m

2⇡~2

Z
d2~b ei~q

~b

Z 1

�1
dz V (~b, z) e�

i
~v

R z
�1 dz0V (~b,z0)

=
ik

2⇡

Z
d2~b ei~q

~b
h
1� e�

i
~v

R 1
�1 dz0V (~b,z0)

i

�(b) ⌘ � 1

~v

Z 1

�1
dz0V (~b, z0)

f(~k0,~k) =
ik

2⇡

Z
d2~b ei~q

~b
h
1� ei�(b)

i
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• Thus, fast particles travel along essentially straight trajectories (geometrical 
optics) and accumulate eikonal phase χ depending on impact parameter b. 

• Total cross section using optical theorem:

�
tot

=
4⇡

k
Imf(~k,~k) = 2<e

Z
d2~b

h
1� ei�(b)

i

• For spherical potential of radius R and depth V0:

�(b) =

⇢
2V0
~v

p
R2 � b2 , b < R

0 , b > R

• For completely absorbing potential V0 → ∞:

�
tot

= 2⇡R2
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• Thus, σtot=2𝜋R2 in the black disk limit → twice the geometric cross section, 
where 𝜋R2 comes from full absorption and 𝜋R2 — from elastic scattering off the 
sharp edge of potential. 

• This is Babinet’s (complementarity) principle of geometrical optics.
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• In this representation, it is very intuitive to formulate unitarity condition for 
the profile function Γ(b):

• The integrand of σin should not exceed unity → unitarity constrain on Γ(b) at 
given b (similarly to unitarity for partial waves fl)

• Powerful tool for analysis of very high-energy proton-proton and proton-
nucleus scattering (Large Hadron Collider — LHC), and photon-proton and 
photon-nucleus scattering (HERA, Electron-Ion Collider, Large Hadron 
Electron Collider@CERN).

�(b) = 1� ei�(b)

2<e�(b)� |�(b)|2  1



Black disk limit in quantum mechanics  

8

• Γ(b) describes the proton/nucleus density (or profile) in transverse plane 
(impact parameter space) :

April 4, 2014 0:42 WSPC/INSTRUCTION FILE 02-12-review˙WS

3

a b c

d e f

Fig. 1. Meson and proton pictures in the impact parameter space at moderately high energies
(a,d) and their transformations with increasing energy (b,e) to ultrahigh region where universal
black disks are created (c,f).

hadron domain, see Figs. 1a,d for pion and proton. At ultra-high energies the situa-
tion is transformed to a one-disk picture, Figs. 1c,f that manifests itself in two-step
asymptotics. The energy of this transformation is that of LHC, Figs. 1b,e.

The calculations we have carried out demonstrate a comparatively fast approach
of σtot(s) to the asymptotic behavior being in contrast to σel(s). The slow increase
of σel(s) means a slow approach of σinel(s) = σtot(s) − σel(s) to the asymptotic
mode.

A fast approach to the asymptotic mode is observed for the sum of elastic and
quasi-elastic cross sections (elastic, single diffractive dissociations and double diffrac-
tive dissociation). That emphasizes the importance of the study of inelastic diffrac-
tive processes. We demonstrate that the diffractive dissociation cross sections are
increasing at asymptotic energies as (σD ∝ ln s, σDD ∝ ln s) while their relative con-
tribution tends to zero (σD/σtot → 0, σDD/σtot → 0). Specifically, the cross section
for the diffractive production of N 1

2

+(1440) is estimated as
(

1
10 ÷ 1

2

)

· 0.6 ln s
1.2GeV2

mb if this state is a radial excitation of a nucleon.34

The effect for inclusive cross sections due to the change of the regime, from the
constituent quark collision picture to that with a united single disk, was discussed
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Fig. 5. a) Profile functions T (b) determined in Eq. (4) at preLHC (0.546-1.8 TeV), LHC (8.0
TeV), Pierre Auger Collaboration (57 TeV) and ultra-high (100-1000 TeV) energies. b)Profile
functions T (b) at a set of energies

√
s = 1, 10, 100, ...,107 TeV.

The profile functions at 0.546− 1.8 TeV illustrate the two-fold structure of pro-
ton, corresponding to Fig. 1d. At that energies the absorption area is dominantly
inside the proper nucleon size, b ≤ 4 GeV−1, and only the blackness level is increas-
ing with energy.
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Fig. 6. a) Differential cross sections dσel/dτ , where τ = σtotq
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⊥
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√
s = 0.546, 1.8, 7.0 TeV

and their descriptions in the Dakhno-Nikonov model; b) Calculated differential cross sections
1/σtot × dσel/dτ at

√
s = 1.8, 7, 100, 1000, ...106 TeV and their approaching to the τ -scaling

limit.

energy increase

Anisovich et al, Int. J. Mod. 
Phys. A29 (2014) 1540096
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• In Gribov lectures “Strong Interactions of Hadrons at High Energies”, black 
disk limit is derived using partial waves. The two methods are equivalent.

• Starting from standard partial wave decomposition of scattering amplitude,

• one can replace sum over l by integral over b=l/k, notice that q=kθ and show 
that

f(✓) =
1

2ik

1X

l=0

(2l + 1)flPl(cos ✓)

• using large-l asymptotic of Legendre polynomials, 

Pl(cos ✓) =
1

2⇡

Z
2⇡

0

d� e�i✓l cos�

f(✓) =
k2

⇡

Z
d2b e�i~q~bfl

• The partial wave is then:  fl =
i

2k

h
1� ei�(b)

i
=

i

2k
�(b)
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• From non-relativistic quantum mechanics → relativistic quantum field theory 

• Hadrons are composite particles that can create virtual particles 
(fluctuations):

• At high energies (E > 5-10 GeV), hadrons interact as superpositions of long-
lived virtual particles coherently (simultaneously) with all nucleons of nuclear 
target, Gribov, Ioffe, Pomeranchuk, 1966; Gribov, arXiv: 0006158  → Gribov theory of nuclear 
shadowing, V.N. Gribov, Sov. Phys. JETP 29 (1969) 483 and black disk limit, V.N. Gribov, Sov. Phys. 
JETP 30 (1970) 709.

• Characteristic time of such fluctuation is 1/µ in rest frame (µ is pion mass 
proton beam) →  large in the laboratory frame due to Lorentz time dilation: 

that the Pomeranchuk pole exists). The lecture is organized as follows. In the
first part we discuss the propagation of the hadrons in the space as a process
of creation and absorption of the virtual particles (partons) and formulate the
notion of the parton wave function of the hadron. The second part describes
momentum and coordinate parton distributions in hadrons. In the third part we
consider the process of deep inelastic scattering. It is shown that from the point
of view of our approach the deep inelastic scattering satisfies the Bjorken scaling,
and, in contrast to the quark model, the multiplicity of the produced hadrons
is of the order of ln ν√

q2
. The fourth part is devoted to the strong interactions

of hadrons and it is shown that in the same framework the total hadron cross
sections have to approach asymptotically the same limiting value. In the last
part of the lecture we discuss the processes of elastic and quasi-elastic scattering
at high energies. It is demonstrated that the cross sections of the quasi-elastic
scattering processes at zero angle tend to zero at asymptotically high energies.

Let us discuss, how one can think of the space-time propagation of a physical
particle in terms of virtual particles which are involved in the interaction with
photon and other hadrons. It is well known that the propagation of a real particle
is described by its Green function, which corresponds to a series of Feynman
diagrams of the type (for simplicity, we will consider identical scalar particles).
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Figure 1:

The Feynman diagrams, having many remarkable properties, have, nevertheless,
a disadvantage compared to the old-fashioned perturbation theory. Indeed, they
do not show how a system evolves with time in a given coordinate reference frame.
For example, depending on the relations between the time coordinates x10, y10,
x20 and y20, the graph in Fig.1b corresponds to different processes:

Similarly, the diagram Fig.1c corresponds to the processes

2

lc /
p

µ2
� target size
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• Consider interaction of high-energy hadron with n nucleons of a nuclear target 
containing A nucleons, V.N. Gribov, Sov. Phys. JETP 30 (1970) 709; Bertocchi, Nuovo Cim. A11 (1972) 45 

• Corresponding effective Feynman graph: all coupling are strong → use to 
obtain the analytic structure of amplitudes

F (n) =
1

n!(A� n)!

AY

i,j=1

d4ki d
4k0j �

4(
AX

i

pi � P1)�
4(

AX

i

p0j � P2)

⇥
AY

m=n+1

�4(P1/A+ km � P2/A� k0m)
�(ki)�(k0j)T

D(k1) . . . D(kn)D(k01 . . . D(k0nD(kn+1 . . . D(kA)

T

Γ Γ

pi = P1/A+ ki

p0j = P2/A+ k0j

D(k) = (2⇡)3(p2 �m2 + i✏)
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• Introduce relative and average momenta: 

ki = si + di/2

k0i = si � di/2

X
si = 0

X
di = 0

energy-momentum 
conservation 
at nuclear vertices

• For spectator nucleons: pm = p0m = sm

dm = d/A = (P1 � P2)/A

• Assumption #1: non-relativistic nucleons in nuclear target. 

• Assumption #2: all singularities are due to A+n-2 inverse propagators → 
integration over energies

F (n) =
1

n!(A� n)!

AY

i 6=n

d3si
2m(2⇡)3

n�1Y

j=1

d3di
2m(2⇡)3

�(si + di/2)�(si � di/2)T

D(sn + dn/2)D(sn � dn/2)
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• Coordinate space nucleus wave function: 

�(p
i

)

D(s
n

+ d

n

/2)
=

q
A!(2m)A�1

AY

i=1

d

3
x

i

�

3(
X

x

i

)e�i

P
i xipi

 

⇤

�(p0
j

)

D(s
n

� d

n

/2)
=

q
A!(2m)A�1

AY

i=1

d

3
y

i

�

3(
X

y

i

)ei
P

i yip
0
j
 

• Assumption #3: T depends weakly on si → 
corresponds to neglecting Fermi motion of 
nucleons or “frozen nucleon approximation”

F

(n) =
A!

n!(A� n)!

1

(2m(2⇡)3)n�1

AY

i=1

Z
d

3
x

i

| |2�3(
X

x

i

)
n�1Y

i=1

d

3
d

i

Te

�
PA

i=1 xidi
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• Assumption #4: T does not depend of transverse component of momentum 
transfer di → nucleus size >> particle “size” 

• Transverse and longitudinal momenta and coordinates:

F (n) =
A!

(A� n)!

1

(4⇡m)n�1

Z
d2b e�ibdeibdA/n

Z z2

�1
dz1

Z z3

�1
dz2 . . .

Z 1

�1
dzn

⇥ �n

nY

i=1

dqi�(
X

qi)e
�i

P
qiziT (qi)

di = ti + qi

xi = bi + zi

• Trivial integration over ti → all nucleons are at the same transverse position b 
→ recall our non-relativistic case in the beginning. 

�(d, b, z
i

) =

Z
d

3
x

n+1 . . . xA

�(
X

i

x

i

)e�id/A

PA
k=n+1 xk | |2• Short-hand notation: 
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• Note the space ordering z1 < z2 … < zn → need to pick up singularities of T 

• To integrate over qi, introduce momenta li:

l1 = q1 , l2 = q1 + q2 , lj =
jX

i=1

qi

X

i

qzzi = l1(z1 � z2) + l2(z2 � z3) + · · ·+ ln�1(zn�1 � zn)

• Multiparticle intermediate states 
for T, vi is their four-momenta

• Longitudinal momenta li are linearly related to invariant mass of 
intermediate states:

li =
L2
1 � v2i
2p
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• Assumption #5: singularities of T with respect to vi2 are isolated singularities 
(poles) → integration over li in upper half plane → corresponds to correct 
propagation of intermediate states:

F (n) =
A!

(A� n)!

i

(4mp)n�1

Z
d2be�ibdein/Abd

Z
dz1

Z
dz2 . . .

Z
dzn

⇥ �n

X

b1,b2,...bn�1

fL1b1e
�lb1 (z1�z2)fb1b2e

�ilb2 (z2�z3) . . . fbn�1L2

• Interaction with n nucleons = sum over all possible 
intermediate state with mass                                    
in terms of multiparticle-nucleon amplitudes 

• Total amplitude:

m2
bi = m2

L1
� 2plb1

F (p, d) =
AX

n=1

F (n)
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• Within given approximations, we derived the general expression for hadron-
nucleus scattering amplitude. 

• To calculate the cross section off a heavy nucleus, one often takes A →∞  to 
obtain the optical model (approximation). 

• The derivation is still non-trivial in the general case. As a simplifying example, 
we consider only elastic intermediate states. 

• Assuming independent nucleons with density ρ(b,z):

• Use the optical theorem:

F (p, d) =
X

n

F (n)
= A

Z
d2b e�ibd

Z 1

�1
dzn⇢(b, zn)f exp


i
Af

4pm

Z zn

�1
dz0⇢(b, z0)

�

= i4pm

Z
d2b e�ibd

✓
1� exp


i
Af

4pm

Z 1

�1
dz0⇢(b, z0)

�◆

=mf = 2mp�N , =mF (p, d = 0) = 2mp�A
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• Final expression for the total hadron-nucleus cross section in optical model:

�A = 2<e
Z

d2b
⇣
1� e�A/2�N (1�i⌘)TA(b)

⌘

nuclear optical density 

TA(b) =

Z 1

�1
dz⇢(b, z)

• For complete absorption σN→∞ : �A = 2⇡R2
A

• Multiple interactions with target nucleons with imaginary amplitudes leads to 
destructive interference causing σA < σN, which is called nuclear shadowing.

• Different regimes characterized by different A-dependence:

Black disk limit

energy increase

σA~A BDL: σA~A2/3 shadowing
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• Photons (real, virtual) take part in high-energy strong interactions through 
their hadronic component (fluctuations). 

• Each of these fluctuations interacts with the BDL cross section 2𝜋RA2 

• Total photon-nucleus cross section, Gribov, Sov. Phys. JETP 30 (1970) 709:

the fraction of time photon 
spends in its hadronic state in 
terms of spectral function

• Forward photon-nucleus amplitude= i2⇡R2
A

Y
�(ki � k0i) = i2⇡R2

A ⇥ (graph b)

Graph b determines the 
charge renormalization 
constant due to hadrons 

��A = 2⇡R2
A(1� Z3) = 2⇡R2

Ae
2

Z
⇢(M2)

dM2

M2
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• To formally derive this result for virtual photons, consider dispersion relation 
for forward Compton amplitude (recall the vector meson dominance model):

��⇤A =

Z Z
dM2M2

Q2 +M2

dM 02M 02

Q2 +M 02 f�⇤V �V V 0f�⇤V 0

“vector meson” propagator coupling 
constant

VM scattering cross 
section

• In BDL, off-diagonal transitions → 0 and σV=2𝜋RA2 

• Also, note that  

��⇤A = 2⇡R2
Ae

2

Z
dM2M2

(Q2 +M2)2
⇢(M2)

g2�⇤V / �(e+e� ! hadrons) = ⇢(M2
)/M2

• This expression is logarithmically divergent at M2 → 0 due to infinite charge 
renormalization.
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• To study its asymptotic behavior, recall that we always assume that:

lc =
⌫

M

2
� RA ! M

2  ⌫

RA
=

Q

2

2mxRA notation for deep 
inelastic scattering: 
Q2=photon virtuality; 
x=Bjorken x

• The virtual photon-nucleus cross section in black disk limit :

��⇤A = 2⇡R2
Ae

2
⇢(1) ln(x0/x)

• Dramatic violation of experimentally-observed approximate Bjorken scaling, 
σ𝛾*A ~1/Q2, and much slower x-dependence. 

• For the proton target, the x-dependence is faster due to diffractive cone 
shrinkage → bmax ~ ln(1/x), 

��⇤p = 2⇡R2
Ne

2
⇢(1)

�
1 + cN ln2(x0/x)

�
ln(x0/x)
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• In practice, the total cross section is not sensitive to BDL since it occurs only 
for a small fraction of all relevant fluctuations. 

• BDL should be easier to see in diffractive processes, Frankfurt, Guzey, McDermott, 
Strikman, Phys. Rev. Lett. 87 (2001) 192301 

• Using the guiding principle that in BDL, σdiff=1/2σtot and there are no off-
diagonal transition, one can predict diffractive structure functions, which can 
be measured in the future in 𝛾*A DIS at Electron-Ion Collider:

dF

D(3)
T (x,Q2

,M

2)

dM

2
=

⇡R

2
A

12⇡3

Q

2
⇢(M2)

(M2 +Q

2)2

• One also predicts enhanced production of diffractive jets with large pT and 
“restoration” of VMD for electroproduction of vector mesons → both in stark 
contrast with usual leading-twist approximation:  

VOLUME 87, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 5 NOVEMBER 2001

jets (with fractal substructure) with a distribution in the
center of mass emission angle proportional to 1 1 cos2u
for the transverse case and sin2u for the longitudinal case.
The diffractive cross section, integrated over u, is obtained
from Eq. (10) by removing the 3

8 !1 1 cos2u", 3
4 sin2u fac-

tors. It follows from Eq. (10) that in the BBL diffractive
production of high p! jets is ~M2 (while in the LTA it
is ~lnQ2) and hence is enhanced: #p2

!!jet"$T ! 3M2%20,
#p2

!!jet"$L ! M2%5.
The relative rate and distribution of jet variables for three

jet events (originating from qq̄g configurations) will also
be the same as in e1e2 annihilation and hence is given
by the standard expressions for the process e1e2 ! qq̄g.
In addition, in the BBL, the production of jets is flavor
democratic (weighted by quark charges but unrelated to
the quark content of the target).

An important advantage of the diffractive BBL signal
is that these features of the diffractive final state should
hold for M2 # Q2

BBL even for Q2 $ Q2
BBL ¿ L2

QCD be-
cause configurations with transverse momenta #QBBL%2
are perturbative but still interact in the black regime (and
correspond to transverse size fluctuations for which the in-
teraction is already black).

Another interesting feature of the BBL is the spectrum
of leading hadrons in the photon fragmentation region. It
is essentially given by Eq. (10). Since the distributions in z
(or equivalently u) do not depend on M, the jet distribution
in z is given by

d!sT 1 esL"
dz

~
M2

Q2

1 1 !2z 2 1"2

8
1 e!z 2 z2" .

(11)

Exclusive vector meson production in the BBL corre-
sponds, in a sense, to a resurrection of the original vector
meson dominance model [14] without off-diagonal transi-
tions. The amplitude for the vector meson-nucleus inter-
action is proportional to 2pR2

A (since each configuration
in the virtual photon interacts with the same BBL cross
section). This is markedly different from the requirements
[3] for matching the generalized vector dominance model
(see, e.g., [2]) with QCD in the scaling limit, where the
off-diagonal matrix elements are large and lead to strong
cancellations. We can factorize out the universal black in-
teraction cross section for the dipole interaction from the
overlap integral between wave functions of virtual photon
and vector mesons to find, for the dominant electroproduc-
tion of vector mesons,

dsg"
T 1A!V1A

dt
!

M2
V

Q2

dsg"
L1A!V 1A

dt
!

!2pR2
A"2

16p

3GV M3
V

a!M2
V 1 Q2"2

4jJ1!
p

2t RA"j2
2tR2

A
, (12)

where GV is the electronic decay width V ! e1e2, a is
the fine-structure constant. Thus the parameter-free predic-
tion is that, in the BBL (complete absorption) at large Q2,
vector meson production cross sections have a 1%Q2 be-
havior. This is in stark contrast to the asymptotic behavior
of 1%Q6 predicted in PQCD [15] since a factor 1%Q4, due
to the square of the cross section of interaction of a small
dipole with the target (color transparency), disappears in
the BBL.

In the LTA, the factorization theorem is valid and leads
to a universal (i.e., target-independent) spectrum of leading
particles for scattering off partons of the same flavor. Fun-
damentally, this can be explained by the fact that, in the
Breit frame, the fast parton which is hit by the photon car-
ries practically all of its light-cone momentum (z ! 1). As
a result of QCD evolution, this parton acquires virtuality,
&Q2, and a rather large transverse momentum, kt (which
is still øQ2). So, in PQCD, quarks and gluons emitted
in the process of QCD evolution and in the fragmentation
of heavily virtual partons together still carry all the photon
momentum. In contrast, in the BBL, the leading particles
originate from coherent diffraction (peripheral collisions)
and central highly inelastic collisions. These contributions
come from the fragmentation of a highly virtual qq̄ pair
with similar light-cone fractions of longitudinal momenta
and large relative transverse momenta [see, e.g., Eqs. (10)
and (11)].

The inclusive spectrum of leading hadrons can be
assumed, neglecting energy losses, as being due to the in-

dependent fragmentation of quark and antiquark of virtu-
alities $Q2, with z and p! distributions given by Eqs. (10)
and (11) (cf. diffractive production of jets discussed
above). Note that energy losses of partons calculated in
the limit of small nuclear parton densities do not lead to a
change of the z fraction carried by a parton, and hence do
not violate the LTA (see, e.g., [16]). In the BBL, energy
losses may be larger, further suppressing the spectrum as
compared to Eq. (13).

The independence of fragmentation is justified because
large transverse momenta of quarks dominate in the photon
wave function [cf. Eqs. (4)–(7)] and because of the weak-
ness of the final-state interaction between q and q̄, since
the as is small and the rapidity interval is of the order of
1. Obviously, this leads to a gross depletion of the lead-
ing hadron spectrum as compared to the LTA situation in
which leading hadrons are produced in the fragmentation
region of the parton which carries essentially all momen-
tum of the virtual photon. If we neglect gluon emissions
in the photon wave function, we find, for instance, for the
differential multiplicity of leading hadrons, dNg"

T %h%dz,
produced by transverse virtual photons, in the BBL,

dNg"
T %h

dz
! 2

Z 1

z
Dq%h

µ

z
y

∂

3
4

'1 1 !2y 2 1"2( dy . (13)

Here Dq%h!z%y, Q2" is the fragmentation function of
a quark, with any flavor q, into hadrons. To simplify
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• In phenomenological studies of BDL (saturation) in photon-hadron scattering 
at high energies, one often uses the color dipole model:  

656 M. McDermott et al.: Colour dipoles and virtual Compton scattering

We stress the potential importance of well-founded
dipole descriptions in providing reliable starting points
for exploiting DGLAP evolution properties at “large” Q2.
From the theoretical point of view, DVCS is the best un-
derstood of all exclusive diffractive processes, essentially
because the X system is just a real photon. Indeed, a per-
turbative QCD factorisation theorem has been explicitly
proven as Q2 → ∞ [13] which enables the QCD ampli-
tude to be described by a convolution in momentum frac-
tion of generalised (or skewed) parton distributions [14]
(GPDs) with hard coefficient functions. GPDs correspond
to Fourier transforms of operator products evaluated be-
tween proton states of unequal momenta (cf. (2)). They
are therefore generalizations of the familiar parton dis-
tributions of deep inelastic scattering, and like them sat-
isfy perturbative evolution equations [15–18] which enable
them to be evaluated at all Q2 in terms of an assumed in-
put at some appropriate Q2 = Q2

0. In practice, to compare
with experimental results at finite Q2 one must establish
a regime in Q2 in which the higher twist corrections (see
e.g. [19,20]) to this leading twist result are numerically
unimportant. This is a very difficult task in general but
early indications are that the minimum Q2 values defin-
ing this regime are considerably higher than in inclusive
cross sections, for which values as low as Q2

0 = 1 GeV2, or
even lower, have been used. Since the contributions from
different transverse sizes are manifest in the dipole model
one may realistically hope to gain insight into this ques-
tion by investigating DVCS in the dipole framework. As
such a dipole analysis of DVCS provides a complemen-
tary description to the formal QCD analysis, applicable
at “large” Q2. Any insight gained regarding the mixture
of soft and hard physics within the dipole model frame-
work, can also be employed in those processes for which
factorization theorems have not been proven.

Frankfurt, Freund and Strikman [21] have given a lead-
ing order QCD analysis of DVCS. The resulting predic-
tions for the DVCS amplitude at t = 0 are in agreement
with the recent H1 measurements [2] of the total DVCS
cross-section, assuming an exponential t-dependence with
a reasonable value of the slope parameter. The GPDs are
evolved from an input value Q2

0 = 2.6 GeV2, where the in-
put GPDs are obtained by estimating their ratio to “ordi-
nary” parton distribution functions (PDFs) using a simple
aligned jet model2. While this provides a reasonable first
estimate, it is clearly subject to uncertainties which will
become important when more accurate data are available.

Recently NLO QCD analyses of DVCS have been com-
pleted [18,23–25] which use as input GPDs Radyushkin’s
model [26] based on Double Distributions proportional to
PDFs (which automatically impose the correct symmetry
properties in the so-called “ERBL region”). The colour
dipole model offers a means of estimating these distribu-
tions at the input scale in the DGLAP region, in a com-
plementary and well-founded framework, which can accu-
rately describe both virtual Compton scattering and other
closely related data over a wide range of Q2. This is possi-

2 For further discussion of this approximation, see [22] and
the original paper [21]

1 -z

z

b

d

Fig. 1. The colour dipole model for the elastic process γ∗p →
γ∗p(DIS), and virtual Compton scattering γ∗p → γp

ble because at leading-log accuracy in Q2, the amplitude
is approximately equal to the GPD, at a particular point.
In this paper we compute predictions for the cross section
of (1), and for various azimuthal angle asymmetries for the
associated lepton process [27] which are sensitive to both
the real and imaginary parts of the DVCS amplitude.

The structure of the paper is as follows: in Sect. 2 we
summarize and compare our two dipole models in the con-
text of deep inelastic scattering; we then discuss their ap-
plication to virtual Compton scattering process in Sect. 3;
compute various observables in Sect. 4 and summarize our
results and conclusions in Sect. 5.

2 The colour dipole model

Singly dissociative diffractive γp processes (cf. (2)) are
conveniently described in the rest frame of the hadron,
in which the incoming photon dissociates into a qq̄ pair a
long distance, typically of order of the “coherence length”
1/Mx, from the target proton. Assuming that the result-
ing partonic/hadronic state evolves slowly compared to
the timescale of interaction with the proton or nuclear tar-
get, it can be regarded as frozen during the interaction. In
the colour dipole model, the dominant states are assumed
to be qq̄ states of given transverse size, dT . Specifically

|γr⟩ =
∫

dz d2dT ψγ
r (z, dT , Q2) |z, dT , ⟩ + . . . , (4)

where z is the fraction of light cone energy carried by the
quark and ψγ

r (z, dT , Q2) is the light cone wave function
of the photon of polarization r = T,L. Assuming that
these dominant states are scattering eigenstates (i.e. that
z, dT and the quark helicities, which are left implicit in
the above equation, remain unchanged in diffractive scat-
tering) the elastic scattering amplitude for γ∗p → γ∗p is
specified by Fig. 1. This leads via the optical theorem to

σγ∗p
T,L =

∫

dzd2dT |ψγ
T,L(z, dT , Q2)|2σ̂(s∗, dT , z) , (5)

for the γ∗p total cross-section in deep inelastic scattering,
where σ̂(s∗, dT , z) is the total cross-section for scattering
dipoles of specified (z, dT ) which do not change in the in-
teraction (the second line then follows from orthogonality
and the variable s∗ will be specified shortly).

The dipole cross-section is usually assumed to be
flavour independent and “geometric”, i.e. independent of
z. Beyond this the models fall into two main classes.

𝛾* 𝛾*, 𝛾, ρ, J/Ψ

• Analysis of HERA data on t-dependence of 𝛾*p → J/Ψp → possibility to 
reconstruct the dipole profile function Γ(b) and study its proximity to BDL Γ ≈ 1, 
Rogers et al, Phys, Rev, D69 (2004) 074011:  

We have made a numerical evaluation of the fraction of the
total hadronic configuration-nucleon cross section obtained
by setting different upper limits on the b integral in Eq. !16".
In Fig. 3, one can see that no more that about 30% of the
total hadronic cross section is due to values of #h!1/2.
Moreover, contributions from large values of #h(b) occur
for hadronic sizes close to the pion size, d$ .6 fm. Averaging
over the photon wave function will lead to a suppression of
contributions from larger size hadronic configurations, so
there will indeed be a small contribution to the total DIS

cross section due to large values of #h(b) !see Fig. 4". The
goal of Sec. IV will be to determine whether the contribution
to the %*N cross section from large values of #h(b) is sig-
nificant enough that we may expect to see blackbody behav-
ior within HERA kinematics.
To summarize, Fig. 1 demonstrates that large values of

#h(b) are approached for hadronic configuration-nucleon
scattering at central impact parameters, b"0.5 fm. In Fig. 1
it is seen that this is particularly true for hadronic sizes
around d$0.6 fm. Figure 3 shows that for d&0.6 fm, a
maximum of about 1/3 of the total hadron-nucleon cross sec-

FIG. 1. The hadronic
configuration-nucleon profile
function for different x values.
The large #h(b) region (#h
!1/2) is reached for intermediate
hadronic sizes. !See Fig. 3." Here,
Q2 is taken to be 2 GeV2.

FIG. 2. Comparison of the b behavior for our model with that of
a Gaussian model. Our model falls off more slowly with b. The
slope of the Gaussian used here is 0.17 fm2.

FIG. 3. The fraction of '̂ tot with contributions coming from
values of #h greater than the corresponding point on the x axis.
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l The black disk limit (BDL) of hadron (photon)-nucleus scattering is 
characterized by complete absorption for central (all) impact parameters 
leading to σtot=2𝜋RT2. 
l In pp scattering at the LHC, the proximity to BDL is examined using the 
profile function Γ(b) in the impact parameter space. 

l In DIS off nuclei, BDL signals violation of approximation Bjorken scaling of 
σ𝛾*A and its slow, logarithmic x-dependence. 

l It is suggested in the literature that a promising way to look for BDL 
(saturation) in DIS on nuclei is to study inclusive and exclusive diffraction. 

l BDL is an important subject in view of ongoing efforts to strengthen the 
physics case for a future Electron-Ion Collider in the US. 

l It is also relevant for studies of photon-nucleus scattering at high-energy in 
ultraperipheral collisions of ions at the LHC.

Summary


