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1 Generalities and notations

In the production of n particle a+ b ! 1+ 2+ . . .+ n we will denote by m

i

, E
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, �
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i 2 {a, b, 1, 2, . . . , n} the mass, energy, helicities and four-vector of the particle i. The three
dimensional space component of four vectors are denoted p
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The Lorenz invariant relativistic measure is
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One often uses the triangle function
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Operators, such as the S�matrix b
S = bI + i

b
T , are hatted. They act on states normalized as
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When contracted on the in |↵i = |p
a
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i and out h�| = hp1�1 . . . pn�n

| states, we pull out
the conservation of energy and momenta with
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with the notation I
�↵

= h�|↵i = (2⇡)3�3(p
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�b,�2 . In the
case of identical particles, there would be the cross term �

3(p
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The n particle di↵erential cross section is
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The symbol
P

�i
= (2s

a

+1)�1(2s
b

+1)�1
P

�i
stands for the sum over final helicities and average

over the initial ones. The previous formula is valid for di↵erent particles. In the presence of
identical particles, there is an extra factor 1/(n

l

!) for each group of n
l

identical particle (i.e.P
l

n

l

= n). The flux factor is F
I

= m

b

plab with plab the momentum of the beam (particle a) in
the laboratory frame (the target rest frame).
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The unitary relation b
S

† b
S = bI with �

k

, a k�particle intermediate state, reads:

i

⇣
M

†
�↵

�M

�↵

⌘
= (2⇡)4

1X

k=1

kY

i=1

Z
1

(2⇡)3
d

3k
i

2E
i

M

†
��k

M

�k↵
�

4(P
�k

� P

↵

), (7)

with P

�k
=

P
k

i=1 ki. The left-hand-side can also be written i
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unitarity relation for elastic scattering ↵ = � allows one to obtain the total cross section in a
simple form
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Note that since the final and initial four-momenta are equal, the matrix element M
↵↵

corre-
sponds to the elastic scattering in the forward direction.

In the above formulas we implicitly use natural units 1 ⌘ ~c = 0.19732 fm.GeV. We can
convert the cross section in physical units by reinstalling the factor

104(~c)2 = 389.35 µb.GeV2
. (9)

2 2-to-2 scattering

In this section we particularize the formula for the process a + b ! 1 + 2. The Mandelstam
variables are
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The matrix element depends on the four helicities µ

i

and two Mandelstam variables M ⌘
M

µi(s, t). In the center-of-mass of the reaction, also called the s�channel, the initial and final
break-up momenta are
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The scattering takes place in the xz plane such that the beam is aligned with the z direction
p
a
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(s)(0, 0, 1) and p1 = q12(s)(sin ✓s, 0, cos ✓s). The scattering angle ✓

s
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It is traditional to denote t

0 = t � t0 with t0 and t1 being the limits of the physical region of
the scattering t1  t  t0  0. We have, with � = (m2
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The boundary of the physical region is given by the Kibble function
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Allowing only one two-body intermediate state �, the unitarity takes the simple form
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The angle ✓

↵�

is the angle between the state ↵ and �. The two-body phase space is, with m

x
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y

being the masses of the two intermediate state �,
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By convention we have left the factor of two in the left-hand-side of Eq. (16) outside the
two-body phase-space factor ⇢2(s).

The partial wave expansion for scalar particles reads

M(s, cos ✓
s

) =
1X

`=0

(2`+ 1)a
`

(s)P
`

(cos ✓
s

). (18)

The partial wave expansion diagonalize the unitarity equation (7). In the elastic approximation
we obtain

2 Im a

`

(s) = ⇢2(s)|a`(s)|2 (19)

Another convenient and equivalent way to write the elastic unitarity equation for the partial
wave is

2 Im a

�1
`

(s) = �⇢2(s). (20)

The partial decomposition can also defined for particle with spin

M
µi(s, ✓s) =

1X
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(2J + 1)aJ
µµ

0(s)dJ
µµ

0(✓
s

) µ = µ1 � µ2 µ

0 = µ3 � µ4 (21)
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3 Spinors

3.1 Generalities

See Perl, ArXiv:0703214 and ArXiv:9405376 for the conventions. The physical components are
the contra-variant ones xµ = (t, x, y, z) etc. The gamma matrices are

�

0 =

✓
I2 0
0 �I2

◆
�

i =

✓
0 �

i

��

i 0

◆
�

5 =

✓
0 I2
I2 0

◆
(22a)

�

1 =

✓
0 1
1 0

◆
�

2 =

✓
0 �i

i 0

◆
�

3 =

✓
1 0
0 �1

◆
(22b)

They satisfy �

†
µ

= �0�µ�0 and C

�1
�

µ

C = ��

T

µ

with C = i�

0
�

2. The commutation relations are

{�µ

, �

⌫} = �

µ

�

⌫ + �

⌫

�

µ = 2gµ⌫ I4 {�i

, �

j} = 2✏ijk�
k

. (23)

A complete base of 4⇥ 4 is given by the 16 matrices, collectively denoted by �
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Let p̂ = (sin ✓ cos�, sin ✓ sin�, cos ✓) being a unit vector (p̂ · p̂ = 1) with direction (✓,�).
The variables domains are ✓ 2 [0, ⇡] and � 2 [0, 2⇡[. The two component spinors along p̂ are
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2
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They obey the normalization and the useful relations:

�

†
±(p̂)�±(p̂) = 1 �

†
±(p̂)� �±(p̂) = ±p̂ �±(p̂)�

†
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2
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�
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⌥(p̂) =

1p
2
✏̂(⇤) · � (28)

We introduced the unit vector ✏̂ = (1/
p
2)ei�(cos ✓ cos� � i sin�, cos ✓ sin� + i cos�,� sin ✓)

orthogonal to p̂ ((✏̂ · ✏̂ = 1) and p̂ · ✏̂=0). The complex conjugation in ✏̂(⇤) is taken for the lower
helicity combination.

For particle moving along the �p̂ direction, i. e. along the angles (⇡ � ✓,� ± ⇡) (choose
the sign such that 0  �± ⇡ < 2⇡), we would obtain

�±(�p̂) = ⌥e

±i�

�⌥(p̂). (29)

However in order to satisfy the remove the ambiguity in �

†
±(p̂)�⌥(�p̂) = ⌥e

⌥i� (because in
the limit where the momentum goes to zero, a particle with helicity in the direction of his
momentum reduces to a particle moving in the opposite direction with helicity opposite to its
momentum), we define the spinor along �p with the second particle convention of Jacob and
Wick:

�±(�p̂) ⌘ �⌥(p̂). (30)
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With v = �Cū

T and v̄ = u

T

C

�1, the four component spinors are (with ū = u
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The satisfy the Dirac equations (with p/ ⌘ p
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ū

�

= p/+m (37)

v̄

�

0
v

�

= �2m�

�

0
�

v

†
�

0v
�

= 2E
p

�

�

0
�

X

�

v

�

v̄

�

= p/�m (38)

3.2 Spinors in s�, t� and u�channels

In the s�channel 1(0) + 2(⇡) ! 3(p̂) + 4(�p̂), the particle 2 and 4 should be defined with the
’second particle convention. In the case of nucleon-nucleon scattering we would use
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In the t�channel 1(0) + 3̄(⇡) ! 2̄(p̂) + 4(�p̂), the particle 3 and 4 should be defined with
the ’second particle’ convention. In the case of nucleon-nucleon scattering we would use
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In the u�channel 1(0) + 4̄(⇡) ! 3(p̂) + 2̄(�p̂), the particle 2 and 4 should be defined with
the ’second particle’ convention. In the case of nucleon-nucleon scattering we would use
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