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r 'sinr ', r&1,
(4.16)

In this case, we can define P, (k,r) and It,'(k, r) by
Eqs. (3.1) and (3.2). It can be verified that the two
Born series converge, and Eqs. (3.3)—(3.6) and (1.8)

Example C

Consider, as a last example, the rather pathological
potential

hold. Thus, for this potential, all the properties of a
regular potential are obtained even though it does not
satisfy Eq. (1.2).

Note added irt proof. We want to thank Dr. M. Beg
for drawing our attention to a paper by N. Limic
LNuovo Cimento 26, 581 (1962)] which contains the
statement that for singular potentials the S-matrix
element for given l is the limit of the quotient of two
Jost functions.
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Two-channel processes are studied to determine whether sizeable peaks can be produced in elastic scat-
tering for one of the channels by threshold eGects arising from the second channel (taken to be in an 5-wave
state). The problem is first examined by means of a simple model whose analytic properties can easily be
deduced. It is found that, when all the particles are stable, large cusps occur if there is a pole of the S matrix
on an unphysical sheet in the vicinity of the inelastic threshold. The cusps become "woolly" when one of
the particles in the second channel is allowed to be unstable. Similar results are obtained in a calculation
using an ED ' formulation. These S-matrix poles correspond to virtual states of the particles in the in-
elastic channel, their positions on the unphysical sheets depending on the force of interaction between the
particles. It is further suggested that some of the peaks observed in experiment may be of this type, having
their origins in inelastic thresholds rather than direct particle resonances. In particular, the I'0* at 1815
MeV and the XII( 1 peak near threshold may be manifestations of this.

I. INTRODUCTION

"ANY authors have discussed threshold effects, or
~ ~ cusps, in elementary particle reactions, including

the case of a threshold for the production of an unstable
particle. ' ' Questions naturally arise as to whether
these threshold effects can be responsible for sizeable
peaks in cross sections; and if so, whether such peaks
should be classified as elementary particles or as
phenomena of an essentially different character. The
purpose of this paper is to call attention to a situation
in which threshold effects do indeed produce sizeable
peaks; namely, when there exists a pole in the S matrix
close to an S-wave threshold on the unphysical sheet
reached by passing through the branch cut associated

*Work supported in part by the U. S. Atomic Energy
Commission.
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with the threshold. Moreover, we conjecture that this
situation is very likely to be responsible whenever a
threshold effect manifests itself as a peak comparable
to those associated with particles. From the point of
view of S-matrix theory, a threshold effect of this nature
can quite properly be called a particle since it arises
from a pole in the S matrix.

In Sec. II, we shall discuss these points in more detail
by considering some examples. The simplest example,
given in Sec. IIA, of the type of threshold effect we are
discussing is the "virtual state" occurring in the 'S state
of the neutron-proton system. In Sec. IIB, the case of
two channels involving only stable particles is discussed,
and in Sec. IIC, two channels where one of the particles
in the second channel is unstable. The latter case is an
extension of the work of Nauenberg and Pais. ' In
Sec. III, we consider threshold effects within the
framework. of a dynamical model, using the matrix
ED ' formalism. Some clarification is thereby obtained
of the work by Ball and Frazer on peaks in cross
sections near the threshold for production of an un-
stable particle. ' Lastly, in Sec. IV we discuss some
possible experimental manifestations of threshold
effects.
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Fro. 1. The k plane
and s plane with a
virtual-state pole.

but opposite in sign. As far as the total cross section is
concerned, there is no difference in the physically
accessible region s&4m'. The two cases, however, are
very different in the unphysical region along the real
s axis below threshold in the first sheet. This region is,
of course, inaccessible to experiments, but it exhibits
behavior similar to that found in the two-channel case
to be considered next. To evaluate the amplitude in
this region, one can make the continuation k —+ix,
where x is real and positive, and obtain the formula

4m2
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II. EXAMPLES OF THRESHOLD EFFECTS RESULTING
FROM NEARBY POLES

A. Single-Channel Case

The most familiar example of an S-matrix pole close
to a threshold on an unphysical sheet is the "virtual
state" of the 'S neutron-proton system. We shall remind
the reader of the nature of the singularities near
threshold in this simple example because of their
similarity to the more involved cases to be discussed
later.

The threshold behavior of the partial-wave amplitude
M= e's sin8/k, where k is the center-of-mass momentum,
is given by the scattering length formula

The function M(k) is analytic in the complex k plane
in the vicinity of k=0 except for the pole at k=ixp,
where xe ——1/a. There are, of course, many other
singularities in the complex k plane, but we are in-
terested here only in the behavior at threshold.

The scattering length a is negative for the 'S n pstate-
(a= —23.7 X 10 "cm), and so the pole at k= its lies in
the lower half-plane, as shown in Fig. 1(a). When the
k plane is mapped onto the s plane, where s= 4(k'+eP),
the upper-half k plane becomes the first (or physical)
sheet, whereas the lower-half k plane becomes the
second (or unphysical) sheet. The position of the pole
on the unphysical sheet is shown in Fig. 1(b), where the
arrow illustrates a path which can be followed to reach
the pole from the physical region. This pole on the un-
physical sheet in the 'S amplitude is often called a
"virtual state. '"

In the '5 state, however, the scattering length is
positive (a=5.4X10 " cm), and the pole lies on the
physical sheet. This, of course, corresponds to a bound
state of the n psystem, the deuter-on.

Consider now the difference in the physical effects of
bound and virtual states having xp equal in magnitude,

' J. M. Blatt and V. W. Weisskopf, Theoretical ENclear Physics
(John Wiley 8r Sons, Inc. , New York, 1952), p. 68.

IYZ —X Xp eJ.YI (2.2)

B. Two-Channel Case, A11 Particles Stable

The considerations of the previous section can now
be generalized to the more interesting case of threshold
effects in two-channel scattering problems. We consider
in this section on1y two-particle channels, all the
particles being spinless and stable for the present. We
also examine only orbital angular momentum L=O
states since threshold effects are stronger in this
situation.

I et T;; be the partial-wave scattering matrix for the
L= 0 state, normalized such that, in the physical region
between the two thresholds,

Tti(s) =e'" sinbi/ki. (2.3)

Here s is the square of the total energy in the center-of-
mass system; kj and k2 are the c.m. momenta in the
two channels whose thresholds will be denoted by s&

and s2, respectively.
As in the one-channel case, the threshold behavior

can be seen easily from a scattering-length formula. One
de6nes a matrix M by the equation

Mg(s) = (T '),,+ik;ti;;. (2.4)

It is well known, and can easily be shown to follow from
the unitarity condition, that the matrix elements M;;(s)

tMR
BOUND STATE

VIR

Fio. 2. The ampli-
tude (M'~' above and
below threshold for
bound- and virtual-
state poles.

I f

4 (m2-g 2) 4m2

The resulting function ~M~ is plotted in Fig. 2. For
the bound-state case, shown below the threshold by the
dashed line, there is, of course, a pole at s= 4(m' —xes).
For the virtual-state case, there is no pole but instead
a large cusp at the threshold s=4m'. This is the type of
threshold effect referred to in the Introduction, resulting
from a nearby virtual-state pole.
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are free from singularities at the thresholds s;, and can
therefore be expanded in a Taylor series. The scattering-
length formula results from keeping only the first term;
that is, the iV;; are taken to be real constants. Such a
formula is valid, of course, only in a small region since
it ignores all but the threshold singularities, but this
is quite adequate for our purposes. We obtain for the
T matrix

where

I ll ($) (~22 zk2)/D($)

F12 (s) = M12/D—(s),

T22($) (Mll Zk1)/D($)

D(s) = (Mll Zkl) (M22 Zk2) M12 ~

(2.5a)

(2.5b)

(2.5c)

(2 6)

In the region between the two thresholds on the real
axis, it is convenient to define the real, positive quantity
x2 such that k2= ix2. Since w'e are interested in the eGect
of a pole near s2, we require a zero of ReD(s) at a point
s„on the real axis between the thresholds. Let x2„be the
value of xs at s= s, . Then the condition that ReD(s,)=0,
implies that

(2.7)~11(~22+112m) ~12

To cast the equations into a more familiar form, we
define

Vl= (~22+lr2r) q y2=~11 ~

Then we obtain

(2.8)

sheet I: 0&8,&2~,
0&02& 27r )

sheet II: 2x &0&&4~,
0&op&2m )

sheet III: 2m. &0~&4m,
2x &02&4m,'

sheet IV: 0&0~&2~,
2~&02&4 .

(2.11)

We have attempted to depict these four sheets in
Fig. 4, where we show three cross sections of the

D(s) = (x2—xzp) (yz —zk1) —zylkl, (2.9)

T,l(s) = (y,+xz—xz„)/D(s), (2.10a)

2' ()=—(»)'"/D(), (2.10b)

2 22($) (Y2 zkl)/D($) ' (2.100)

From Eq. (2.9), we see that if y~(&yz, there will be a
pole of T near the real axis at x2=x2„. It follows from
the Schwarz reRection principle, or directly from
Eq. (2.9), that there is a pair of poles, symmetric about
the real axis.

We will now describe the topology of the Riemann
surface of T, and investigate which sheet of this surface
the pole lies on. The surface has four sheets, which can
be specified as follows in terms of the angles 8~ and 82

shown in Fig. 3:

I"ro. 3. The s plane
with elastic and in-
elastic cuts.

I gtsg srssssss estd /////////////

s PLANE

Fxo. 4. The four
sheets of T';;(s) and
their interconnection
on crossing the real
s axis.

I
4' 8'

I I
C'

I t 2 I

s s s s s r s s i ii r s I/////f//////
l I
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2 R. Dalitz and S. Tuan, Ann. Phys. (N. Y.) 1Q, 307 (1960).
2 Dalitz and Tuan (Ref. 6) in fact used the name "virtual bound

state. " We drop the word "virtual" since we wish to use it in the
sense in which it is used in Ref. 5 and Sec. IIA of this paper.

Riemann surface. All four sheets join at the branch
point s2. Note that, except at. this point, sheet IV has
no direct connection to the physical region.

One can easily determine on which sheet of D(s) the
zeros lie. This is outlined in the Appendix. It is shown
there that poles close to the real axis in the vicinity of
the inelastic threshold cannot occur in sheets I or III,
but lie in sheets II or IV.

The case of a pole in sheet II close to s2 w'as studied
by Dalitz and Tuan for the x I', EX system. ' This pole
was given the name "EE bound state. "' In general,
we shall refer to a pole in sheet II near s2 as a bound
state of the particles in channel 2. Since sheet II is
directly accessible from the physical region for s&&s &s2,
a pole on this sheet manifests itself as a resonance in
the channel 1 scattering process.

On the other hand, a pole in sheet IV manifests itself
in a manner analogous to the virtual state discussed
in Sec. IIA; namely, as a large cusp at s2. We shall refer
to a pole in sheet IV close to s2 as a virtual state of the
particles in channel 2.'

Examples of the two cases are shown in Fig. 5, and
the corresponding path of the pole as x2„ is varied is
drawn in Fig. 6. We have illustrated the situation by
using the channels zr+1V and p+E with the p meson
stable. In the figures, the inelastic threshold is therefore
at (W—M) = zlz, =5.4zzz . A pole in sheet IV produces a
cusp in channel 1 scattering at the energy s2. The height
of the cusp increases as the pol.e position is taken closer
to the real axis in sheet IV. As the pole crosses the real
axis (just above ss) and moves into sheet II, the cusp
attains the unitarity limit and becomes a rounded
resonance peak whose position changes as the pole
moves away from s& in sheet II.

We have also drawn in Fig. 5 the corresponding in-
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FIG. 5. Cusps and reso-
nance peaks (solid lines)
for the elastic amplitude

~
kz Tzz (s) (

s; the dashed
lines are the corresponding
inelastic contributions
kzkz~ Tzz(s) ~'=-', (1—z/')
with 0&g&1. The param-
eters have the values
y1 ——1.0, p2 ——10.0, while
x2„———0.7, —0.1, 0.5, and
1.0 for the cases indicated
by 1, 2, 3, 4, respectively.
Peaks 3, 4 attain their
elastic unitarity limit 1.0.

Ref. 11, that is ks(s) —+ ps(s,y, ) where

00

ps(s, y.) =-
—

(o 4)3- 1/2

/Eaks(s, o)

1

X (2.12)
(m p' —o.)'+y p'(o —4)'/4o.

and where ks(s, o) is the center-of-mass momentum of
a nucleon and a particle of mass go,

fks(s, o)j'= fzr ( W+m)' jfzr (W—m)'j/4s, (2.13)

elastic contribution kiks~ Tisl'=-,'(1—r/'), wh«e u»-
tarity imposes the restriction 0&g&1. There is a rapid
square root rise for energies just above the inelastic
threshold.

To avoid possible confusion, we conclude this section
by comparing the model just discussed with the models
advanced in criticisms of the work of Oakes and Yang'
by a number of authors. ' These authors found that
resonance poles near inelastic thresholds may occur in
more than one sheet, whereas the case we discuss
involves a conjugate pair of poles on one sheet only.
The difference lies in our having taken the M;, as real
constants, whereas in the model of Dalitz and
Rajasekaran, ' for example, the M;, have a zero associ-
ated with the resonance. The distinction between these
two cases has been made quite explicitly by Dalitz. "

C. Two-Channel Case, One Particle
Unstable: Woolly Cusp

The way to generalize the formulas of the preceding
section to the case where an unstable particle is pro-
duced has been pointed out by Nauenberg and Pais, '
and by Ball, Frazer, and Nauenberg. " To make the
notation more tractable, we deal with a particular
example, namely the two channels zr+X and zr+zr+X
in which the two pions emerge as a p meson. The S~/2
and D3/2 states of the pion-nucleon system are the
interesting ones, since it is those which coup/e to a p—X
state of zero orbital angular momentum. Here, in order
to illustrate the calculations simply, we consider only
the S&/2 state, leaving the more realistic D3/2 situation
to Sec. IV. The only change needed in the preceding
formalism is the replacement of k2 by the appropriate
phase-space factor for a pX state, given in Eq. (3.9) of

s R. J. Oakes and C. N. Yang, Phys. Rev. Letters ll, 1/4 (1963).
D. Amati, Phys. Letters 7, 290 (1963); R. H. Dalitz and G.

Rajasekaran, Phys. Letters 7, 3'73 (1963); R. J. Eden and J. G.
Taylor, Phys. Rev. Letters 11, 516 (1963); M. Nauenberg and
J. C. Nearing, ibid. 12, 63 (1963); M. Ross, ibid. 11, 450 (1963).

'o R. H. Dalitz, Rev. Mod. Phys. 33, 471 (1961). See, also, p.
475, articles (a) and (b).

» J. Ball, W. Frazer, and M, Qauenberg, Phys. Rev. 128, 478
(1962).

with W=s'/'. Actually, ps(s, y~) differs froin Eq. (3.9)
of Ref. 8 in that here the upper limit is ~. As discussed
by Nauenberg and Pais, this corresponds to the absence
of 0 functions in the k; of Eq. (2.4).'

Although the integral over o in Eq. (2.12) is formally
divergent, it is to be interpreted in the sense that only
the contribution of the p-meson peak is to be included.
%e are attempting to include only that portion of the
~xS state in which the two pions are produced as a p
meson.

Nauenberg and Pais have observed that for a narrow
resonance (y,«1), one can reduce ps(s, y,) to a simple
approximate form valid in the region around W= m+m,
by setting o=m, in those factors of (2.12) which are
slowly varying and letting the lower limit go to —~.
One thus obtains

ps(s, y, ) = fks(s, mp')+ih)'/s (2.14)
—f1((k 4+34)1/2+k 2))1/2

+ifsr((ks+3 ) /s —k )j'/s (2.1$)

where 8 is given by

3= f2mm, /(m+m, )jA, (2.16)

and 6 is the half-width of the p meson. Unfortunately,
the narrow-width approximation is not very good for
the p (or even, we find, for the E*),so we shall continue
to use Eq. (2.12), evaluated numerically, in the
examples we present.

From Eq. (2.12), we can easily see that there is a
branch point of ps, and hence of 2";;, at s= (m+2m )'.
Of more interest is the branch point associated with p
production at s= s~, where s,= (m+m, i/zz)', wh—ich can
most easily be identified in Eq. (2.14). The existence

ImW/mlf

-0.2

5.2

- -0.2

K2f=1.0
X

K2f = 2.5

5.3 5.4 ~'
Kof =-1.0

Kpr =-07 Re(W-Mj/mz~

FIG. 6. Path of the pole in sheets II (solid line) and IV (dashed
line) as x2, is varied, with y1 ——1.0 and y2 ——10.0. The path of the
simultaneous complex conjugate pole is not marked. The inelastic
threshold occurs at (W —M)/zzz = zzz, /z/z, =5.4.
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of this threshold was 6rst pointed out by Blankenbecler,
Goldberger, MacDo well, and Treiman, " and has
recently been demonstrated more rigorously within the
framework of S-matrix theory by Zwanziger" and by
Gunson. '4 In the remainder of this section, we shall
discuss the effects of S-matrix poles near this threshold.
The relevant branch cuts of T@(s) are shown in Fig. 7.
The branch point at s=s, lies on the sheet reached by
continuing from the physical region in the vicinity of
s=m, ' down into the lower half-plane. In analogy to
the case discussed in the previous section, we designate
this as sheet III. If one then continues on through the
cut starting at s„one reaches another sheet which we
shall call sheet III'. The fact that there is a conjugate
branch point at (m+m, +zd, )' follows directly from
Eq. (2.12), or from the Schwarz reflection principle.

By analogy with the two-channel, stable-particle
case discussed previously, we shall call a pole lying
near s, in sheet III a pX bound state, and in sheet III'
a pS virtual state. The pX bound-state pole appears in
the physical region as an ordinary resonance since
sheet III is directly accessible from the physical region,
whereas the virtual-state pole produces a large "woolly
cusp, " somewhat different in shape. "

Fxo. 7. The s plane
with the branch
points on sheet III
at s= (m+m, +in)'
arising from the un-
stable p meson.

s PLANE
(m+mz& ih)2

rr rrr r rr rr rr r r rrj/////////////////
(m&m )2 (m&2ml)2-------

(m~m -i~j2

Figure 8 shows how, as the pole on sheet III' moves
towards the branch point at s, and passes into sheet III,
a woolly cusp grows at the inelastic threshold, eventu-
ally reaching the unitarity limit and moving to the left
as a resonance. The inelastic contribution is likewise
smoothed out. The extent of the woolliness of course
depends on the unstable p-meson width, and this is
demonstrated in Fig. 9 where several values of y, where
been considered.

We have thus shown that the pS virtual-state pole
produces a woolly cusp which can be high and narrow
enough to be comparable with more conventional un-
stable particle peaks. But in this case, which we feel is
the only case in which a woolly cusp will attain such
proportions, the woolly cusp is not a phenomenon
essentially different from the ordinary resonance. The
only difference, as we shall discuss in the next section,
is that in the virtual-state case the forces are slightly

"R. Blankenbecler, M. Goldberger, S. MacDowell, and S.
Treiman, Phys. Rev. 123, 692 (1961).» D. Zwanziger, Phys. Rev. 131, 888 (1963).' J. Gunson, University of Birmingham, November 1962
(unpublished) .

» Although we follow Nauenberg and Pais very closely in this
section, one difference should be noted. Our formulas are essen-
tially the same down to their Kq. (2.33) of Ref. 3. Following this
equation, they make an approximation which is invalid in the case
of interest to us here, the virtual-state case.

1.0

FlG. 8. Elastic peaks with
corresponding inelastic con-
tributions for an unstable
p meson with narrow width
y, =0.02. The parameters
are y~ ——1.0, y2 ——10.0, and
x2, ———0.7, —0.1, 0.5, 1.0
for the cases 1, 2, 3, 4,
respectively. In the figure,
peaks 3, 4 at tain their
unitarity limits.

0.8—

Ik,T„(s)l

0.6—

0.4-

0.2—

0-
5.0

/ /
5.2

{W-M) lm„

weaker than in the bound-state case. This would not
seem to be a sufhcient reason for making a fundamental
distinction. A pole which manifests itself as a woolly
cusp certainly seems entitled to be placed on a Regge
trajectory, or included in any other classification scheme
for the elementary particles. Similar remarks apply to
the mechanism proposed by Ball and Frazer in connec-
tion with the higher resonances in pion-nucleon scatter-
ing, ' but we shall defer a detailed discussion to the next
section.

1.0

FrG. 9. Variation of peak
width for different values of
the p-meson width. The peaks
have y~

——1.0, y~
——10.0, x2,=0.5, and y p

=0.01, 0.05, 0.15
for cases 1, 2, 3, respectively.

0.8

s)l

II 06

0.4

0.2

0 I I I

5 0 5.2 5.4 5.6
(W-Mjrm„

'6 L. F. Cook and B. W. Lee, Phys. Rev, 127, 283 and 297
(1962).

III. BOUND AND VIRTUAL STATES IN THE
ND ' FORMALISM

In this section we shall re-examine within the matrix
T=SD ' formalism the bound- and virtual-state poles
discussed in Sec. II. The purpose is to investigate the
motion of the pole as the nature and strength of the
force is varied. The case of a strong force in an off-
diagonal channel is particularly interesting, since it was
pointed out by Hall and Frazer that the force arising
from one-pion exchange in the reaction w+N —+ p+N
is very strong in the mE D3~2 state. This strong force is
undoubtedly inQuential in producing the E&~2* at
1512 MeV.

For the sake of illustration, we shall again outline
our procedure using the channels vr+N and p+N,
taken in D- and S-wave orbital angular momentum
states, respectively. The SD ' equations have been
derived in Ref. 11 and also by Cook and Lee." In
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FIG. 10.Elastic peaks and
corresponding inelastic con-
tributions with only the
oG-diagonal interaction.
Here y, =0.33, 811=0,
R22 ——0, s1~= —40(be ', and
the residue E1~ has the
values 812=3.2 X10', 3.4
X10', 3.8X10' for cases 1,
2, 3, respectively. Peak 3
attains its unitarity limit.

addition, we shall make the greatly simplifying approxi-
mation of representing the left-hand cuts in each
reaction by a single pole term, of the form R;;/($ —s,,)."

Let us start by considering only the eBect of the off-

diagonal interaction R~2, that is, take R11=0=R22. The
equations for S and D reduce to

+11($) R12D21($12)/($ $12)

/12($) R12D22($12)/(S $12) 1

Esl($) R12D11($12)/(S $12)

Xss($) R12Dls($12)/(S $12) )

(3 1)

and

Dii($) = 1—RtsDst($ts) U($,$ts),

Dis($) = —R12D22($12) +($)$12) y

Dst($) = —RlsD11($12)V($)$12) y

Dss($) 1 RlsD12($12) V($&$12) )

(3.2)

where U, V are the integrals

Pi($')co

U($, $,,) =- dS
7I &M~~ 1' (S —S) ($ —S,i)

p, ($')
V($,$,;)=- dS

vr (sr+s ) ($' —S) (S'—S;,)

The phase-space factors p;(s) are taken to be's

1 ki($) ) s

pi($) =-
8~ &$ I

' It may be noted that, in nonrelativistic potential scattering,
a pole term on the left corresponds to an Eckart potential in the
Schrodinger equation LV. Bargmann, Rev. Mod. Phys. 21, 488
(1949)g, For large distances, an Eckart potential behaves as a
Yukawa potential.

's By taking p&(s) of the form indicated, we have introduced
through the 1/s2 factor two extra poles at the origin. This factor
however is necessary in order to make the integrals U(s, s;;)
convergent for a D-wave 7r+E state. These extra poles, which are
required to compensate for the factor 21+1, may be regarded as
representing the "centrifugal barrier" interaction.

1 ''"' k( ) ( —4 -')'-'"
Ps($) =

1.0

0.8-
(8)T,l(S) I~

0.4

02

~rr
0~

~ ~l
4.0 4.5 5.0 5.5 6.0

(w-v j sm,

FrG. 11. Elastic peaks
and corresponding in-
elastic contributions
with yp=0.33, R1g=0,
s12 ———400m~', R1g ——3.2
X104, s22 ——0, and E22
=0, 33, 130 for cases 1,
2, 3, respectively. Peak 3
attains its unitarity
limit.

"For R» suKciently large, namely R12)LU($12)&&2) V(»2P&2)]
the matrix elements T;;(s) develop a spurious pole singularity
which moves in from the left along the negative real s axis as 812
is increased. This corresponds to a "ghost" and not to a bound
state, since its binding energy is initially inhnite and then becomes
smaller as the interaction 812 is taken larger.

1
27p

X
(m '—o)'+y '(o —4m s)s/4o

where ks($, o.) is expressed in (2.13), and a Breit-Wigner
formula has again been used to describe the unstable
spin-1 p meson. %e have mp= 5.4m„, and a p width of
100 MeV yields yp= 0.33.

The above equations were evaluated numerically with
various values of s~2 and R~2, care being taken to avoid
ghosts. "The most noticeable feature coming out of the
calculations is the behavior of the elastic scattering
amplitude Tii($) as the residue R,s is increased: a peak
in

I piT»($) I' gradually develops in the vicinity of the
threshold energy $=(M+m, )'. For values of Ris less
than a certain value R& (with Sis held fixed), none of
the corresponding peaks attain the maximum heights
allowed by unitarity; while for R» greater than R&, the
peaks do reach their unitarity limits and move to the
left with increasing R~~. This is illustrated in Fig. 10,
where we have also drawn the inelastic contributions
pips I

Tls I

The ND ' equations (3.1) and (3.2) can easily be
generalized to incorporate the diagonal terms R~~ and
R22. It was found that a peak for fixed R~2 was not
affected much by R» (taken suKciently small so as not
to give rise to a direct resonance in the Tii amplitude).
On the other hand, R22 had quite an appreciable
inQuence. Increasing R22 has a similar effect to increas-
ing R~2, as indicated in Fig. 11.

These results are analogous to those obtained in
Sec, IIC, and it seems very likely that the peaks in the
above XD ' formulation have a similar origin to those
in Sec. II. The residues R~2 and R22 represent the force
of interaction in the p+X state. As this force gradually
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becomes stronger (increasing Rts, Ass), a pole corre-
sponding to a pS virtual state approaches the branch
point at s= (3f+m, +id)s on sheet III', producing a
woolly cusp in the elastic-scattering cross section.
Simultaneously of course a complex conjugate pole
approaches s= (M+srs, —iA)s. For a suKciently strong
force, the pole moves through to sheet III, forming a
real pS bound state. At all stages, the height and
position of the peak depends on the position of the
pole: the latter in turn depends on the force of inter-
action between the p meson and the nucleon.

The model considered above permits us to gain
further insight into the nature of the phenomenon
investigated by Ball and Frazer. ' These authors found
that a suKciently rapidly rising inelastic amplitude
(such as at the threshold for z+E~ p+Ã) would
produce a peak in the elastic scattering. Equation (3)
of their paper is applicable to the above model as long
as R~~——0. In Fig. 10, case 1, one sees a peak associated
with an inelastic amplitude which rises rapidly to
nearly the unitarity limit. " In the Ball-Frazer treat-
ment, it was not clear whether such a peak was associ-
ated with a pole in the S matrix, whereas in the present
model this is indeed the case. It follows also from Fig. 9
that such a peak is the same phenomenon as the "woolly
cusp" of Nauenberg and Pais, ' since the peak de-
generates into an ordinary cusp as the width of the p
meson is decreased to zero.

Moreover, we believe that these conclusions are quite
general. The formulas we have used in this and the
preceding section should provide an adequate repre-
sentation of the scattering amplitudes in a small region
around the production threshold.

IV. POSSIBLE EXPERIMENTAL MANIFESTATIONS

In the preceding sections, we have demonstrated
how an elastic-scattering process may have a sizeable
peak due to the effect of an inelastic channel when
there is a bound or virtual state of the inelastic channel
in the vicinity of its threshold. Simultaneously, there
is a rapid rise in the cross section for the inelastic
reaction. It is natural to ask therefore whether any of
the many peaks in the experimental data are of this
type. We discuss some possible candidates.

A. The J IICI Threshold Anomaly

It has been observed experimentally that the cross
section for the reaction 7r+7r —+E+E in the I=O,
S-wave state is large just above its threshold": this

' In cases 2 and 3 of Fig. 9, one sees that, as the strength EI2 of
the interaction is increased and the peak moves away from the
pX threshold, the magnitude of the inelastic amplitude just above
threshold decreases. Equation (3) of Ball and Frazer is still valid
for this situation, but the peak is no longer directly associated
with a rapidly rising inelastic cross section.

"A. R. Erwin, G. A. Hoyer, R. H. March, W. D. Walker, and
T. P. Wangler, Phys. Rev. Letters 9, 34 (1962);10, 204(E) (1963);
G. Alexander, O. I. Dahl, L. Jacobs, G. R. KalbQeisch, D. H.
Miller, A. Rittenberg, J. Schwartz, and G. A. Smith, ibid. 10, 460
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FIG. 12. Cross section for J=-',—E p scattering with pI = 1.0,
y~=0.025 and x2„=0.09. Total width of g* is taken as 50 MeV.
Experimental points are those of Bastien et of. (CI) and Sodickson
et af. (0) (Ref. 21) with a background subtraction of 15 mb.

probably corresponds to the situation where there is a
pole close to the EE threshold. Unfortunately, the data
for both this inelastic reaction and elastic xz scattering
at these energies is as yet too inaccurate to determine
whether this effect might be due to a virtual state of the
E&E& system, or a bound state. The two cases are easy
to distinguish if the pole is not too close to the EE
threshold: the bound-state pole appears as a peak at
the pole position in elastic mw scattering; the virtual-
state pole is observable only as a threshold anomaly.

It seems to us that there is no reason to regard. a
virtual state as less fundamental than any other entries
in the list of elementary particles. The only criterion
available to us, on the basis of present theories, for
deciding whether a peak in a cross section should be
called a particle is whether or not it is associated with
a pole in the S matrix. Neither a virtual-state pole nor
an ordinary resonance pole is on the physical sheet,
but this is not usually regarded as a fundamental
distinction.

B. The Ni~s*(1512 MeV)

It was suggested by Ball and Frazer' that the D3~2
second pion-nucleon resonance X~~2* at 1512 MeV
might be associated with the opening of the p-produc-
tion channel. This idea has been developed by several
authors. "'

~ Since the one-pion exchange force in the
off-diagonal channel reaction rr+P~ p+X is very
strong, it seems likely that this mechanism plays an
essential role in the formation of the %~~2*. It is clear
however from the fact that the pE threshold lies around
1690 MeV, that the %~~2* must be a pX bound state,
rather than a pX virtual state. (The distinction between
an ordinary elastic resonance and a bound state of the

(1963);A Bigi, S. Brandt, R. Carrara, W. A. Cooper, A. de Marco,
G. R. MacLeod, Ch. Peyrou, R. Sosnowski, and A. Wroblewski,
Proceedings of the 196Z International Conference on High Energy
Physics (Interscience Publishers, Inc. , New York, 1962), p. 247.

ss V. Teplitz, thesis, University of Maryland, 1962 (unpub-
lished); U. Amaldi, Jr., and F. Selleri, Nuovo Cimento (to be
published).
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inelastic channel is not a sharp one, but the latter
terminology is sometimes useful. )

many valuable discussions during the course of this
work.

C. The Ys*(1815MeV)

In E-meson-nucleon scattering, the I'0* peak at
1815 MeV lies very close to the X*Xthreshold. "More-
over, Sall and, Frazer pointed out that the one-pion
exchange process for X* production is very strong in
the I=O state. These facts suggest that the Ã0~ be
interpreted as a virtual, or just barely bound, state of
the S-wave E*E system. '4" This would require the
Ys to be a Ds/s resonance in the E +p channel.

The quantum numbers of this peak, however, have
not yet been firmly established. The height of about 8
mb above a background of about 15 mb, observed in
elastic E p scattering, requires J&s. The angular
distributions have been measured by Seall et al. and by
Sodickson ef al.P ' who find a large (cosa)' term. This
has led some authors" to conclude that J=—,'; however,
the possibility of a resonant D3~2 combined with back-
ground terms including a small E7/2 seems quite con-
sistent with the data available at present. "

In Fig. 12, we have drawn an approximate fit to the
experimental data (with a 15 mb background sub-
traction) using the model described in Sec. IIC. The
phase-space factors were taken as (kr/gs)' for the
Ds/Q EN channel, and ks(s, o)/Qs for the S-wave E*iV
channel, while a total width of 50 MeV was used for
the X*. The slight asymmetry of the observed peak
lends further support to the hypothesis that the peak
is strongly affected by the X*X threshold. ""
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APPENDIX

In this Appendix, we shall determine where the zeros
of the denominator D(s) lie for the case considered in
Sec. IIB. The general formula for D(s) is

D(&) ( i~2 pcs ) (72 +I) 471~1 ~

Here k; may be written as

where E,= ~k;~, and the angle f), takes values on the
four sheets as defined in (2.11).We examine whether it
is possible for both ReD and ImD to vanish for points
on the four sheets close to the real s axis in the vicinity of
the threshold s2.

Consider, for example, a point on sheet I lying above
the segment s&&s&s2. Its position can be specified by
op=26] 82=+—262, where e~ and e2 are small and
positive. Then, to erst order in e, ,

hi=Et(1+ist),
ks sE2(1 ls2) q'

and D(s) reduces to

D(s) =L(Es—zs,) (7s+eiEi)+ ei7tEt —esErEsf
+sE(+sr 71)E1 (Ei+e272)E2].

We see that ImD can vanish only if x2„&p&. Taking
this to be the case, and substituting for E2 in ReD,
we obtain

ReD= (—7t7sEt
e2[72 assr+El (scsr 71)j}/(El+ ss72) .

Obviously for x2„)p&, ReD cannot vanish, and thus it
is impossible to satisfy both ReD=0, ImD= 0.

Likewise, one can show that D(s) does not have a
zero below the segment s~&s&s2 on sheet I.

Similar investigations may be carried out for points
on the other three sheets. It may be easily deduced that
poles close to the real axis in the region between the
thresholds are impossible in sheet III as well as sheet I.
However, for x~„&0, there is a pole in sheet IV. As z2„
becomes positive, it can be shown that this pole
approaches the lower end of the inelastic cut, crosses
over it at a point just above the branch point s2 and
so passes into sheet II."This is illustrated in Fig. 6 of
the text. Unitarity is not violated in this process since,
as seen in Fig. 4(b), a pole can move between sheet IV
and sheet II without appearing on the physical sheet I.

The authors wish to thank M. Nauenberg for valuable
discussions and correspondence on this point.


