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FOREWORD

These notes are complementary to the MATHEMATICA notebook that can be downloaded
from the Workshop webpage: http://www.indiana.edu/ jpac/lectures2017.html. You are free
to modify and distribute this document and the MATHEMATICA notebook as long as you
acknowledge the original authorship.
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1 SINGLE CHANNEL

m1 +m2 → m1 +m2

S = I +2iC`(s)ϕ`(s) = I +2iτ(s)t`(s) = I +2iτ(s)B`(s)ϕ`(s) (1.1)

where t`(s) is the amplitude and ϕ`(s) is the reduced amplitude, which is analytical in both
the complex s and complex angular momentum planes. We define

sth = (m1 +m2)2 , [threshold] (1.2a)

q2(s) = m1m2

sth
[s − sth] , ["momentum" squared] (1.2b)

q(s) =
√

q2(s), ["momentum"] (1.2c)

τ(s) = q(s)

q0
, [phase space] (1.2d)

B`(s) =
(

q2(s)

q2
0 +q2(s)

)`
, [angular momentum barrier] (1.2e)

C`(s) = τ(s)B`(s), [phase space with angular momentum barrier] (1.2f)

where, for convenience, q0 = 1 GeV and m2
1, m2

2 and s are in units of GeV2. Notice that B`(s)
is a model for the angular momentum barrier and relates to the lefthand cut. Our definition
of "momentum" simplifies the model and allows us to compute everything analytically The
unitarity relation reads

Discϕ`(s) ≡ϕ` (s + i 0)−ϕ` (s − i 0) = 2i τ(s + i 0) B`(s + i 0)ϕ` (s + i 0) ϕ` (s − i 0) . (1.3)

Think about why τ(s) and B`(s) are defined at s + i 0.1

1.1 PHASE SPACE: ANALYTIC CONTINUATION

The the analytically continued phase space ρ`(s) is defined through the once substracted
dispersion relation

ρ`(s) =b(sth)+ s − sth

π

∫ ∞

sth

d s′
C`(s′)

(s′− s) (s′− sth)
(1.4a)

=b(sth)+ s − sth

π

∫ ∞

sth

d s′
τ(s′)B`(s′)

(s′− s) (s′− sth)
(1.4b)

=b(sth)+ s − sth

π
PV

∫ ∞

sth

d s′
τ(s′)B`(s′)

(s′− s) (s′− sth)
+ i τ(s)B`(s). (1.4c)

1Solution: By convention we define the physical amplitude at s + i 0, hence the kinematical factors τ(s) and B`(s)
have to be computed consistently with that convention. You can choose a different convention, but be sure to
be consistent!
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Where b(sth) is the substraction constant and PV stands for principal value. Because the
substraction is performed at sth , b(sth) = 0. This integral can be computed analytically

ρ`(s) =−
a`+1/2

k (s − sk )`
p

sk − s

[1+ak (s − sk )]`
+ Γ(`+ 1

2 )p
πΓ(`+1)

×
(
[1+ak (s − sk )] 2F1

[
1,`+ 1

2
,−1

2
,

1

ak (sk − s)

]
− [3+2`+ak (s − sk )] 2F1

[
1,`+ 1

2
,

1

2
,

1

ak (sk − s)

])
,

(1.5)

where sk = sth for channel k and ak = m1m2/sth (this equation is prepared for coupled
channels case). Notice that our ρ`(s) is analytical in both the s complex plane and the `
complex plane. Equation (1.5) is valid for

[sk ≥ℜ{s}∪ℑ{s} 6= 0]∩ℜ{`} >−1

2
.

1.2 SINGLE POLE AMPLITUDE

Let us build a very simple model for the amplitude. We assume that the amplitude is dominated
everywhere by a single pole. Then the amplitude reads

t`(s) =B`(s)ϕ`(s) = B`(s)
β

`−α(s)
, (1.6)

ϕ`(s) = β

`−α(s)
, (1.7)

where β is a real number and α(s) is the Regge trajectory. If we use the single channel unitarity
relation in Eq. (1.3) we obtain (do the derivation)

1

2i
[α(s + i 0)−α(s − i 0)] =ℑ{α(s)} =C`(s)β, (1.8)

So, if we assume a linear Regge trajectory we obtain

α(s) =α0 +α′s + iℑ{α(s)} =α0 +α′s −βρ`(s), (1.9)

where α0 and α′ are two real numbers and we have analytically continued C`(S) → ρ`(s).
Please notice that a α0 +α′s is a linear relation, but unitarity through the phase space ρ`(s)
breaks the linearity. Actually, Regge trajectories are never linear. Hence the reduced amplitude
reads

ϕ`(s) = β

`−α0 −α′s −βρ`(s)
. (1.10)

Please notice how this amplitude looks a lot like a Breit-Wigner.
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Now we need to analytically continue the reduced amplitude ϕ`(s) to the 2nd Riemann
sheet [ϕI I

`
(s)]. That is straightforward using the unitarity relation in Eq. (1.3) if we remember

that ϕI I
`

(s − i 0) =ϕ`(s + i 0):

ϕ` (s + i 0)−ϕ` (s − i 0) =2i C`(s)ϕ` (s + i 0) ϕ` (s − i 0) , (1.11)

ϕI I
` (s − i 0)−ϕ` (s − i 0) =2i C`(s)ϕI I

` (s − i 0) ϕ` (s − i 0) , (1.12)

and because all the energy dependence is written as s − i 0 we substitute s − i 0 → s and we
isolate ϕI I

`
(s) obtaining

ϕI I
` (s) = ϕ`(s)

1−2i C`(s)ϕ`(s)
, (1.13)

and we have the 2nd Riemann sheet reduced amplitude ϕI I
`

(s) written in terms of the 1st
Riemann sheet reduced amplitude ϕ`(s). We substitute ϕ`(s) and we obtain

ϕI I
` (s) = β

`−α(s)−2i βC`(s)
(1.14)

Notice that C`(S) has the square-root cut to the left, so C`(s + i 0) =C`(s − i 0).

1.3 REGGE TRAJECTORIES

1.3.1 MOVING POLES IN THE s COMPLEX PLANE

We can track the Regge trajectory in the complex s plane changing the value of ` with the
restrictions ` ∈R and `>−1

2 and tracking the s values that are solution to

`−α(s)−2i βC`(s) = 0. (1.15)

This gives us the Regge trajectory. Keep in mind that the only values that we can measure
are the physical `= 0,1,2, . . .

1.3.2 MOVING POLES IN THE COMPLEX ANGULAR MOMENTUM PLANE

In the same way, we can track down the movement of the poles (a.k.a. Regge trajectory) in the
complex angular momentum plane through the solution of

¯̀−α(s) = 0, (1.16)

where ¯̀≡ `−2i βC`(s).

2 COUPLED CHANNELS

Every time a new channel opens, e.g. we have ππ→ ππ and we increase the energy of the
incoming π until the channel ππ→ K K̄ opens, 2 new Riemann sheets open, because a new
unitarity cut joins the party.
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The considered processes are

1+ 1̄ → 1+ 1̄ (2.1a)

1+ 1̄ → 2+ 2̄ (2.1b)

2+ 2̄ → 2+ 2̄ (2.1c)

2.1 UNITARITY RELATIONS

For the coupled channel case, the unitarity relations read

ϕ11
` (s + i 0)−ϕ11

` (s − i 0) =2i τ1 (s)B 11
` (s) ϕ11

` (s − i 0) ϕ11
` (s + i 0)

+2i τ2 (s)B 22
` (s) ϕ12

` (s − i 0) ϕ12
` (s + i 0)

(2.2a)

ϕ12
` (s + i 0)−ϕ12

` (s − i 0) =2i τ1 (s)B 11
` (s) ϕ11

` (s − i 0) ϕ12
` (s + i 0)

+2i τ2 (s)B 22
` (s) ϕ12

` (s − i 0) ϕ22
` (s + i 0)

(2.2b)

ϕ22
` (s + i 0)−ϕ22

` (s − i 0) =2i τ1 (s)B 11
` (s) ϕ12

` (s − i 0) ϕ12
` (s + i 0)

+2i τ2 (s)B 22
` (s) ϕ22

` (s − i 0) ϕ22
` (s + i 0)

(2.2c)

Below the second threshold s2 = (m2 +m2)2, τ2(s) = 0 so the unitarity relations reduce to

ϕ11
` (s + i 0)−ϕ11

` (s − i 0) = 2i τ1 (s)B 11
` (s) ϕ11

` (s − i 0) ϕ11
` (s + i 0) (2.3a)

ϕ12
` (s + i 0)−ϕ12

` (s − i 0) = 2i τ1 (s)B 11
` (s) ϕ11

` (s − i 0) ϕ12
` (s + i 0) (2.3b)

ϕ22
` (s + i 0)−ϕ22

` (s − i 0) = 2i τ1 (s)B 11
` (s) ϕ12

` (s − i 0) ϕ12
` (s + i 0) (2.3c)

where τ j (s) = q j (s)
q0

= m2
j

s j

(
s − s j

)
, s j = 4m2

j , B j j
`

(s) =
(

q2
j (s)

q0+q2
j (s)

)`
and C j j

`
= τ j (s)B j j

`
(s).

2.2 COUPLED CHANNEL AMPLITUDES

The amplitudes can be written

ϕ11
` (s) = β11

`−α(s)
, (2.4a)

ϕ12
` (s) = β12

`−α(s)
, (2.4b)

ϕ22
` (s) = β22

`−α(s)
. (2.4c)

We substitute in Eq. (2.2) and we obtain three equation for ℑ{α(s)}

ℑ{α(s)} =C 11
` β11 +C 22

` β
2
12/β11, (2.5a)

ℑ{α(s)} =C 11
` β11 +C 22

` β22, (2.5b)

ℑ{α(s)} =C 11
` β

2
12/β22 +C 22

` β22, (2.5c)

5



which reduce to a single unitarity condition

ℑ{α(s)} =C 11
` (s)β11 + C 22

` (s)β22, (2.6)

and one relation among the β residues

β11β22 =β2
12, (2.7)

which is pole factorization (valid even if β has an energy dependence).

2.3 AMPLITUDE IN THE 2ND RIEMANN SHEET

It is straightforward to write the amplitudes in the 2nd Riemann sheet following Eqs. (2.3).
They read

ϕ11,I I
`

(s) =
ϕ11
`

(s)

1−2iC 11
`

(s)ϕ11
`

(s)
= β11s

`−α(s)−2iC 11
`

(s)β11
, (2.8a)

ϕ12,I I
`

(s) =
ϕ12
`

(s)

1−2iC 11
`

(s)ϕ11
`

(s)
= β12s

`−α(s)−2iC 11
`

(s)β11
, (2.8b)

ϕ22,I I
`

(s) =ϕ22
` (s)+2iC 11

` (s)

[
ϕ12
`

(s)
]2

1−2iC 11
`

(s)ϕ11
`

(s)
= β22s

`−α(s)−2iC 11
`

(s)β11
, (2.8c)

and you can see that all of them have the 2nd Riemann sheet poles at the same location.
Remember: poles are universal; in a given Riemann sheet, all channels have the poles at the
same locations.

2.4 REGGE TRAJECTORY

Due to unitarity and coupled channels the Regge trajectory is modified –see Eq. (2.6). It reads

α (s) =α0 +α′s +ρ11
` (s)β11 + ρ22

` (s)β22 (2.9)

where ρ11
`

(s) and ρ22
`

(s) are the analytical continuations of C 11
`

(s) and C 22
`

(s) respectively.
Then, the Regge trajectory (poles in the 2nd Riemann sheet)is given by

`−α(s)−2iβ11C 11
` (s) = 0 (2.10)

or explicitly
`−α0 −α′s −ρ11

` (s)β11 − ρ22
` (s)β22 −2iβ11C`(s) = 0 (2.11)

We can play the same trick as before and define

¯̀≡ `−2iβ11C`(s) (2.12)

so we get moving poles in the complex ` plane

¯̀−α(s) = 0 (2.13)
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