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Complex algebra and geometric interpretation 

Differentiation, Cauchy relations, harmonic functions
Elementary functions, domains, maps 
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Conditions for singularities of integral transforms 



History and motivation
Positive integers: 5=3+2 ok but 3-5 is unaccounted for

Were sufficient for about 2000y, Geeks did not use negatives and even after 0 was 
introduced by Brahmagupta ~628 they were not used until development of axiomatic algebra

Fractional numbers: 3/2 ok but x2=2 unaccounted for
Positive integers and fractions were the pillars of Greek's natural number system, who 
assumed they are continuously distributed. In1872 Richard Dedekind showed that they 
"leave holes" for irrational numbers.

Imaginary numbers: x2 = -1
Introduced by Girolano Cardano in 1545, Leonhard Euler introduced "i" in eighteen century, in 
1799 Friedrich Gauss introduced 2dim geometric interpretation, which was abandoned till 
reintroduced in 1806 by Robert Argand. Complex calculus was pioneered by Augustin 
Cauchy in nineteen century.

Physical quantities are Real.
However, they often come in pairs, e.g. amplitude and phase that have simple representation 
in terms of complex numbers. In such cases complex numbers simplify how physical laws 
are expressed and manipulated.



Complex algebra 



z1 = a + b i, z2 = c + d i 

z1 + z2  = (a +b) + (b + d) i

z1 * z2  = (a c - b d) + (a d + b c) i
z1  = |z1| cosϕ1 + |z1| i sinϕ1 

Re z

Im z

z1
z2

z1 + z2

|z1|
|z2|

ϕ1
ϕ2ϕ1 + ϕ2

|z1*z2|

complex numbers 
= field (+, . and 
distribution law) 
z(u +w) = zu + zw

|z1| =
p

a2 + b2 �1 = arctan
b

a

De Moivre’s formula zn = |z|n(cosn�+ i sinn�)



Complex functions: definitions  



Complex functions 
z = a+ bi ! f(z) = Ref(z) + iImf(z)

Elementary functions: you can also think of them as 
maps of one complex plane (z) to another (f(z)):  z→ f(z)

Imf(z)

Ref(z)
Rez

Imz

z ! f(z)

To define a function we can use the algebraic relations e.g
f(z) =

p
z z = f(z)⇥ f(z)is such that 
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Complex functions (and complex calculus) : Continuity 
imposes very strong conditions of functions (much stronger 
than in the case of real variables) 

“Smooth” (holomorphic, analytic) functions are 
“boring” all “action” is in the singularities. 

Singularities determine functions “far away” from 
location of the singularity (e.g. charge determines 
potentials) 

Physical observables are functions of real 
parameters, however physics law can be 
generalized to complex domains and become 
“smooth” but  any “constraint” results in singularities.  



Complex functions: branches   



exp(z) is periodic! 

ez+2⇡i = ez

x = Rez

y = Imz

y0
y0 + 2⇡

z ! ez

one needs to be careful when defining its inverse i.e. logarithm:                  
the z-plane can be mapped back in many different ways

z ! ez = eRez+iImz
= eRez

(cos Imz + i sin Imz)

(exp of complex argument has the same 
algebraic properties as exp of real arg., e.g. 
exp(z1z2) = exp(z1) exp(z2) )

ei� = [1� �2

2
+ · · · ] + i[�� �3

3!
+ · · · ] = cos�+ i sin�



similar issue with the √z

z = |z|ei�

� = [0, 2⇡)

p
z ⌘

p
|z|ei

�
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z
p
z =

p
|z|ei

�
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p
|z|ei

�
2 = |z|ei�

� = [�⇡,⇡)using 

or

gives different results for  
p
z



Principal branch: y0 = -π so that - π ≤ arg z < π

log: maps C-{0} → C with range defined y0 ≤ Im log z < y0 
+2π: logz = log|z| + i arg z  

z = |z|ei(�⇡+✏)

z = |z|ei(+⇡�✏)

z ! log z

log is discontinuous on its branch line and z=0     
is the branch point 

log |z|+ i(⇡ � ✏)

log |z|� i(⇡ � ✏)

(many “log”-functions depending on 
the choice of y0)



Case A: -π ≤Im log z < π 

z = |z|ei(�⇡+✏)

z = |z|ei(+⇡�✏)

z ! log z

log |z|+ i(⇡ � ✏)

log |z|� i(⇡ � ✏)

Case B: 0 ≤Im log z< 2 π 

z ! log z

log |z|+ i✏
log |z|+ i(2⇡ � ✏)

z = |z|

z = |z|e�i✏



Powers: ab = eb log(a) (for chosen branch of log)

z = |z|ei(�⇡+✏)

z = |z|ei(+⇡�✏)

z !
p
z

p
|z|e+i⇡

2

p
|z|e�i⇡

2

for example: using the principal branch (- π ≤ arg z < π)

p
z = e

1
2 log(z) =

p
|z|e[i

argz
2 +(mod i⇡)]



z !
p
z

... or using the [0,2π) branch 

z = |z|ei(0+✏)

z = |z|ei(2⇡�✏)

p
|z|

�
p

|z|



function has different value when 
evaluated above vs below a branch line:
lim
�z!0

[f(z + �z)� f(z � �z)] ⌘ Dis. f(z) 6= 0

z !
p
z

z = |z|ei(0+✏)

z = |z|ei(2⇡�✏)

p
|z|

�
p

|z|

Dis.

p
z = 2

p
z for z real and positive



the key is to define one-to-one mapping which 
requires specification of branch lines

Composite functions 

z !
p
z2 � 1

z = �1 z = +1

for example                         has two branch points and 
one needs to define orientation of two branch lines 



A. z !
p
z2 � 1

p
z2 � 1 =

p
r1r2e

i
�1+�2

2

�1 2 [�⇡,⇡)

�2 2 [�⇡,⇡)

ϕ1ϕ2
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and use principal branches 
=

p
z � 1

p
z + 1

z � 1
z + 1

r1, r2 = |z � 1|, |z + 1|



B. z !
p
z2 � 1

p
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p
r1r2e

i
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r1

z
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p
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p
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These two examples define different complex functions 
which on the real axis relate to the real function  

Which one to use depends on a specific application 
(more later) 

p
x

2 � 1±



Complex functions: Riemann sheets



 Is there a definition of a multivalued function which 
does not require branch cuts. (Georg Riemann, PhD. 1851)  

Example: z→log z

Re

b

a

b

a

1st sheet

d

c

b c

a

Im

d

2nd sheet

When z moves from a to b arg (Im log) changes from 0 to 2π. 
The 2nd Riemann sheet is a copy of the z-plane attached (“glued”) at the branch line, such 
that c (on the 2nd sheet, infinitesimally below real axis) is close to b (on the 1st sheet, just 

above the real axis).



Riemann sheet for z → √z 

Riemann construction: change the “shape” (Riemann 
sheet) of the “input” complex plane z, so that f(z) is 

single-valued when defined on this modified “shape”



Examples:

show that  cos z =

1

2

has only real solutions

Find all values of ii

Show that under z ➞ sin(z) lines parallel to the real axis 
are mapped to ellipses and that lines parallel the the 
imaginary axis are mapped to hyperbolas 

show that sin(z1 + z2) = sinz1 cosz2 + sinz2 cosz1



Complex Calculus:



Preliminaries:
Definitions (continuity, limits) similar to functions of real 
variables, except that variations “Δ” can be taken anywhere 
along paths in the complex plane

e.g. continuity: f(z) is continuous at z0 if lim
z!z0

f(z) = f(z0)

f(z) is a function of two real variables since z=x + iy.  
However, f(z) refers to a function of z and not of independent  
variables. The whole point is to explore the consequences of  
this “unique” combination of x and y “coupled” by i

z ! f(z)

Rez

Imz z0

z

Imf(z)

Ref(z)

f(z0)

f(z)

�z = z � z0

�f = f(z)� f(z0)



Differentiation: f(z) is differentiable (holomorphic) if  
                                                                                            exists                                               

lim
z!z0

f(z)� f(z0)

z � z0
⌘ f 0(z0)

write z = x + iy and f(z) as f(z) = u(x,y) + i v(x,y). Since the procedure of taking the limit in 
definition of f’(z0) is independent of the path taken in z→z0, you can take two independent 
paths e.g. path 1: x = x0 + ε, y = y0 and path 2:  x = x0, y = y + ε: Cauchy relations: 

z0

z

z

@u

@x

=
@v

@y

,

@u

@y

= �@v

@x

This implies Δu = Δv = 0 
where Δ is 2-dim Laplacian  
u,v : harmonic functions

Infinity: on the real axis there are two (axis is oriented) but on the complex plane 
(calculus)  there is no preferred direction: There is only ONE infinity (somewhat counter 
intuitive) w = 1/z

df

dz z=1
= � 1

w2

df

dww=0



Stereographic  projection S2 → (x,y) = z 

North pole is mapped at the point at infinity 



Applications:  
Explore the connection between harmonic functions and 

holomorphic functions 

Harmonic functions represent solutions to physical problems relating “flows” to “sources”  
  
e.g. mass density vs. velocity flux,  
       temperature vs heat flow,  
       electric charge vs electric field  
       magnetic charge (monopole)  vs magnetic field  
       etc. 



Heat flow due to Temperature gradient 

V olume

@ V olume

� d

dt

Z
Energy density dV

T1    >   T2V

∂V
iso

the
rm

s
heat flow 
direction = - 
gradient of 
temperature 

Energy density = ⇢cT

Temperature gradient = ~rT

Gauss’s law:

Z

V

~r · ~fdV =

Z

@V

~f · d~S

= Conductivity

Z
�Temperature gradient · d~S

⇢c
@T

@t
= �T if T is kept constant in time, then spacial 

distribution is a harmonic function ΔT=0

For a given isotherm, spacial distribution of temperature can be found by “guessing” a 
complex function whose real (or imaginary) part has the prescribed value on a line 
segment (isotherm) 



Electric charge vs Electric field (or potential) 

ϕ1    >   ϕ2V

∂V

eq
uip

ote
nti

al

E

Gauss’s law:
Z

V

~r · ~fdV =

Z

@V

~f · d~S

V olume

@ V olume

Z
Charge density dV = ✏0

Z
Electric field · d~S

Electric field = � Potential gradient = �~r�

�� = � ⇢

✏0
“guess” complex function to represent ϕ 
any holomorphic function solves some 
problem in electrostatics e.g.  
f(z) = z

2 = (x2 � y

2)� 2ixy



Z

S1

~r log r · d~S =

Z 2⇡

0
d�

~r · ~n
r

= 2⇡ =

Z
dV� log r =

Z

S2

dxdy� log r

� log r = 2⇡�2(~r)

Potential of a single charge in 2 dim

f(z) = log z: holomorphic 
except at z=0

~r log r =

ri

r2



Intermezzo: Magnetic monopoles  



EM Fields in a tensor from  

Maxwell equations 

... but cannot introduce EM potentials in a standard way  
(divergence of H no longer vanishes) 

adding magnetic charges and currents makes equations more symmetric !!

00



Instead of isolated 
charge, think of a very 
long magnet/solenoid N

S

Hstring

Hpole

~A = � g

4⇡
~r⇥

Z

L

d~R

|~r � ~R|

~H ⌘ ~H
pole

� ~H
string

~r ~H = 0

~H
pole

= ~r⇥ ~A+ ~H
string

Since                it is possible 
to introduce A  associated with H 

~H
pole

=
g

4⇡

~r

r3

~Hstring = g

Z

L
�(~r � ~R) d~RFor infinitesimally thin solenoid 

(“string”) its magnetic field is along 
its direction



Monopoles in QCD ~B ! ~Ba, a = 1, · · ·N2
c � 1 QCD : Nc = 3

(simplify using Nc=2)

Maxwell (YM) equations are nonlinear 

Bi = @jAk � @kAj ! Ba
i = @jA

a
k � @kA

a
j � ✏abc✏ijkA

b
jA

c
k

@⌫F a
⌫µ + ✏abcA

b
⌫F

c
µ⌫ = 0

and even in absence of external source have monopole-
like solutions (Wu-Yang monopoles)  

B

a
i ⇠ xix

a

r

4

Unfortunately they are singular (infinite energy (YM 
equations have no non-trivial classical solutions with finite 
energy (eg. solitons) or classical glueballs do not exists 
(Coleman) 

But lattice “regularizes” short distances: and monopoles 
can be fund in lattice simulations



QCD on the lattice : unbound vector potential 
becomes replaced by an angular variable:

n n+ 1

” Link Variable ” = ei
R n+1
n d~l· ~A ! eiaA 2 SU(Nc)

Here A = Aa Ta  with T generators of SU(Nc) but consider a simpler 
theory: QED in 2 dim (Nc =0 and Aa → A = vector potential). Then at 
each lattice link one defines exp(i a A (along the link)) complex 
number of unit length. Consider even simpler model, by replacing a 
vector A by a scalar exp(i a A) → exp( i a ϕ).The simplest interaction 
which a) couples next-neighbor (eg. local in continuum limit) and b) 
preserves the angular nature of a ϕ is of the type

1� cos(a�
x

� a�
x+�

)

Z =

Z
⇡

�⇡

⇧

x

d�
x

2⇡
exp(��

X

x,�

[1� cos(�
x

� �
x,�

)]

Partition function is then given by:

x

x+ 1̂

x+ 2̂

�
x+1̂�2̂

configurations  are as important  
�
x+�

⇠ +⇡ � ✏

�
x

⇠ �⇡ + ✏

�
x+�

⇠ �✏

�
x

⇠ +✏

There could give “fracture lines” 
between lattice sites across 
which ϕ changes by 2π

H =

1

a2

X

x,�

[1� cos(a�
x

� a�
x+�

)] ! 1

2

a2
X

x,�

(�
x

� �
x+�

)

2

a2
! 1

2

Z
dxdy(@

i

�)2



low temperature (large -β) high temperature (small-β)

ϕ ~+π ϕ ~-π
- π < ϕ < +π

system is disordered system is ordered 



region of contribution to the action 
 due to “fraction”

looks like a monopole with a string !

� =

NX

a=1

qa Im log(z � za)

N = 1 q = 1 z = �1 + 0i

String: - ∞ < x < -1  

In the continuum limit                                             and minimum 

of the energy satisfies Δϕ = 0. Once we have introduced a set of 
monopoles (in 2dim called vortices) placed at points xa with 
strength qa it means that we have introduced a multivalued ϕ which 
changes by 2πqa every time we go around a vortex. In this case the 
harmonic function solution to the 2dim Laplace equation has the 
form  

with za = xa + iya being  
the location of the vortex

N = 2 q1 = 1 z1 = �1 + 0i
q2 = �1 z2 = +1 + 0i

String: - 1< x < +1  

+⇡

�⇡

H =
1

2

Z
dxdy(@i�)

2



QCD: Confinement due to 
percolating (center) vortices 



Complex calculus:  
Complex integrals



Real calculus  ∫ab dx f(x)

Complex calculus  ∫C dz f(z) C = curve in z-plane



Z

C
f(z)dz =

Z 1

t=0
f(z(t))

dz

dt
dt = lim

|�zn|!0,N!1

NX

n=1

f(an)�zn

Line integrals: given a curve C in the complex plane 
parametrized by a real  number 0≤ t ≤1, t →z(t) = x(t) + iy(t) 
the integral of f over C is defined by 

Δzn  = zn - zn-1

C

z(1) = zNz(0) = z0

zn-1
znan

note: this is an ordered path 
We can estimate the integral: if |f(z)|≤M > 0 along C then 

|
Z

C
f(z)dz|  Ms where s it the length 

of the path 

Cauchy-Goursat theorem: If f(z) is holomorphic in some 
region G and C is a closed contour (consisting of 
continuous or discontinuous cycles, double cycles, etc.) 
then I

f(z)dz = 0 (converse is also true) 



Proof: according to Stoke’s theorem Z

S
(~r⇥ ~A) · d~S =

I

C

~A · d~l

~B ⌘ ~r⇥ ~A(e.g. Magnetic flux                   over open surfaces = 
circulation of vector potential over its boundary)                      ~A d~l

d~S
~B

C
S

Z

S

✓
@A

y

@x

� @A

x

@y

◆
dxdy =

I
(A

x

dx+A

y

dy)

use: Ay = u(x,y), Ax = v(x,y) then                    and  l.h.s=0 @A

y

@x

=
@A

x

@yI
(vdx+ udy) = 0

use: Ay =v(x,y), Ax = -u(x,y) then                    and  l.h.s=0 @A

y

@x

=
@A

x

@yI
(�udx+ vdy) = 0

(Cauchy relation for u,v)

I
f(z)dz =

I
[u+ iv][dx+ idy] =

I
[udx� vdy] + i

I
[vdx+ udy] = 0

z



The Cauchy integral formula: if f(z) holomorphic in G, z0 ∈ G, 
and C a closed curve (cycle), which goes around z0 once in 
positive (counterclockwise) direction, then  

f(z0) =
1

2⇡i

I

C

f(z)dz

z � z0

z0 C

G

The Cauchy formula solves a boundary-value problem. The values of the function on C 
determine its value in the interior. There is no analogy in the theory of real functions. It is 
related though to the uniqueness of the Dirichlet boundary-value problem for harmonic 
functions (in 2dim) 



Proof:

I

C0

f(z)dz

z � z0
= 0

z0 Cε

C’ = Cε + L1 + L2 + R

ε

z0 C L1

L2

R

ε

limε→0 Cε = C limε→0 L1 = -L2

Z

R

f(z)dz

z � z0
= f(z0)

Z

R

dz

z � z0
+

Z

R

f(z)� f(z0)

z � z0
dz

ε→0:
z � z0 = ✏ei�

�2⇡i O(✏) ! 0

�2⇡if(z0) +

Z

C
= 0

0 =

I

C0
= lim

✏!0

Z

L1

+

Z

L2

+

Z

R
+

Z

C✏

�
= lim

✏!0

Z

R
+

Z

C✏



(very) useful formula 

I =

Z b

a
dx

f(x)

x� c� i✏

a bc+iε

1

x� c� i✏

=
x� c+ i✏

(x� c)2 + ✏

2

1

x� c� i✏

=
x� c+ i✏

(x� c)2 + ✏

2
= P.V.

1

x� c

+
i✏

(x� c)2 + ✏

2

I = P.V.I + i⇡f(c)



Examples 

Z

�
dz

Z

�
zndz

Z

�

dz

z

Z

�0

dz

z

Z

�

dz

z2

γ = unit circle

γ’ = unit square

Derivatives: f(z)g(z) 

Integrals: 

of elementary functions (may) have singularities  



Series Expansion: 

Series expansion approximates the function near a point.

Complex functions are determined by their singularities and series  
expansion will also “probe” their singularity structure.  

Cauchy formula establishes existence of series representation e



 Holomorphic functions are “very smooth”, e.g. existence of 1st derivative implies 
existence of infinite number of derivatives. This is not true for real functions, e.g. 

f(x) =

⇢
x

2
for x � 0

�x

2
for x < 0

f

0(x) = 2|x| so f’(0) = 0 but 
  f’’(0) does not exist 

f(x) =

⇢
e

� 1
x

2
for x 6= 0

0 for x = 0

all derivative vanish at x=0, f(k)(0) = 0, and 
the resulting (trivial) Taylor series does not 
reproduce the function

Hadamard’s formula: The sum of powers ∑ an zn defines a 
holomorphic function inside the circle of convergence R 
given by

1

R
= limn!1|an|1/n



this is the Taylor series 

f(z) =
1

2⇡i

I
f(z0)dz0

z0 � z
=

1

2⇡i

I
f(z0)

z0 � a

1

1� z�a
z0�a

dz0

for |z’-a| > |z-a| we have:   

z

C
z’

a
z-a

z’-a

or integrating each term :

f(z) =
1

2⇡i

I
f(z0)

z0 � a


1 +

z � a

z0 � a
+

(z � a)2

(z0 � a)2
+ · · ·

�

f(z) = f(a) + f 0(a)(z � a) +
1

2!
f 00(a)(z � a)2 + · · ·

If f(z) is holomorphic in G, a ∈ G and C is a cycle:



 If f(z) is holomorphic between two circles C1 and C2 and z is 
a point inside the ring, and a is a point inside the small circle 
C1 then  

the following expansions are convergent on C2 and C1 respectively

z

C1 a

C2 1

z0 � z
=

1

z0 � a


1 +

z � a

z0 � a
+ · · ·

�

= � 1

z � a


1 +

z0 � a

z � a
+ · · ·

�

f(z) =
1

2⇡i

✓I

C1

f(z0)dz0

z0 � z
�

I

C2

f(z0)dz0

z0 � z

◆

we have:

A⌫ =
1

2⇡i

I

C2

f(z0)dz0

(z0 � a)⌫+1 ⌫ � 0

A⌫ =
1

2⇡i

I

C1

f(z0)dz0

(z0 � a)⌫+1 ⌫ < 0

An =
f (n)(a)

n!
, (n = ⌫ � 0)

on C2 

on C1 

This is Laurent series

f(z) =
1X

⌫=�1
A⌫(z � a)⌫ = · · · A�2

(z � a)2
+

A�1

z � a
+A0 +A1(z � a) +A2(z � a)2 + · · ·



Classification of singularities ; What happens at a ? 
Assume radius of C1 is 0, i.e. f(z) is holomorphic in C2 -{a} 

called “deleted neighborhood” of a

z
a

C2

z

C1 a

C2

f(z) =
1X

⌫=�1
A⌫(z � a)⌫ =

A�m

(z � a)m
+

A�m+1

(z � a)m�1
+ · · ·

X

n=0

An(z � a)n

 2 π i A-1 = ∮ dz f(z)

point a is called a pole of order m, if m=∞ it is called an 
essential singularity, if m=1 it is called a simple pole (or just 
a pole). A-1 plays a special role since 

A-1 is called the residue.



Examples:

z
C1 : |z|=1

a=0

C2: |z| = R

since f(z) is holomorphic for |z| > 1,R can be chosen as 
large as one pleases. This implies An must be 0 for all n 
> 0 (otherwise ∑ An zn would diverge for large |z| = R, 
contrary to being holomorphic)   

For |z| > 1 Laurent series is 

f(z) =
1

z(z � 1)
=

1

z


1

z

1

1� 1
z

�
=

1

z2
+

1

z3
· · ·

f(z) =
1

z(z � 1)

a=0 is NOT essential singularity because G is not a “deleted 
neighborhood” (radius of C1  is finite)



Example:

z
C1 → 0

a=0

C2: |z| = 1

For 0< |z| < 1 G = “deleted neighborhood” of a=0 and 
the  Laurent series is 

f(z) =
1

z(z � 1)

this shows (as expected) that a=0 is a simple 
pole with residue A-1 = -1 

f(z) =
1

z(z � 1)
= �1

z

�
1 + z + z2 + · · ·

�
= �1

z
� 1� z � z2 · · ·



Application of 

 2 π i A-1 = ∮ dz f(z)

This is likely the most common used consequence of complex calculus, 
since it can be also applied to compute real integrals  



Suppose you want to compute  

f(z) =
eirz

z2 +m2

with m,r > 0 

f(z = Rei� with R ! 1) ! 0 (very fast)

R ➞∞ zp = im
�1 +1

C1

f(z ⇠ zp) =
eirz

z2 +m2
=

eirz

(z + im)(z � im)
⇠ e�rm

2im

1

z � zp=A-1Z 1

�1
dx

e

irx

x

2 +m

2
=

⇡

m

e

�rm

Z 1

�1
dp

eirp

p2 +m2

consider an integral of f(z) over a contour C

I
dzf(z) =

Z 1

�1
dxf(x) +

Z

C1

f(z)dz !
Z 1

�1
dxf(x)



Which branch cut to use

Examples to consider

Z 1

�1
dx

1p
1� x

2

Z 1

1
dx

1

x

p
x

2 � 1



Dispersion relations

source emits a 
signal at t=0

causality: receiver 
receives at t>0 and 

not at t<0

amplitude of the signal

consider the Fourier transform (E  → energy)

and extend definition to complex plane E → z, 
then f(z) is holomorphic for Im E > 0

The idea is to determine all singularities of f(E). Once this is 
done one can reconstruct f(E) outside the region of 
singularities. 

f(t) / ✓(t)

f(E) ⌘
Z

dteiEtf(t)



Im E > 0 amplitudes 
holomorphic

Im E = 0

E + iε

Im E = 0, Re E < 0 
amplitudes have 

singularities 
(bound states = 

poles)

E = 0E = -|Eb|

no scattering for 
Re E < 0, at E=0 

change in physics 
→ branch point 

Singularities of f(E) in the complex E-plane

Suppose f(E) was also analytical for Im E ≤ 0 and  f(∞) → 0 
Then f(E) = constant ! 

( f(E) = Σn fn En   and infinite radius of convergence implies f1,f2,.. = 0) 

fphysical(E) = lim
✏!0

f(E + i✏)



E2 = +1E1 = -1

f(E) =
a1

E � E1
+

a2
E � E2

+
X

n=0

bnE
n

Reconstruction of amplitudes from its singularities : 
dispersion relations 

Need to specify behavior at ∞

1. f(∞) → const bn = 0, n>0

2. f(∞) → 1/s  bn = 0

3. f(∞) → 1/s2  bn = 0, a1 = -a2

Example (1)



in addition f(0)=1, and is analytical everywhere else what 
is f(E) ? Can f(∞) be a constant ?

0

in scattering, Dis f(E) is related to observables (unitarity)  
f(0) is “subtraction constant”: one trades the large-s’ 
behavior for small-s one

Dis. f(E) = f(E + i✏)� f(E � i✏) = 2i
p
E for E > 0

E

E0 = R± i✏

=
1

2⇡i

Z 0

�1
dE0 f(E0 � i✏)

E0 � i✏� E
+

Z 1

0
dE0 f(E0 + i✏)

E0 + i✏� E
+

Z

R
· · ·

f(E) =
1

2⇡i

I
dz

f(z)

z � E

=
1

2⇡i

Z 1

0
dE0 2i

p
E0

E0 � E
+

1

2⇡

Z

R
d�f(Rei�)

const.
f(E) = �

p
�E + 1

Example (2)



Relativistic scattering  

a

b

c
_

d
_

s = (pa + pb)
2

t = (pa + pc̄)
2 = (pa � pc)

2

u = (pa + pd̄)
2 = (pa � pd)

2

A(s,t) for s > 4m2 t < 0 describes a + b → c + d
A(s,t) for s > 0   t < 4m2 describes a + c → b + d

_ _

A(s,t) for u > 0   s < 4m2 describes a + d → b + c
_ _

s+ t+ u =
X

i

m2
i = 4m2



In relativistic scattering 

E
s = M2 +m2 + 2EM

a+ b ! c+ d

ϴ

A(s, cos ✓) = A(s, t)

s+ t+ u =
4X

i=1

m2
i

In S-matrix theory it is assumed that a single complex 
function A(s,t,u) describes all reactions related by crossing

a+ d̄ ! c+ b̄
similarly to s for                       , the variable u is  related 
to energy for the reaction 

a+ b ! c+ d

since u = ∑m2 - s - t if A(u) is holomorphic for Im u > 0 it is 
also holomorphic in s for Im s < 0



Analytical continuation: 
How from knowledge of  

f(s,t,u) in one region (e.g. t-
channel) we can find it in 

other region (e.g. u-channel)  

S.Mandelstam 

t

u
s

s-channel

t-channel

u-channel



Analytical continuation



For real functions it does not work

x

f(x)

f(x) = �1

f(x) =
1

x

2

but for complex functions you can go 
continuously around the z=0 singularity 

and analytically continue from one 
region to another 



Theorem: If f(z) is holomorphic on G and f(z)=0 on an arc 
A in G, then f(z)=0 everywhere in G

Proof: f(z)=0 on A implies f’(z)=0 on A, because we can 
take the limit Δz→0 along the arc. Thus all derivatives 
vanish along A. Then by Taylor expansion around some 
point z0 of A, f(z) = ∑f(n)(z0)(z-z0)n/n! = 0, for z inside some 
circle C. Now we take another arc A‘ along f(z)=0, etc. 
Continuing this process everywhere in G we prove the 
theorem.  

If f(z) is holomorphic on G then f(z) is uniquely defined by 
its values on an arc A in G.



Analytical continuation  
Let f1(z) be holomorphic in G1 and f2(z) in G2, G1 and G2 
intersect on an arch A (or domain D), and f1 = f2 on A (or 
D) then f1 and f2 are analytical continuation of each other 
and  

f(z) =

⇢
f1(z), z 2 G1

f2(z), z 2 G2

is holomorphic in the union of G1 and G2

G1

G2

A
D



Examples:

1 + z + z2 + · · · is holomorphic in |z|<1
Z 1

0
e�(1�z)tdt is holomorphic in Re z < 1

�(1 + 1/z + 1/z2 + · · · ) is holomorphic in |z|>1

all these functions represent f(z) = 1/(1-z) in different 
domains, which is holomorphic everywhere except at 
the point  z=1



Γ(z) function:

Γ(z+1) = zΓ(z) : generalization of factorial  
n! = n (n-1)! so Γ(n) = (n-1)!

�(z) =

Z 1

0

dt

t
tze�t

�(0) ⇠ log 0 �(�1) ⇠ 1

0
�(�n) ⇠ 1

0n

�(z) = lim
n!1

n!nz

z(z + 1) · · · (z + n)

for z~-n

�(z) ⇠ (�1)n

n!

1

z + n



Why would you ever care about the Γ function (?) 

Infinite number of poles

If QCD were 
confined it would  
have ∞ of poles !

J(M2) =
1

2⇡�
M2 = ↵0M2



relativistic h.o. 

string of 
relativistic 
oscillators 

! ! 3⇡

A(s, t) =
�(�J(s))�(�J(t))

�(�J(s)� J(t))

QCD, loop 
representation, 
large-Nc, AdS/
CFT, ...

 string 
revolution



ψ’

J/ψ

BESIII, Phys.Lett. 
 B710 (2012) 594-599

“standard”  
(isobar) 

manifestation of force 
- particle duality ? 

A(s, t) =
�(�J(s))�(�J(t))

�(�J(s)� J(t))

∑s
∑t

OR  
NOT AND



how analytical continuation 
happens in practice for 
scattering amplitudes

S.Mandelstam 

t

u
s

s-channel

t-channel

u-channel



f(s, t) =
X

n

fn(s)t
n

f(s, t) =
X

n

f 0
n(t)s

n

Disc. fn(s) 6= 0unitarity in s-channel

unitarity in t-channel Disc. f 0
n(t) 6= 0

s-channel sum 
over t must 
diverge to 

reproduce a t-
channel 

singularity in t 
(and vice versa) 

sum over n in s-channel p.w. is replaced by an integral 
(Mandelstam)

A(s, t) =

Z
dt1dt2K(s, t1, t2, t)A(s, t1)A

⇤(s, t2)



Continuation of integral representation
g(w) =

Z

C
f(z, w)dz

Let D be a neighborhood of the arc C and G be a domain in 
the w-plane, f(z,w) be regular in both variables, except for a 
finite number of isolated singularities  or branch points.

what are the possibilities for g(w) to be singular? 

g(w) can be singular at w0 ∈ G only if 

1. f(z,w0) in z-plane has a singularity coinciding with the end 
points of the arc C (end-point singularity)
2. two singularities of f, z1(w) and z2(w), approach the arc C 
from opposite sides and pinch the arc precisely at w=w0. 
(pinch singularity) 
3. a singularity z(w) tents to infinity as w→w0 deforming the 
contour with itself to infinity; one has to change variables to 
bring the point ∞ to the finite plane to see what happens.  



Examples
Apparent singularities need not be there ! 

f(z) =

Z 1

�1

dx

x� z

looks like a regular function  
of z in the entire plane except  
for  the interval z ∈ [-1,1]

C = [-1,1]

-1 1

z

C
when z approaches x 
deforming C allows to define a 
function f(z) which changes 
continuously 

... however when z returns to the original 
point we end up with a different function 
value. f(z) is multivalued and -1 is a 
branch point.

C’
-1 1



f(z) =

Z 1

�1

dx

x� z

if we don’t deform the contour, then f(z) is analytical  
everywhere except on the real axis between [-1,1]

�1� z

�1

1� z

i✏

+1

z = z0 + i✏

z0

�1� z

�1

1� z

+1
z0

⇡

�i✏
z = z0 � i✏

0

f(z0 � i✏) = (log |1� z0|+ 0i)� (log |1 + z0|+ i⇡) = log

|1� z0|
|1 + z0|

� i⇡

f(z) jumps as z crosses the real axis, f(z0+iε)-f(z0-iε) = 2πi. We say f(z) has a cut [-1:1] and 
2πi is the value of the discontinuity across the cut (happens to be constant) i.e. f(z) is 
analytical everywhere except [-1:1] 

f(z0 + i✏) = (log |1� z0|+ 0i)� (log |1 + z0|� i⇡) = log

|1� z0|
|1 + z0|

+ i⇡

f(z) = Log(1� z)� Log(�1� z)

�⇡ 0



f(z) =

Z 1

�1

dx

x� z

how distorting contour makes f(z) continues  
e.g. take z = 0 + iε and move towards 0 - iε

f(i✏) = +i⇡

C’
-1

�i✏

+i✏

f(�i✏) =?

✏�✏

f(0) =

Z

C0

dx

x� 0
=

Z �✏

�1

dx

x

+

Z 1

✏

dx

x

+

Z 0

�⇡

id�✏e

i�

✏e

i�

= log ✏� log ✏+ i⇡ = i⇡

as promised, f(z) varies smoothly as z crosses the real axis (provided the contour is 
distorted) It is no longer discontinuous across [-1:1]

+1



we can define (single-valued)  f(z) in a different domain, e,g with a cut [-∞,-1]

f(z) =

Z

C0

dx

x� z

Z �1

0

idy

�1+ iy � z
Z 1

�1

dx

x� i1� z

Z 0

�1

idy

1+ iy � z

�1+ i0

�1�1i +1�1i

+1+ 0i

C’

f(z) = �2z

Z 1

1

dx

x

2 � z

2

Z �1

�1

dx

x� z

=

Z 1

1

dx

x+ z

Z 1

1

dx

x� z

= �
Z 1

1

dx

x� z

f(z + i✏)� f(z � i✏) = �2⇡i for z<-1 or z>1

f(z) = � log(1 + z)� log(�1� z) everywhere else

and it is the same function 
as the one which had the 
[-1:1] cut outside the real 
axis

Note that z=±1 are singular (branch) points (end-point singularities)



Example: pinch singularity

P = (
p
s,0)

k = (k0,k)

P � k

f(s) = i

Z
d4k

(2⇡)3
1

(k0)2 � k2 �m2 + i✏

1

(
p
s� k0)2 � k2 �m2 + i✏

�
p

k2 +m2 + i✏

k0 plane p
k2 +m2 � i✏

p
s�

p
k2 +m2 + i✏

p
s+

p
k2 +m2 � i✏

path of integration over k0p
s ! 2

p
k2 +m2

as ε➞0 these two poles “pinch” the contour i.e. it  
cannot be deformed without crossing one of them

This happens for any k, so we expect f(s) to be singular for all s>4m2

f(s+ i✏)� f(s� i✏) /
r

1� 4m2

s
✓(s� 4m2)



Hunting for a resonance Imfl(s) = ⇢(s)fl(s)f
⇤
l (s)

f(s) is a real-analytic function : f(s*) = f*(s) 
fl(s+ i✏)� fl(s� i✏) = 2i⇢(s)fl(s+ i✏)fl(s� i✏)

fl(s+ i✏) =
fl(s� i✏)

1� 2i⇢(s)fl(s� i✏)

1st sheet s1 = 3 + 0.01 i  : f(s1) 
1st sheet s2 = 3 -  0.01 i : f(s2) f(s1) - f(s2) = “large” 

use (*) to define analytical continuation of f to the second sheet 

(*)

1st sheet s1 = 3 + 0.01 i  : f(s1) 

f2nd(s) =
fl(s)

1� 2i⇢(s)fl(s)

2st sheet s2 = 3 -  0.01 i : f2nd(s2)
f(s1)� f2nd(s2) = O(0.01)

f(s) has not singularities but f2nd(s) may have when 
fl(s) =

1

2i⇢(s)



Enjoy the rest of the School 



Explanation:
• assume Aν = 0 for ν < -m (m>0) i.e.

that is, near point a inside C1, f(z) behaves as  
f(z) ~ A-m/(z-a)m

f(z) =
1X

⌫=�1
A⌫(z � a)⌫ =

A�m

(z � a)m
+

A�m+1

(z � a)m�1
+ · · ·

X

n=0

An(z � a)n

A�m�1 =
1

2⇡i

I

C1

f(z0)(z0 � a)mdz0 = 0

but 

A�m�2 =
1

2⇡i

I

C1

f(z0)(z0 � a)m+1dz0 = 0

A�m =
1

2⇡i

I

C1

f(z0)(z0 � a)m�1dz0 6= 0

A�m+1 =
1

2⇡i

I

C1

f(z0)(z0 � a)m�2dz0 6= 0

z

C1 a

C2



What makes coupling constants real 

phase space has √ -type singularity: q ⇠
p
E ⇠

p
s� 4m2

Re E>0

Im E>0

resonance is a pole for Im E < 0. 
The Im E < 0 region connected to 
the real axis lies on the 2nd-sheet  (t) ⇠ e�iEt ⇠ e+(ImE)t

Example (3) 



What makes coupling constants real 

a br
Sab = hb, out|a, ini

SS† = I,
X

c

SacS
†
cb = �ab

S-is can be digitalized using a unitary matrix, U 

Sab = UacŜcdU
†
db Ŝcd = e2i�cIcd let the resonance by in 

the 1st element 

time-reversal inv. ➞ Sab = Sba 
➞ Ua1 U1b* = Ub1 U1a*

the product of couplings cary no phase so 
we can define ga without a phase 

T =
�

M2 � s

� = gagb

T ⇠ Ua1
�

M2 � s
U†
b1 = Ua1

�

M2 � s
U⇤
1b



in particular:

• assume Aν = 0 for ν < 0 i.e.

z
a

C2

A⌫�1 =
1

2⇡i

I

C1

f(z0)(z0 � a)|⌫|�1dz0 = 0 that is f(z) is 
holomorphic inside C1

z

C1 a

C2

and the Laurent series  
reduces to Taylor 
series 

f(z) =
1X

⌫=�1
A⌫(z � a)⌫ =

X

n=0

An(z � a)n



f(x) = D(x) + iA(x)

D(x) =
1

⇡

P.V.

Z 1

�1
dx

0 A(x0)

x

0 � x

A(x) =
1

⇡

P.V.

Z 1

�1
dx

0 D(x0)

x

0 � x

lim
x!0

1

x⌥ i✏

= P.V.

1

z

± i⇡�(x)

P.V.

Z
dxf(x) =

Z �✏

dxf(x) +

Z

+✏
dxf(x)



C. z !
p
z2 � 1 naive definition OK, except that 
p

z2 � 1 6=
p
z � 1

p
z + 1

ϕ

z

! +
p
z2 � 1

! �i
p
1� z2

! +i
p
1� z2

! +
p
z2 � 1

r

p
z2 � 1 =

p
r2e2i� � 1



1

z � b
=

1

(z � a)� (b� a)
=

1/(z � a)

1� (b� a)/(z � a)
=

1X

n=0

(b� a)n

(z � a)n+1

For the following consider: 

the series converges uniformly (can be integrated/differentiated term by 
term) for all z with |z-a| > |a-b|  


