## Amplitude analysis at BESIII

## Jake Bennett

Carnegie Mellon University

2017 International Summer Workshop on Reaction Theory

## Carnegie. Mellom

## Introduction to the experiment



1. Produce $\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the tau-charm region
```
Objects of Interest Quark AntQuark
```



+ Effects due to the complicated QCD vacuum


2. Detect the decay products of charmonium states


3. Study their properties and decays

## BESIII at BEPCII

- The physics goals of BESIII cover a diverse range:
- Light hadron spectroscopy, charm physics, $\tau$ physics, charmonium physics
- $\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the charmonium mass region
- Use the properties and decays of charmonium states to study QCD



## BEPC-II e ${ }^{+} \mathbf{e}^{-}$Collider



## BESIII at BEPCII

- The physics goals of BESIII cove
- Light hadron spectroscopy,
- $\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the charmoni
- Use the properties and dec



## BESIII at BEPCII

- The physics goals of BESIII cove
- Light hadron spectroscopy,
- $\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the charmoni
- Use the properties and dec



## BESIII at BEPCII

- The physics goals of BESIII cover a diverse range:
- Light hadron spectroscopy, charm physics, $\tau$ physics, charmonium physics
- $\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the charmonium mass region
- Use the properties and decays of charmonium states to study QCD



## The challenges of the experimentalist

- Building and running the accelerator and detector are only the first step!


## The challenges of the experimentalist

- Building and running the accelerator and detector are only the first step!
- Carefully calibrate the detectors and reconstruction algorithms
- Translate detector-level hits and showers into analysis-level information



## The challenges of the experimentalist

- Building and running the accelerator and detector are only the first step!
- Carefully calibrate the detectors and reconstruction algorithms
- Translate detector-level hits and showers into analysis-level information
- Attempt to cleanly separate events of interest from backgrounds (intensive!)



Total size of data sample: $\sim 1.31 \times 10^{9}$ events

## The challenges of the experimentalist

- Building and running the accelerator and detector are only the first step!
- Carefully calibrate the detectors and reconstruction algorithms
- Translate detector-level hits and showers into analysis-level information
- Attempt to cleanly separate events of interest from backgrounds (intensive!)



Total size of data sample: $\sim 1.31 \times 10^{9}$ events
Size of sample after signal isolation: $\sim 4.4 \times 10^{5}$ events
Background contamination remaining: < 2\%

## The challenges of the experimentalist

- Building and running the accelerator and detector are only the first step!
- Carefully calibrate the detectors and reconstruction algorithms
- Translate detector-level hits and showers into analysis-level information
- Attempt to cleanly separate events of interest from backgrounds (intensive!)
- Use the analysis-level information (basically four-vectors) in the analysis
- Account for systematic uncertainties (difficult!)



Total size of data sample: $\sim 1.31 \times 10^{9}$ events
Size of sample after signal isolation: $\sim 4.4 \times 10^{5}$ events
Background contamination remaining: < 2\%

## Amplitude analysis for constraining models

- Fairly recent puzzle: XYZ states
- Appear to be at odds with standard quarkonium phenomenology
- Interpretations abound: multi-quark states, loosely bound hadron molecules, hybridized states, hadro-quarkonia, gluonic excitations, rescattering effects, virtual state poles, anomalous thresholds
- Is there a principle (or a few) that describe the new phenomena?




## Amplitude analysis for constraining models

## Viewpoint: New Particle Hints at Four-Quark Matter

Eric Swanson, University of Pittsburgh, Pittsburgh, PA 15260, USA
Published June 17, 2013 | Physics 6, 69 (2013) | DOI: 10.1103/Physics.6.69
states, loosely bound hadron molecules, hybridized states, hadro-quarkonia, gluonic excitations, rescattering effects, virtual state poles, anomalous thresholds


- Is there a principle (or a few) that describe the new phenomena?
- At low statistics, simple fit with BW shape enough to stimulate interest
- In order to discriminate between models, need high statistics and must account for angular correlations/interference



## Amplitude analysis at BESIII

- Many HEP analyses involve searches for peaks in some invariant mass spectrum
- Attempt to account for all backgrounds
- Extract parameters of intermediate states



## Amplitude analysis at BESIII

- Many HEP analyses involve searches for peaks in some invariant mass spectrum
- Attempt to account for all backgrounds
- Extract parameters of intermediate states
- Many systems are not so simple
- Broad, overlapping, near thresholds





- Rather than traditional "bump hunting" for states, requires more sophisticated techniques like amplitude analysis


## Amplitude analysis

- Coupling of initial and final states given by invariant amplitudes
- Amplitude analysis: tool to extract the complex amplitudes from experimental data
- Requires some model that contains free parameters
- Consider all kinematics of
 final state particles
- Vary the free parameters to maximize the likelihood that the model is a good description of the data sample

$$
\begin{gathered}
\frac{d \sigma_{f i}}{d \Omega}=\frac{1}{(8 \pi)^{2} s}\left(\frac{q_{f}}{q_{i}}\right)\left|\mathcal{M}_{f i}\right|^{2}=\left|f_{f i}(\Omega)\right|^{2} \\
S_{f i}=\langle f| S|i\rangle
\end{gathered}
$$

- Has its own challenges
- How to construct amplitudes? How many amplitudes are needed? Are there ambiguities? How to deal with backgrounds?


## Amplitude analysis

- Has its own challenges
- How to construct amplitudes?

$$
\begin{aligned}
U^{M, \lambda_{r}}(\vec{x}, s)= & \sum_{j, J_{\gamma}, \mu} N_{J_{r}} N_{j} D_{M, \mu-\lambda_{r}}^{J}\left(\pi+\phi_{\gamma}, \pi-\theta_{\gamma}, 0\right) \\
& \times D_{\mu, 0}^{j}\left(\phi_{\pi}, \theta_{\pi}, 0\right) \frac{1}{2} \frac{1+(-1)^{j}}{2} \\
& \times\left\langle J_{\gamma}-\lambda_{\gamma} ; j \mu \mid J \mu-\lambda_{\gamma}\right\rangle \\
& \times \frac{1}{\sqrt{2}}\left[\delta_{\lambda_{r}, 1}+\delta_{\lambda_{r},-1} P(-1)^{J_{\gamma}-1}\right] V_{j, J_{\gamma}}(s),
\end{aligned}
$$



## Amplitude analysis

## Many issues related to this!

- Has its own challenges
- How to construct amplitudes?
- How many amplitudes are needed?


## $J / \psi \rightarrow \gamma \eta \eta$; a typical BESIII "PWA"



## Amplitude analysis

- Has its own challenges

Somewhat inherent in observing only the amplitude squared

- How to construct amplitudes?
- How many amplitudes are needed?
- Are there ambiguities?
$\mathrm{J} / \psi \rightarrow \gamma \pi^{0} \pi^{0}$; mass independent amplitude analysis




## Amplitude analysis

- Has its own challenges
- How to construct amplitudes?
- How many amplitudes are needed?
- Are there ambiguities?
- How to deal with backgrounds?


## $\mathrm{J} / \psi \rightarrow \gamma \pi^{0} \pi^{0}$; mass independent amplitude analysis



## Hadron spectroscopy with charmonium decays

- BESIII has world leading samples of J/ $\psi$ and $\psi^{\prime}$ decays



## Hadron spectroscopy with charmonium decays

- BESIII has world leading samples of J/ $\psi$ and $\psi^{\prime}$ decays
- "Glue-rich" environment in which to search for glueballs
- The J/ $\psi$ and $\psi^{\prime}$ masses are below open charm threshold, so OZI suppressed processes dominate
- Suppression factor on radiative decays due to fine structure constant only about a factor of 10

- Radiative decays account for about 8\% of the total cross section


## $\mathrm{J} / \psi \rightarrow \gamma \eta \eta$; a typical BESIII "PWA"

- Amplitudes constructed in the covariant tensor formalism*
- Use a Breit-Wigner line shape to describe the decay dynamics
- Easy, but mostly wrong... (more on this later)




## $\mathrm{J} / \Psi \rightarrow \gamma \eta \eta$; a typical BESIII "PWA"

- Amplitudes constructed in the covariant tensor formalism*
- Use a Breit-Wigner line shape to describe the decay dynamics
- Add intermediate states according to some prescription

1. Choose some (not quite arbitrary) set of amplitudes as base model

- Consider previous studies, states in PDG, some educated guesses



[^0]
## $J / \psi \rightarrow \gamma \eta \eta$; a typical BESIII "PWA"

- Amplitudes constructed in the covariant tensor formalism
- Use a Breit-Wigner line shape to describe the decay dynamics
- Add intermediate states according to some prescription

1. Choose some (not quite arbitrary) set of amplitudes as base model
2. Add an additional amplitude

- Add one additional amplitude out of a pool of candidates*

3. Fit or scan likelihood to determine masses and widths of resonances


We tested the following mesons listed in PDG 2012: $f_{2}(1270), f_{0}(1370), f_{2}(1430), f_{0}(1500), f_{2}^{\prime}(1525), f_{2}(1565), f_{2}(1640)$, $f_{0}(1710), f_{2}(1810), f_{2}(1910), f_{2}(1950), f_{2}(2010), f_{0}(2020), f_{4}(2050), f_{0}(2100), f_{2}(2150), f_{0}(2200), f_{J}(2220), f_{2}(2300)$,

## $\mathrm{J} / \psi \rightarrow \nu \eta \eta$; a typical BESIII "PWA"

- Amplitudes constructed in the covariant tensor formalism
- Use a Breit-Wigner line shape to describe the decay dynamics
- Add intermediate states according to some prescription

1. Choose some (not quite arbitrary) set of amplitudes as base model
2. Add an additional amplitude
3. Fit or scan likelihood to determine masses and widths of resonances
4. Take likelihood ratios to determine significance of amplitude
5. Throw away amplitudes with less than $5 \sigma$ significance

## $J / \psi \rightarrow \gamma \eta \eta$; a typical BESIII "PWA"

- Amplitudes constructed in the covariant tensor formalism
- Use a Breit-Wigner line shape to describe the decay dynamics
- Add intermediate states according to some prescription

1. Choose some (not quite arbitrary) set of amplitudes as base model
2. Add an additional amplitude
3. Fit or scan likelihood to determine masses and widths of resonances
4. Take likelihood ratios to determine significance of amplitude
5. Throw away amplitudes with less than $5 \sigma$ significance
6. Iterate until solution converges

- Repeat and keep the most significant amplitude
- Stop when no additional amplitudes are significant


## Partial wave analysis of $\mathrm{J} / \psi \rightarrow \gamma \eta \eta$


(a) $M_{-9}\left(\mathrm{GeV}^{2} / c^{2}\right)$

(d) $M_{\text {es }}\left(\mathrm{GoV} / \mathrm{c}^{2}\right)$

(g) $M_{e}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$

(b) $M_{9}\left(\mathrm{GeV}^{2} / \mathrm{c}^{2}\right)$

(e) $\mathrm{M}_{4}\left({\left.\mathrm{GoV} / c^{2}\right)}^{2}\right)$

(h) $M_{m}\left(\mathrm{GeVlich}^{\circ}\right)$

(i) $\mathrm{Mm}_{\mathrm{m}}\left(\mathrm{GeV} / \mathrm{c}^{\circ}\right)$

Results
The $\mathrm{f}_{0}(1710)$ and $\mathrm{f}_{\mathrm{o}}(2100)$ are the dominant scalars The $\mathrm{f}_{0}(1500)$ exists (8.2б).

- Branching fraction of the $\mathrm{f}_{0}(1710)$ and $\mathrm{f}_{\mathrm{o}}(2100)$ are ${ }^{\sim} 10 x$ larger than that of the $\mathrm{f}_{0}(1500)$
The $\mathrm{f}_{2}{ }^{\prime}(1525)$ is the dominant tensor

| Resonance | Mass ( $\mathrm{MeV} / \mathrm{c}^{2}$ ) | Width ( $\mathrm{MeV} / \mathrm{c}^{2}$ ) | $\mathcal{B}(J / \psi \rightarrow \gamma X \rightarrow \gamma \eta \eta)$ | Significance |
| :---: | :---: | :---: | :---: | :---: |
| $f_{0}(1500)$ | $14688_{-15-74}^{+14+23}$ | $136_{-25-10}^{+41+28}$ | $\left(1.65_{-0.31-1.40}^{+0.26+0.51}\right) \times 10^{-5}$ | $8.2 \sigma$ |
| $f_{0}(1710)$ | $1759 \pm 6_{-25}^{+14}$ | $172 \pm 10_{-16}^{+32}$ | $\left(2.355_{-0.11-0.74}^{+0.13+1.24}\right) \times 10^{-4}$ | $25.0 \%$ |
| $f_{0}(2100)$ | $2081 \pm 13_{-36}^{+24}$ | $2733_{-24-23}^{+27}$ | $\left(1.13_{-0.10-0.28}^{+0.094}\right) \times 10^{-4}$ | $13.9 \sigma$ |
| $f_{2}^{\prime}(1525)$ | $1513 \pm 5_{-10}^{+4}$ | $75 \pm 12+16$ | $\left(3.42_{-0.51-1.30}^{+0.33+1.37}\right) \times 10^{-5}$ | $11.0 \%$ |
| $f_{2}$ (1810) | $1822_{-24-57}^{+29+66}$ | $229+5{ }_{-4-158}$ | $\left(5.40_{-0.67-235}^{+0.60+32}\right) \times 10^{-5}$ | $6.4 \sigma$ |
| $f_{2}(2340)$ | $2362_{-30-63}^{+31+15}$ | $334-54+165$ | $\left(5.600_{-0.65-2.07}^{+0.6237}\right) \times 10^{-5}$ | $7.6 \sigma$ |

## *How many amplitudes are needed?

- A set of amplitudes can be "sufficient", how do we know it is "correct"?
- Common practice: Throw away amplitudes with less than $5 \sigma$ significance
- Somewhat arbitrary - why not $3 \sigma, 4 \sigma$ ?
- Often combined with other criteria - contributes $>1 \%$ of events, size of interference with other amplitudes
- Really only a valid statistical criterion if the background model (i.e. all other amplitudes) are correct
- Get "fake" 5 sigmas more often than in truly Gaussian statistics


## *How many amplitudes are needed?

- A set of amplitudes can be "sufficient", how do we know it is "correct"?
- Common practice: Throw away amplitudes with less than $5 \sigma$ significance
- Somewhat arbitrary - why not $3 \sigma, 4 \sigma$ ?
- Often combined with other criteria - contributes $>1 \%$ of events, size of interference with other amplitudes
- Really only a valid statistical criterion if the background model (i.e. all other amplitudes) are correct
- Get "fake" 5 sigmas more often than in truly Gaussian statistics
- How do we know if we found the global minimum?


## *How many amplitudes are needed?

- A set of amplitudes can be "sufficient", how do we know it is "correct"?
- Common practice: Throw away amplitudes with less than $5 \sigma$ significance
- Somewhat arbitrary - why not $3 \sigma, 4 \sigma$ ?
- Often combined with other criteria - contributes $>1 \%$ of events, size of interference with other amplitudes
- Really only a valid statistical criterion if the background model (i.e. all other amplitudes) are correct
- Get "fake" 5 sigmas more often than in truly Gaussian statistics
- How do we know if we found the global minimum?
- How to judge goodness of fit?


## More technical challenges

- Requires many many fits!
- Must consider additional resonances as a source of systematic uncertainty
- These fits also have many free parameters
- With ever increasing statistics, this becomes a computational problem


## More technical challenges

- Requires many many fits!
- Must consider additional resonances as a source of systematic uncertainty
- These fits also have many free parameters
- With ever increasing statistics, this becomes a computational problem
- Usually neglected: phase space dependent systematics
(e.g. momentum dependent tracking efficiency)



## How to treat detector resolution?

1. Very narrow states (e.g. $\mathrm{K}_{\mathrm{s}}, \mathrm{J} / \psi$ ): typically force to nominal mass via a kinematic fit
2. Extremely broad states (e.g. $\rho$ ): resolution does not really matter
3. In between (e.g. $\phi$ ): width and detector resolution are comparable (tricky!)



## How to treat detector resolution?

1. Very narrow states (e.g. $\mathrm{K}_{\mathrm{s}}, \mathrm{J} / \psi$ ): typically force to nominal mass via a kinematic fit
2. Extremely broad states (e.g. $\rho$ ): resolution does not really matter
3. In between (e.g. $\phi$ ): width and detector resolution are comparable (tricky!)

- Cannot convolute BW with a Gaussian because interference happens before resolution
- Can cause significant deviations in model parameters
- Some ideas to deal with this if the effect (e.g. KK mass for the $\phi$ ): computationally expensive Gaussian sampling near measured phase space point
- No obvious extension to a high-dimensional phase-space


## Breit-Wigner Parametrization of a Resonance

- Commonly used parametrization: (interfering) Breit-Wigner model
- Only valid for isolated, single resonance decaying into a single channel above threshold


## Breit-Wigner Parametrization of a Resonance

- Commonly used parametrization: (interfering) Breit-Wigner model
- Only valid for isolated, single resonance decaying into a single channel above threshold

$$
\begin{gathered}
T(m)=\frac{\Gamma / 2}{m_{0}-m-i \Gamma / 2} \quad \text { [simple Breit-Wigner (non-relativistic, constant width)] } \\
I(m)=|T(m)|^{2}=\frac{(\Gamma / 2)^{2}}{\left(m_{0}-m\right)^{2}+(\Gamma / 2)^{2}}
\end{gathered}
$$




K. Peters, arXiv:hep-ph/0412069v1

## Breit-Wigner Parametrization of a Resonance

- Commonly used parametrization: (interfering) Breit-Wigner model
- Only valid for isolated, single resonance decaying into a single channel above threshold
- In reality resonances can
- overlap in a single channel
- can decay into more than one channel
- exist in the vicinity of thresholds


## Breit-Wigner Parametrization of a Resonance

- Commonly used parametrization: (interfering) Breit-Wigner model
- Only valid for isolated, single resonance decaying into a single channel above threshold
- In reality resonances can
- overlap in a single channel
- can decay into more than one channel
- exist in the vicinity of thresholds

Example in scattering:
two hypothetical overlapping resonances decaying to $\pi \pi$

$$
\begin{aligned}
& m_{A}=1275 \mathrm{MeV} / \mathrm{c}^{2} ; \Gamma_{A}=185 \mathrm{MeV} \\
& \mathrm{~m}_{\mathrm{B}}=1565 \mathrm{MeV} / \mathrm{c}^{2} ; \Gamma_{\mathrm{B}}=150 \mathrm{MeV}
\end{aligned}
$$

Argand plot


Phase

K. Peters, arXiv:hep-ph/0412069v1

## Mass independent approach

- Instead of modeling the s-dependence (eg. with a Breit-Wigner), make minimal model assumptions and measure the amplitudes independently in small bins of s
- Construct a piecewise complex function that describes the s-dependence of the hadron dynamics
- Provide useful results for model development




## Mass independent amplitude analysis

- The decay $J / \Psi \longrightarrow \gamma \pi^{0} \pi^{0}$ factorizes into

$$
\begin{array}{cc}
\text { radiative transition } & \pi \pi \text { interaction } \\
\sum_{\mathrm{X}=\pi \pi, \mathrm{KK}, \ldots}<\mathrm{J} / \Psi\left|\mathrm{H}_{\mathrm{EM}}\right| \mathrm{Y}_{\mathrm{JV}} \mathrm{X}_{\mathrm{J} 12}><\mathrm{X}_{\mathrm{J} 12}\left|\mathrm{H}_{\mathrm{QCD}}\right| \pi \pi>\mathrm{A}_{\mathrm{JV}, \mathrm{~J} 12}
\end{array}
$$

- Absorb the $\pi \pi$ interaction piece into the (complex) fit parameter
- Goal: extract the function that describes the interaction so it can later be fit to any model that describes $\pi \pi$ dynamics


## Mass independent amplitude analysis

- The decay $J / \Psi \longrightarrow \gamma \pi^{0} \pi^{0}$ factorizes into

$$
\begin{gathered}
\text { radiative transition } \\
\Sigma_{\mathrm{X}=\pi \pi, \mathrm{KK}, \ldots}<\mathrm{J} / \Psi\left|\mathrm{H}_{\mathrm{EM}}\right|{Y_{\mathrm{JY}}} \mathrm{X}_{\mathrm{J} 12}><\mathrm{X}_{\mathrm{J} 12}\left|\mathrm{H}_{\mathrm{QCD}}\right| \pi \pi>\mathrm{A}_{\mathrm{JY}, \mathrm{~J} 12}
\end{gathered}
$$

- Absorb the $\pi \pi$ interaction piece into the (complex) fit parameter
- Goal: extract the function that describes the interaction so it can later be fit to any model that describes $\pi \pi$ dynamics
- Assumptions:
- Only $0^{++}$(E1) and $2^{++}$(E1, M2, E3) amplitudes (check the significance of the $4^{++}$)
- The function describing the $\pi \pi$ interaction is constant over a small range ( 15 MeV ) of center of mass energy ( Vs )


## Mass independent amplitude analysis

- The decay $J / \Psi \longrightarrow \gamma \pi^{0} \pi^{0}$ factorizes into
radiative transition

$$
\Sigma_{X=\pi \pi, K K, \ldots . .}<J / \psi\left|H_{E M}\right| \gamma_{J \gamma} X_{J 12}><X_{J 12}\left|H_{Q C D}\right| \pi \pi>A_{J \gamma, J 12}
$$

- Absorb the $\pi \pi$ interaction piece into the (complex) fit parameter
- Goal: extract the function that describes the interaction so it can later be fit to any model that describes $\pi \pi$ dynamics
- Assumptions:
- Only $0^{++}$(E1) and $2^{++}$(E1, M2, E3) amplitudes (check the significance of the $4^{++}$)
- The function describing the $\pi \pi$ interaction is constant over a small range ( 15 MeV ) of center of mass energy (Vs)
- Rescattering effects, KK $\rightarrow \pi \pi$ for example, have the potential to produce phase differences between the different components of the $2^{++}$amplitude
- Below KK threshold, the phases of the $2^{++}$amplitudes may be constrained to be the same
- Above KK threshold, rescattering effects introduce ambiguities


## *Are there ambiguities?

- An ambiguity arises when multiple sets of parameters yield the same overall value for a function (in this case the intensity)
- Ambiguities are present in many amplitude analyses
- $\pi^{-} p \rightarrow \pi^{0} \pi^{0} n(E 852)$
- Barrelet ambiguities
- General idea:
- Publish both solutions
- Alternate interpretations may also be used to fit data



## Solution 2

E852; PRD 64, 072003 (2001)




## $\mathrm{J} / \Psi \rightarrow \gamma \pi^{0} \pi^{0}:$ Nominal Results

Intensities





Phase differences




## *How to deal with backgrounds?



PhysRevD.92.052003 (2015)

## *How to deal with backgrounds?




- Add background events with a negative weight (MC or data sidebands)

$$
L(\vec{a})=\prod_{i=1}^{N_{\mathrm{data}}^{\text {sig }}} f\left(\vec{a}, \vec{x}_{i}\right) \prod_{j=1}^{N_{\text {data }}^{\mathrm{bkg}}} f\left(\vec{a}, \vec{x}_{j}\right)
$$

## *How to deal with backgrounds?




- Add background events with a negative weight (MC or data sidebands)


## *How to deal with backgrounds?




- Add background events with a negative weight (MC or data sidebands)

$$
\begin{gathered}
L(\vec{a})=\left(\prod_{i=1}^{N_{\text {data }}^{\text {sig }}} f\left(\vec{a}, \vec{x}_{i}\right) \prod_{j=1}^{N_{\text {data }}^{\mathrm{bkg}}} f\left(\vec{a}, \vec{x}_{j}\right) \mid \prod_{k=1}^{\mid N_{\text {data }}^{\mathrm{bkg}}} f\left(\vec{a}, \vec{x}_{k}\right)^{-1}\right) \longrightarrow \prod_{i=1}^{N_{\text {data }}^{\mathrm{bkg}}} f\left(\vec{a}, \vec{x}_{i}\right)^{-1} \approx \prod_{i=1}^{N_{\mathrm{MC}}^{\mathrm{bkg}}} f\left(\vec{a}, \vec{x}_{i}\right)^{-w_{i}} \\
\left.\mathcal{L}(\vec{a})=\frac{e^{-\mu} \mu^{N_{\text {data }}}}{N_{\text {data }}!}\left|\prod_{i=1}^{N_{\text {data }}} f\left(\vec{a}, \vec{x}_{i}\right)\right| \prod_{j=1}^{N_{\mathrm{MC}}^{\mathrm{big}}} f\left(\vec{a}, \vec{x}_{j}\right)^{-w_{j}}\right)
\end{gathered}
$$

- Result is signal only likelihood


## What have we gained?

- Experiment independent information about scattering amplitude
- Minimizes systematic bias arising from assumptions about $\pi \pi$ dynamics
- Permits the development of dynamical models or parametrizations (no experimental knowledge is needed)
- Combine results with data from other experiments in a common fit
- Controlled study of coupled channel effects

Fit (preliminary)


The fit qualitatively reproduces the $\sigma$ region and the higher resonances, but as expected fails to describe the $f_{0}(980)$ region: an effective $K \bar{K}$ threshold has to be included

Hunting for poles


Our parametrization is fully analytical, so it allows us to continue the function onto the unphysical Riemann sheet, and looking for poles

For example, with this preliminary fit we get

$\Gamma_{1}=150 \mathrm{MeV}$
$\mathrm{r}_{2}=55 \mathrm{MeV}$
These look fairly close to the $f_{0}(1370)$ and $f_{0}(1710)$,
The improving of the fit will lead to a more precise determination of these two poles, and likely to the finding of the higher $\sim 2.2 \mathrm{GeV}$ state.

## What have we lost?

- Still has drawbacks
- Ambiguous solutions
- Large number of parameters
- Potential bias in subsequent analyses from non-Gaussian effects
- Validity and precision at a level sufficient for model development, but extraction of rigorous values for model parameters only reliably obtained by fitting directly to the data


## Fit (preliminary)



The fit qualitatively reproduces the $\sigma$ region and the higher resonances, but as expected fails to describe the $f_{0}(980)$ region: an effective $K \bar{K}$ threshold has to be included

Hunting for poles


Our parametrization is fully analytical, so it allows us to continue the function onto the unphysical Riemann sheet, and looking for poles

For example, with this preliminary fit we get

$$
M_{1}=1362 \mathrm{MeV} \quad M_{2}=1810 \mathrm{MeV}
$$

$\Gamma_{1}=150 \mathrm{MeV}$
$\Gamma_{2}=55 \mathrm{MeV}$
These look fairly close to the $f_{0}(1370)$ and $f_{0}(1710)$,
The improving of the fit will lead to a more precise determination of these two poles, and likely to the finding of the higher $\sim 2.2 \mathrm{GeV}$ state.

## Try both? PWA of J/ $\psi \rightarrow \gamma \phi \phi$

- Similar mass-dependent procedure as in J/ $\psi \rightarrow ү \eta \eta$
- Amplitudes in covariant tensor formalism
- Data-driven background subtraction

$$
-\ln \mathcal{L}_{\text {sig }}=-\left(\ln \mathcal{L}_{\text {data }}-\ln \mathcal{L}_{\text {bkg }}\right)
$$

- Resonances parametrized with relativistic Breit-Wigner with constant width
- Also perform mass-independent analysis
- Fit for each amplitude ( $\mathrm{J}^{\mathrm{PC}}$ ) in bins of $\phi \phi$ invariant mass
- Results of the two methods are consistent

| Resonance | M (MeV/ | $\Gamma\left(\mathrm{MeV} / c^{2}\right)$ | B.F. $\left(\times 10^{-4}\right)$ | Sig. |
| :---: | :---: | :---: | :---: | :---: |
| $\eta(2225)$ | $2216_{-5-11}^{+4+21}$ | $1855_{-14-17}^{+12+43}$ | $\left(2.40 \pm 0.10_{-0.18}^{+2.47}\right)$ | 28 |
| $\eta(2100)$ | 2050 $0_{-24+26}^{+3+75}$ | 250 ${ }_{-30-164}^{+36+181}$ | $\left(3.30 \pm 0.09_{-3.04}^{+0.18}\right)$ | $22 \sigma$ |
| $X(2500)$ | $2470{ }_{-19}^{+15+23}$ | $230_{-35-36}^{+64+56}$ | $\left(0.17 \pm 0.02_{-0.08}^{+0.02}\right)$ | 8.8 |
| $f_{0}(2100)$ | 2101 | 224 | $\left(0.43 \pm 0.04_{-0.03}^{+0.024}\right)$ | 24 |
| $f_{2}(2010)$ | 201 | 202 | $\left(0.35 \pm 0.05_{-0.15}^{+0.28}\right)$ | $9.5 \sigma$ |
| $f_{2}(2300)$ | 2297 | 149 | $\left(0.44 \pm 0.07_{-0.15}^{+0.09}\right.$ ) | . 4 |
| $f_{2}(2340)$ | 2339 | 319 | $\left(1.91 \pm 0.14_{-0.73}^{+0.72}\right)$ | $11 \sigma$ |
| $0^{-+}$PHSP |  |  | $\left(2.74 \pm 0.15_{-1.48}^{+0.16}\right)$ | $6.8 \sigma$ |



## Amplitude analysis with three-body decays

- Most commonly performed using the isobar model (and extensions)
- Express the total amplitude as a coherent sum of quasi-two-body contributions



## Amplitude analysis with three-body decays

- Most commonly performed using the isobar model (and extensions)
- Express the total amplitude as a coherent sum of quasi-two-body contributions

- Fit can be binned or unbinned, but with inherent model dependence
- Need to input strong interaction dynamics (line shapes, barrier factors, etc.)


## Amplitude analysis with three-body decays

- Most commonly performed using the isobar model (and extensions)
- Express the total amplitude as a coherent sum of quasi-two-body contributions


Often include (complex)

non-resonant term

- Fit can be binned or unbinned, but with inherent model dependence
- Need to input strong interaction dynamics (line shapes, barrier factors, etc.)
- Alternative approaches to avoid model dependence usually involve binning



## $\chi_{c 1} \rightarrow \eta \pi^{+} \pi^{-}$

- Amplitude analysis of $\chi_{\mathrm{c} 1} \rightarrow \eta \pi^{+} \pi^{-}$decays
- Potential exotic amplitude $\left(J^{P C}=1^{-+}\right)$- lowest orbital excitation of a two-body combination in $\chi_{c 1}$ decays to three pseudoscalars
- Several candidate exotic states decaying into different final states, such as $\eta \pi$, $\eta^{\prime} \pi, f_{1}(1270) \pi, b_{1}(1235) \pi$ and $\rho \pi$ have been reported by various experiments


Baryon


Meson


Hybrid

## $\chi_{c 1} \rightarrow \eta \pi^{+} \pi^{-}$

- Amplitude analysis of $\chi$
- Potential exotic amp combination in $\chi_{\mathrm{c} 1} \mathrm{~d}$
- Several candidate e) $\eta^{\prime} \pi, f_{1}(1270) \pi, b_{1}(12$
- Another interesting state, the $\mathrm{a}_{0}(980)$
- Four-quark state? ordinary qq state? dynamically generated through mesonmeson interactions?
- Just below KK threshold: strong coupling generates cusp-like behavior in resonant amplitudes $\rightarrow$ line shape distorted so mass and width parameters do not correspond to the pole parameters
- Use dispersion integral to describe line shape and extract information useful to determine the quark structure


## $\chi_{c 1} \rightarrow \eta \pi^{+} \pi^{-}$

- Influence of thresholds is apparent (virtual channel influences distribution)




## Describing the dynamics

- Isobar model, helicity formalism
- Background subtraction using sidebands from data
- BW line shape for most resonances
- Dispersion integrals for $\mathrm{a}_{0}(980)$ and $\pi \pi$ S-wave


- Amplitudes respect unitarity
- Accounts for differences between the $\pi \pi$ production in scattering and decay processes
- Also add a phase-space amplitude taking into account all possible helicity amplitudes




## $\chi_{\mathrm{c} 1} \rightarrow \eta \pi^{+} \pi^{-}$

- First nonzero coupling of $a_{0}(980)$ to $\eta^{\prime} \pi(8.9 \sigma)$

| Data | $m_{0}\left[\mathrm{GeV} / c^{2}\right]$ | $g_{\eta \pi \pi}^{2}\left[\mathrm{GeV} / c^{2}\right]^{2}$ | $g_{K \bar{K}}^{2} / g_{\eta \pi}^{2}$ | $g_{\eta^{\prime} \pi}^{2} / g_{\eta \pi}^{2}$ |
| :--- | :---: | :---: | :---: | :---: |
| CLEO-c [10] | $0.998 \pm 0.016$ | $0.36 \pm 0.04$ | $0.872 \pm 0.148$ | $0.00 \pm 0.17$ |
| C.Barrel $[20]$ | $0.987 \pm 0.004$ | $0.164 \pm 0.011$ | $1.05 \pm 0.09$ | 0.772 |
| BESIII | $0.996 \pm 0.002 \pm 0.007$ | $0.368 \pm 0.003 \pm 0.013$ | $0.931 \pm 0.028 \pm 0.090$ | $0.489 \pm 0.046 \pm 0.103$ |
| BESIII $\left(R_{31}^{2} \equiv 0\right)$ | $0.990 \pm 0.001$ | $0.341 \pm 0.004$ | $0.892 \pm 0.022$ | $\mathbf{0 . 0}$ |

- First evidence for $\mathrm{a}_{2}$ (1700) in this channel
- Only weak evidence (non-observation) for the $\pi_{1}(1400)$
- $\pi_{1}$ (1600) and $\pi_{1}$ (2015) not significant

| Decay | $\mathcal{F}[\%]$ | Significance $[\sigma]$ | $\mathcal{B}\left(\chi_{c 1} \rightarrow \eta \pi^{+} \pi^{-}\right)\left[10^{-3}\right]$ |
| :--- | :---: | :---: | :---: |
| $\eta \pi^{+} \pi^{-}$ | $\ldots$ | $\ldots$ | $4.67 \pm 0.03 \pm 0.23 \pm 0.16$ |
| $a_{0}(980)^{+} \pi^{-}$ | $72.8 \pm 0.6 \pm 2.3$ | $>100$ | $3.40 \pm 0.03 \pm 0.19 \pm 0.11$ |
| $a_{2}(1320)^{+} \pi^{-}$ | $3.8 \pm 0.2 \pm 0.3$ | 32 | $0.18 \pm 0.01 \pm 0.02 \pm 0.01$ |
| $a_{2}(1700)^{+} \pi^{-}$ | $1.0 \pm 0.1 \pm 0.1$ | 20 | $0.047 \pm 0.004 \pm 0.006 \pm 0.002$ |
| $S_{K \bar{K} \eta} \quad 2.5 \pm 0.2 \pm 0.3$ | 22 | $0.119 \pm 0.007 \pm 0.015 \pm 0.004$ |  |
| $S_{\pi \pi} \eta$ | $16.4 \pm 0.5 \pm 0.7$ | $>100$ | $0.76 \pm 0.02 \pm 0.05 \pm 0.03$ |
| $\left(\pi^{+} \pi^{-}\right)_{s} \eta$ | $17.8 \pm 0.5 \pm 0.6$ | $\cdots$ | $0.83 \pm 0.02 \pm 0.05 \pm 0.03$ |
| $f_{2}(1270) \eta$ | $7.8 \pm 0.3 \pm 1.1$ | $>100$ | $0.36 \pm 0.01 \pm 0.06 \pm 0.01$ |
| $f_{4}(2050) \eta$ | $0.6 \pm 0.1 \pm 0.2$ | 9.8 | $0.026 \pm 0.004 \pm 0.008 \pm 0.001$ |
| Exotic candidates |  |  | U.L. $[90 \% \mathrm{C} . \mathrm{L}]$ |
| $\pi_{1}(1400)^{+} \pi^{-}$ | $0.58 \pm 0.20$ | 3.5 | $<0.046$ |
| $\pi_{1}(1600)^{+} \pi^{-}$ | $0.11 \pm 0.10$ | 1.3 | $<0.015$ |
| $\pi_{1}(2015)^{+} \pi^{-}$ | $0.06 \pm 0.03$ | 2.6 | $<0.008$ |

## Amplitude analysis in charm decays

- Decays of a heavy meson into three or more light mesons is ideal for CP studies
- Large number of light meson resonances $\rightarrow$ lots of phase motion in a non-trivial distribution over Dalitz plot


## Amplitude analysis in charm decays

- Decays of a heavy meson into three or more light mesons is ideal for CP studies
- Large number of light meson resonances $\rightarrow$ lots of phase motion in a non-trivial distribution over Dalitz plot
- For the special case of decays to three pseudoscalars, the phase space density is uniform across the Dalitz plot
- Visible structure is a direct consequence of the dynamics of the accessible amplitudes



## Amplitude analysis in charm decays

- Decays of a heavy meson into three or more light mesons is ideal for CP studies
- Large number of light meson resonances $\rightarrow$ lots of phase motion in a non-trivial distribution over Dalitz plot
- For the special case of decays to three pseudoscalars, the phase space density is uniform across the Dalitz plot
- Visible structure is a direct consequence of the dynamics of the accessible amplitudes
- Amplitude analysis provides complete description of data
- Measure decay amplitudes and phases

- Enables accurate measurements of branching fractions
- Environment to study the effects of final state interactions


## Running at threshold

- Quantum correlated D mesons
- No additional hadrons
- Effective background suppression with double-tag technique



## Amplitude analysis of $\mathrm{D}^{+} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{+} \pi^{0}$

- Isobar model of six quasi-two-body CF amplitudes plus a non resonant term
- Golden mode to study $К \pi$ S-wave in $D$ decays
- Cross check with a "quasi-modelindependent" analysis to test the $\mathrm{K}_{\mathrm{s}} \pi^{0}$ S-wave
- Still use BW form for K*(1430)
- Assumes no interaction with $\pi^{+}$




## Fake interference?

- Heavy $\rho$ mesons, $\rho(1450)$ and $\rho(1700)$ both lie outside Dalitz-plot, but are wide
- Tails extend into region of interest
- Both have large fit fractions
- ... but have a small net contribution ( $9 \pm 2$ ) \%
- ... and have nearly $180^{\circ}$ difference in phase


PhysRevD.63.092001 (2001)

- Probably a misrepresentation of the contents of the Dalitz plot
- Choose one (best goodness-of-fit)
- Consider other as systematic uncertainty


Phase
Fit fraction

| $\rho(1700)^{+}$ | $149 \pm 8$ | $75 \pm 18$ |
| :--- | :---: | :---: |
| $\rho(1450)^{+}$ | $-45 \pm 10$ | $34 \pm 11$ |

## Fake interference?

- Heavy $\rho$ mesons, $\rho(1450)$ an outside Dalitz-plot, but are - Tails extend into region o
- Both have large fit fractions

- ... but have a small net contribution ( $9 \pm 2$ ) \%
- ... and have nearly $180^{\circ}$ difference in phase


PhysRevD.89.052001 (2014)

## Amplitude analysis of $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \pi^{+} \pi^{-}$

- One of the three neutral D golden modes (large BF and low background)
- Accurate knowledge of substructure is important to reduce systematic uncertainties for analyses that use this mode as a reference
- Absolute BF measurements of D hadronic modes
- Along with strong phase measurement can help improve precision of $\gamma$
- Theoretical studies of $D^{0}-\bar{D}^{0}$ mixing
- Complicated due to nonuniform phase space of four-body decay and possibility to have two separate intermediate resonances contributing


| Decay mode |
| :--- |
| $D[S] \rightarrow \mathrm{V}_{1} \mathrm{~V}_{2}, \mathrm{~V}_{1} \rightarrow \mathrm{P}_{1} \mathrm{P}_{2}, \mathrm{~V}_{2} \rightarrow \mathrm{P}_{3} \mathrm{P}_{4}$ |
| $D[P] \rightarrow \mathrm{V}_{1} \mathrm{~V}_{2}, \mathrm{~V}_{1} \rightarrow \mathrm{P}_{1} \mathrm{P}_{2}, \mathrm{~V}_{2} \rightarrow \mathrm{P}_{3} \mathrm{P}_{4}$ |
| $D[D] \rightarrow \mathrm{V}_{1} \mathrm{~V}_{2}, \mathrm{~V}_{1} \rightarrow \mathrm{P}_{1} \mathrm{P}_{2}, \mathrm{~V}_{2} \rightarrow \mathrm{P}_{3} \mathrm{P}_{4}$ |
| $D \rightarrow \mathrm{AP}_{1}, \mathrm{~A}[S] \rightarrow \mathrm{VP}_{2}, \mathrm{~V} \rightarrow \mathrm{P}_{3} \mathrm{P}_{4}$ |
| $D \rightarrow \mathrm{AP}_{1}, \mathrm{~A}[D] \rightarrow \mathrm{VP}_{2}, \mathrm{~V} \rightarrow \mathrm{P}_{3} \mathrm{P}_{4}$ |
| $D \rightarrow \mathrm{AP}_{1}, \mathrm{~A} \rightarrow \mathrm{SP}_{2}, \mathrm{~S} \rightarrow \mathrm{P}_{3} \mathrm{P}_{4}$ |
| $D \rightarrow \mathrm{VS}_{2} \mathrm{~V} \rightarrow \mathrm{P}_{1} \mathrm{P}_{2}, \mathrm{~S} \rightarrow \mathrm{P}_{3} \mathrm{P}_{4}$ |
| $D \rightarrow \mathrm{~V}_{1} \mathrm{P}_{1}, \mathrm{~V}_{1} \rightarrow \mathrm{~V}_{2} \mathrm{P}_{2}, \mathrm{~V}_{2} \rightarrow \mathrm{P}_{3} \mathrm{P}_{4}$ |
| $D \rightarrow \mathrm{PP}_{1}, \mathrm{P} \rightarrow \mathrm{VP}_{2}, \mathrm{~V} \rightarrow \mathrm{P}_{3} \mathrm{P}_{4}$ |
| $D \rightarrow \mathrm{TS}, \mathrm{T} \rightarrow \mathrm{P}_{1} \mathrm{P}_{2}, \mathrm{~S} \rightarrow \mathrm{P}_{3} \mathrm{P}_{4}$ |

## Limitations on amplitude models

- Model dependence (again...)
- Lineshapes (coupled channels, threshold effects, etc.)
- "Sum of Breit-Wigners" model violates unitarity (especially for broad, overlapping resonances)
- Difficult to differentiate S-wave amplitudes and non-resonant terms (can lead to unphysical phase variations)
- More robust methods
- K-matrix (e.g. for S-wave): elegant way to consider unitarity
- Scattering data to constrain phase variations
- Input from theory (chiral symmetry, dispersion relations)


## Kт S-wave parametrization

- BW line shape for the $K^{*}(1430)$ plus a parametrization for non-resonant component from scattering data
e.g. Crystal Barrel data: $p \bar{p}$ annihilation into $\pi^{0} \pi^{0} \pi^{-}$in liquid $D_{2}$



BaBar: $\mathrm{B} \rightarrow \mathrm{D}^{(*)} \mathrm{K}^{(*)}, \mathrm{D} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{+} \pi^{-}$


- Initial state propagation into final states by S-wave scattering process
- Describe using scattering data
- Assumes two-body system isolated

$$
F_{u}(s)=\sum_{l}[I-i K(s) \rho(s)]_{u v}^{-1} P_{v}(s) .
$$

## Amplitude analysis of $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \pi^{+} \pi^{-}$











PhysRevD.95.072010 (2017)

## Amplitude analysis of $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \pi^{+} \pi^{-}$









PhysRevD.95.072010 (2017)

## Amplitude analysis of $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \pi^{+} \pi^{-}$

| Component | Amplitude | Significance ( $\sigma$ ) |
| :---: | :---: | :---: |
| $D^{0} \rightarrow \bar{K}^{* 0} \rho^{0}$ | $D^{0}[S] \rightarrow \bar{K}^{* 0} \rho^{0}$ | $>10.0$ |
|  | $D^{0}[P] \rightarrow \bar{K}^{* 0} \rho^{0}$ | $>10.0$ |
|  | $D^{0}[D] \rightarrow \bar{K}^{* 0} \rho^{0}$ | >10.0 |
| $D^{0} \rightarrow K^{-} a_{1}^{+}(1260), a_{1}^{+}(1260) \rightarrow \rho^{0} \pi^{+}$ | $D^{0} \rightarrow K^{-} a_{1}^{+}(1260), a_{1}^{+}(1260)[S] \rightarrow \rho^{0} \pi^{+}$ | >10.0 |
|  | $D^{0} \rightarrow K^{-} a_{1}^{+}(1260), a_{1}^{+}(1260)[D] \rightarrow \rho^{0} \pi^{+}$ | 7.4 |
| $D^{0} \rightarrow K_{1}^{-}(1270) \pi^{+}, K_{1}^{-}(1270) \rightarrow \bar{K}^{* 0} \pi^{-}$ | $D^{0} \rightarrow K_{1}^{-}(1270) \pi^{+}, K_{1}^{-}(1270)[S] \rightarrow \bar{K}^{* 0} \pi^{-}$ | 4.3 |
|  | $D^{0} \rightarrow K_{1}^{-}(1270) \pi^{+}, K_{1}^{-}(1270)[D] \rightarrow \bar{K}^{* 0} \pi^{-}$ | 9.6 |
| $D^{0} \rightarrow K_{1}^{-}(1270) \pi^{+}, K_{1}^{-}(1270) \rightarrow K^{-} \rho^{0}$ | $D^{0} \rightarrow K_{1}^{-}(1270) \pi^{+}, K_{1}^{-}(1270)[S] \rightarrow K^{-} \rho^{0}$ | > 10.0 |
| $D^{0} \rightarrow K^{-} \pi^{+} \rho^{0}$ | $D^{0} \rightarrow\left(\rho^{0} K^{-}\right)_{\mathrm{A}} \pi^{+},\left(\rho^{0} K^{-}\right)_{\mathrm{A}}[D] \rightarrow K^{-} \rho^{0}$ | 9.6 |
|  | $D^{0} \rightarrow\left(K^{-} \rho^{0}\right)_{\mathrm{P}} \pi^{+}$ | 7.0 |
|  | $D^{0} \rightarrow\left(K^{-} \pi^{+}\right)_{\text {S-wave }} \rho^{0}$ | 5.1 |
|  | $D^{0} \rightarrow\left(K^{-} \rho^{0} \pi^{+}\right)_{\mathrm{V}} \pi^{+}$ | 6.8 |
| $D^{0} \rightarrow \bar{K}^{* 0} \pi^{+} \pi^{-}$ | $D^{0} \rightarrow\left(\bar{K}^{* 0} \pi^{-}\right)_{\mathrm{P}} \pi^{+}$ | 8.5 |
|  | $D^{0} \rightarrow \bar{K}^{* 0}\left(\pi^{+} \pi^{-}\right)_{S}$ | 8.9 |
|  | $D^{0} \rightarrow\left(\bar{K}^{* 0} \pi^{-}\right)_{\mathrm{V}} \pi^{+}$ | 9.7 |
| $D \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}$ | $D^{0} \rightarrow\left(\left(K^{-} \pi^{+}\right)_{\text {S-wave }} \pi^{-}\right)_{\mathrm{A}} \pi^{+}$ | $>10.0$ |
|  | $D^{0} \rightarrow K^{-}\left(\left(\pi^{+} \pi^{-}\right)_{\mathrm{S}} \pi^{+}\right)_{\mathrm{A}}$ | $>10.0$ |
|  | $D^{0} \rightarrow\left(K^{-} \pi^{+}\right)_{\text {S-wave }}\left(\pi^{+} \pi^{-}\right)_{\mathrm{S}}$ | $>10.0$ |
| About 40\% comes from nonresonant -body ( $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \pi^{-} \pi^{+}$) and three-body $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \rho^{0}$ and $\left.\mathrm{D}^{0} \rightarrow \mathrm{~K}^{*-} \Pi^{+} \pi^{-}\right)$decays | $D^{0}[S] \rightarrow\left(K^{-} \pi^{+}\right)_{\mathrm{V}}\left(\pi^{+} \pi^{-}\right)_{\mathrm{V}}$ | 8.8 |
|  | $D^{0} \xrightarrow{\rightarrow}\left(K^{-} \pi^{+}\right)_{\text {S-wave }}\left(\pi^{+} \pi^{-}\right)_{\mathrm{V}}$ | 5.8 |
|  | $D^{0} \rightarrow\left(K^{-} \pi^{+}\right)_{\mathrm{V}}\left(\pi^{+} \pi^{-}\right)_{\mathrm{S}}$ | $>10.0$ |
|  | $D^{0} \rightarrow\left(K^{-} \pi^{+}\right)_{\mathrm{T}}\left(\pi^{+} \pi^{-}\right)_{\mathrm{S}}$ | 6.8 |
|  | $D^{0} \rightarrow\left(K^{-} \pi^{+}\right)_{S \text {-wave }}\left(\pi^{+} \pi^{-}\right)_{\mathrm{T}}$ | 9.7 |

## Amplitude analysis of $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \pi^{+} \pi^{-}$

| Component | An |
| :---: | :---: |
| $D^{0} \rightarrow \bar{K}^{* 0} \rho^{0}$ | $D^{0}[S]$ |
|  | $D^{0}[P$ $D^{0}[D$ |
| $D^{0} \rightarrow K^{-} a_{1}^{+}(1260), a_{1}^{+}(1260) \rightarrow \rho^{0} \pi^{+}$ | $\begin{aligned} & D^{0} \rightarrow K^{-} a_{1}^{+}(1260 \\ & D^{0} \rightarrow K^{-} a_{1}^{+}(1260) \end{aligned}$ |
| $D^{0} \rightarrow K_{1}^{-}(1270) \pi^{+}, K_{1}^{-}(1270) \rightarrow \bar{K}^{* 0} \pi^{-}$ | $\begin{gathered} D^{0} \rightarrow K_{1}^{-}(1270) \pi^{+} \\ D^{0} \rightarrow K_{1}^{-}(1270) \pi^{+} \end{gathered}$ |
| $D^{0} \rightarrow K_{1}^{-}(1270) \pi^{+}, K_{1}^{-}(1270) \rightarrow K^{-} \rho^{0}$ | $D^{0} \rightarrow K_{1}^{-}(1270) \pi^{+}$ |
| $D^{0} \rightarrow K^{-} \pi^{+} \rho^{0}$ | $\begin{array}{r} D^{0} \rightarrow\left(\rho^{0} K^{-}\right)_{\mathrm{A}} \pi^{+} \\ D^{0} \xrightarrow{\rightarrow} \end{array}$ |
|  | $D^{0} \rightarrow(K$ |
|  | $D^{0} \rightarrow$ |
| $D^{0} \rightarrow \bar{K}^{* 0} \pi^{+} \pi^{-}$ | $D^{0} \rightarrow$ |
|  | $D^{0} \rightarrow$ |
| $D \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}$ | $D^{0} \rightarrow\left(\left(K^{-}\right.\right.$ |
|  | $D^{0} \rightarrow K^{-}$ |
| About 40\% comes from nonresonant four-body ( $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+} \pi^{-} \pi^{+}$) and three-body $\left(D^{0} \rightarrow K^{-} \pi^{+} \rho^{0}\right.$ and $\left.D^{0} \rightarrow K^{-} \pi^{+} \pi^{-}\right)$decays | $\xrightarrow{D^{0} \rightarrow\left(K^{-},\right.}$ |
|  | $D^{0} \rightarrow\left(K^{-} \pi\right.$ |
|  | $\mathrm{D}^{0} \rightarrow(K$ |
|  | $D^{0} \rightarrow(K$ |
|  | $D^{0} \rightarrow\left(K^{-} \pi\right.$ |

The amplitudes listed below are tested when determining the nominal fit model, but not used in our final fit result.
(1) Cascade amplitudes
(a) $K_{1}^{-}(1270)\left(\rho^{0} K^{-}\right) \pi^{+}, \rho^{0} K^{-} D$-wave
(b) $K_{1}^{-}(1400)\left(\bar{K}^{* 0} \pi^{-}\right) \pi^{+}, \bar{K}^{* 0} \pi^{-} S$ and $D$-waves
(c) $K^{*-}(1410)\left(\bar{K}^{* 0} \pi^{-}\right) \pi^{+}$
(d) $K_{2}^{*-}(1430)\left(\bar{K}^{* 0} \pi^{-}\right) \pi^{+}, K_{2}^{*-}(1430)\left(K^{-} \rho^{0}\right) \pi^{+}$
(e) $K^{*-}(1680)\left(\bar{K}^{* 0} \pi^{-}\right) \pi^{+}, K^{*-}(1680)\left(K^{-} \rho^{0}\right) \pi^{+}$
(f) $K_{2}^{*-}(1770)\left(\bar{K}^{* 0} \pi^{-}\right) \pi^{+}, K_{2}^{*-}(1770)\left(K^{-} \rho^{0}\right) \pi^{+}$
(g) $K^{-} a_{2}^{+}(1320)\left(\rho^{0} \pi^{+}\right)$
(h) $K^{-} \pi^{+}(1300)\left(\rho^{0} \pi^{+}\right)$
(i) $K^{-} a_{1}^{+}(1260)\left(f_{0}(500) \pi^{+}\right)$
(2) Quasi-two-body amplitudes
(a) $\bar{K}^{* 0} f_{0}(500)$
(b) $\bar{K}^{* 0} f_{0}(980)$
(3) Three-body amplitudes
(a) $\bar{K}^{* 0}\left(\pi^{+} \pi^{-}\right)_{\mathrm{V}} S, P$ - and $D$-waves
(b) $\left(K^{-} \pi^{+}\right)_{\mathrm{v}} \rho^{0} S, P$ and $D$-waves
(c) $\bar{K}_{2}^{* 0}(1430)\left(\pi^{+} \pi^{-}\right)_{\mathrm{S}}$
(d) $\bar{K}_{2}^{20}(1430) \rho^{0}$
(e) $\bar{K}^{* 0} f_{2}(1270)$
(f) $\left(K^{-} \pi^{+}\right)_{\mathrm{s}} f_{2}(1270)$
(g) $K^{-}\left(\rho^{0} \pi^{+}\right)_{\mathrm{V}}$
(h) $K^{-}\left(\rho^{0} \pi^{+}\right)_{\mathbf{P}}$
(i) $K^{-}\left(\rho^{0} \pi^{+}\right)_{\mathrm{A}}$
(j) $K^{-}\left(\rho^{0} \pi^{+}\right)_{\mathrm{T}}$
(k) $\left(\bar{K}^{* 0} \pi^{-}\right)_{\mathrm{T}} \pi^{+}$
(l) $\left(K^{-} \rho^{0}\right)_{T} \pi^{+}$
(m) $\left(\bar{K}^{* 0} \pi^{-}\right)_{\mathrm{A}} \pi^{+}, \bar{K}^{* 0} \pi^{-} S$ and $D$-waves
(4) Four-body nonresonance amplitudes
(a) $\left(K^{-} \pi^{+}\right)_{\mathrm{T}}\left(\pi^{+} \pi^{-}\right)_{\mathrm{V}} P$ - and $D$-waves
(b) $\left(K^{-} \pi^{+}\right)_{\mathrm{V}}\left(\pi^{+} \pi^{-}\right)_{\mathrm{T}} P$ - and $D$-waves
(c) $\left(K^{-} \pi^{+}\right)_{\mathrm{V}}\left(\pi^{+} \pi^{-}\right)_{\mathrm{V}} P$ - and $D$-waves
(d) $\left(K^{-}\left(\pi^{+} \pi^{-}\right)_{\mathrm{S}}\right)_{\mathrm{A}} \pi^{+}$

## Common challenges for amplitude analyses

- Requires many many fits!
- Must consider additional resonances as a source of systematic uncertainty
- These fits also have many free parameters
- With every increasing statistics, this becomes a computational problem
- A set of amplitudes can be "sufficient", but how do we know it is "correct"?
- Usually neglected: phase space dependent systematics
(e.g. momentum dependent tracking efficiency)
- How to treat detector resolution?
- Difficult for unbinned fits
- Not a worry for broad resonances, but what about narrow ones?
- How do we know if we found the global minimum?
- How to judge goodness of fit?
- How to deal with multiple solutions?


## Summary

- BES III has impressive data sets for light hadron spectroscopy, charm at threshold, XYZ physics, etc.
- Amplitude analysis plays a key role in the BESIII physics program
- Many new results, with much more to come!
- Especially with increasing statistics, challenging and interesting problems
- We have beautiful data that are extremely hard to fit very well


## Summary

- BES III has impressive data sets for light hadron spectroscopy, charm at threshold, XYZ physics, etc.
- Amplitude analysis plays a key role in the BESIII physics program
- Many new results, with much more to come!
- Especially with increasing statistics, challenging and interesting problems
- We have beautiful data that are extremely hard to fit very well
- We need you!
...to come up with unique solutions



## Go Penguins!

## Penguins repeat Stanley Cup with Game 6 win



## Extra slides

## BESIII at BEPCII

- The physics goals of BESIII cover a diverse range:
- Light hadron spectroscopy, charm physics, $\tau$ physics, charmonium physics
 Partial wave analysis of $J / \psi \rightarrow \gamma \eta \eta$
- Mass dependent fit with

Breit-Wigner lineshapes

- Study existence and dominance of iscoscalar scalar and tensor states

(h) $M_{m}\left(G e V / c^{2}\right)$

(i) $\mathrm{Mm}_{m}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$

Amplitude analysis of the $\pi^{0} \pi^{0}$ system produced in radiative $J / \psi$ decays


Mass independent fit to extract a piecewise function that describes the dynamics of the $\Pi^{0} \Pi^{0}$ system is determined as a function of $\mathrm{M}_{\text {топо }}$


$$
J / \psi \rightarrow \eta \phi \pi^{+} \pi^{-}
$$

- Observed $Y(2175)$ : possible strangeonium counterpart of $\mathrm{Y}(4260)$
- Observed $\eta(1295)$ : existence is questionable



## BESIII at BEPCII

- The physics goals of BESIII cover a diverse range:
- Light hadron spectroscopy, charm physics, $\tau$ physics, charmonium physics

Precision measurements of $\boldsymbol{B}\left(\boldsymbol{D}^{+} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\nu}_{\boldsymbol{\mu}}\right)$

$$
B\left(D^{+} \rightarrow \mu^{+} \nu_{\mu}\right)=\text { BESIII: PRD 89, 051104(R) (2014) }
$$

$[3.71 \pm 0.19$ (stat) $\pm 0.06$ (sys) $] \times 10^{-4}$

- Using $\left|V_{\text {cd }}\right|$ from global SM fit, $f_{D+}=(203.2 \pm 5.3 \pm 1.8) \mathrm{MeV}$
- Using lattice QCD prediction for $\mathrm{f}_{\mathrm{D}+}$, $\left|V_{c d}\right|=0.2210 \pm 0.0058 \pm 0.0047$
- In either case, these are the most precise results for these quantities


Measurement of the relative strong-phase
 strong phe

Preliminary $D^{0}$ and $D^{0}$ decays to $K^{0} \pi^{+} \pi^{-}$

- Significant improvement in a previously statistically limited measurement

Precision Measurement of the Mass of the $\tau$ Lepton
BESIII: PRD 90, 012001 (2014)


## BESIII at BEPCII

- The physics goals of BESIII cover a diverse range:
- Light hadron spectroscopy, charm physics, $\tau$ physics, charmonium physics
- XYZ physics:
- $Z_{c}(3900)^{ \pm}$to $\pi^{+} \pi^{-J} / \psi(2013)$
- $Z_{c}(3900)^{0}$ to $\pi^{0} \pi^{0} \mathrm{~J} / \psi(2015)$
- $Z_{c}(3885)^{ \pm}$to (DD*) ${ }^{ \pm}$(2014)
- $Z_{c}(3885)^{0}$ to $\left(D^{*}\right)^{0}$ (2015)
- $Z_{c}(4020)^{ \pm}$to $\pi^{+} \pi^{-h c ~(2013)}$
- $Z_{c}(4020)^{0}$ to $\pi^{0} \pi^{0} h_{c}$ (2014)
- $Z_{c}(4025)^{ \pm}$to ( $\left.D^{*} D^{*}\right)^{ \pm}(2013)$
- $Z_{c}(4025)^{0}$ to $\left(D^{*} D^{*}\right)^{0}(2015)$
- Observation of $X(3823)(2015)$
- $Y$ states in $\pi^{+} \pi^{-} \mathrm{J} / \psi$ (2017) and $\pi^{+} \pi^{-} h_{c}$ (2017)

Figure by R. Mitchell


## Summary of Z states observed at BESIII

- Several Z states have been measured in c̄ and open charm final states
- Isospin triplet appears to be established for all of them
- Masses and widths are comparable in measurements to $\pi J / \psi$ and $D\left({ }^{*}\right) D^{*}$



## Amplitude analysis

- Use the Intensity function to calculate a (properly normalized) probability to find an event at some position in phase space $\vec{x}$, with model parameters $\theta$ :

$$
f(\vec{x} \mid \theta)=\frac{\eta(\vec{x}) I(\vec{x} \mid \theta)}{\int \eta(\vec{x}) I(\vec{x} \mid \theta) d x}
$$

and fold in Poisson statistics to obtain a likelihood:

$$
L(\vec{x}, \theta)=\frac{\left(e^{-\mu} \mu^{N}\right)}{N!} \prod_{i=1}^{N} \frac{\eta\left(\overrightarrow{x_{i}}\right) I\left(\overrightarrow{x_{i}} \mid \theta\right)}{\int \eta(\vec{x}) I(\vec{x} \mid \theta) d \vec{x}} . \quad \text { where } \mu=\int \eta(\vec{x}) I(\vec{x} \mid \theta) d \vec{x}
$$

- Take the natural log of the likelihood and cancel like terms (drop terms that are constant in $\theta$ ):

$$
\ln L=\sum_{i=1}^{N} \ln I\left(\overrightarrow{x_{i}} \mid \theta\right)-\int \eta(\vec{x}) I(\vec{x} \mid \theta) d \vec{x}
$$

## Hadron spectroscopy with charmonium decays

- BESIII has world leading samples of J/ $\Psi$ and $\psi^{\prime}$ decays
- "Glue-rich" environment
- The J/ $\psi$ and $\psi^{\prime}$ masses are below open charm threshold, so OZI suppressed processes dominate
- Suppression factor on radiative decays due to fine structure constant only about a factor of 10
- Radiative decays about $8 \%$ of the total cross section
- (Naive) Flavor-tagging with decays to light mesons



## K-matrix (for S-wave)

Reconstruct $00^{++}$wave based on several data sources

Use parameterization in amplitude analysis of $\mathrm{D} \rightarrow \mathrm{K}_{s} \pi^{+} \pi^{-}$

BaBar: $\mathrm{B} \rightarrow \mathrm{D}^{(*)} \mathrm{K}^{(*)}, \mathrm{D} \rightarrow \mathrm{K}_{s} \pi^{+} \pi^{-}$and $\mathrm{K}_{s} \mathrm{~K}^{+} \mathrm{K}^{-}$


Crystal Barrel data: $\mathrm{p} \overline{\mathrm{p}}$ annihilation into $\pi^{0} \pi^{0} \pi^{-}$in liquid $D_{2}$








Sum of fit fractions with K-matrix (isobar) model of S-wave: 103.6\% (122.5\%)

$$
x^{2} / \mathrm{DOF}=1.11(1.20)
$$

## Could also extract S-wave information from J/ $\psi$ decays?

- Extract scalar spectrum from J/ $\psi \rightarrow \gamma \mathrm{PP}\left(\mathrm{eg} . ~ \gamma \pi^{0} \pi^{0}\right)$ in a model independent way
- Easily produced in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions
- No interaction with final state photon
- Very clean neutral channel (backgrounds ~2\%)
 and relatively simple amplitude analysis ( $\mathrm{J}^{\mathrm{PC}}=$ even ${ }^{++}$only)
- Results may be combined with those of similar reactions for a more comprehensive study of the light scalar meson spectrum



## $\mathrm{J} / \psi \rightarrow \gamma \pi^{0} \pi^{0}$ : Alternate Results

- Nominal results include subtraction of $\mathrm{p} \mathrm{\eta}\left({ }^{\prime}\right)$ backgrounds
- Repeat analysis without background subtraction (assume only signal events)
- Difference between the nominal and alternate results gives a very conservative estimate of systematic effect from $\gamma \eta\left({ }^{\prime}\right)$ backgrounds




## Note on background subtraction

- Not all events in the data sample are signal events!
- Approximate the effect of backgrounds using a MC sample or sidebands (better description, but comes with challenges) and remove with a term in the likelihood
- Parametrize backgrounds and include in PDF



## Importance of final state interactions

- Long distance strong interaction effects can cause significant changes in decay rates and phases of decay amplitudes
- Rich substructure in Dalitz plot spectra indicate complexity of FSI
- Use weak three-body decays of open heavy flavor mesons to study interference between intermediate resonances

- More kinematic freedom than two-body final states
- Intermediate resonances dominate and cause non-uniform distribution of events in Dalitz plot
- Better understanding of final state interactions in $D$ decays is important to reduce uncertainties related to $D^{0}-\bar{D}^{0}$ mixing parameters and of the angle $\gamma$


[^0]:    * Zou \& Bugg, Eur.Phys.J. A16 (2003) 537, Dulat \& Zou, hep-ph/0403097, Dulat, Liu, Zou \& Wu, hep-ph/0403136, Dulat \& Zou Eur.Phys.J. A26 (2005) 125-134

