Amplitude analysis at BESIII

Jake Bennett Carnegie Mellon University

2017 International Summer Workshop on Reaction Theory

BEST

Carnegie Mellon

Introduction to the experiment

BEPCII accelerator

1. Produce e+e- collisions in the tau-charm region

BESIII detector

2. Detect the decay products of charmonium states

4. Try to learn something about QCD

3. Study their properties and decays

- The physics goals of BESIII cover a diverse range:
 - Light hadron spectroscopy, charm physics, τ physics, charmonium physics
- e⁺e⁻ collisions in the charmonium mass region
 - Use the properties and decays of charmonium states to study QCD

BEPC-II e+e- Collider

BESIII

- The physics goals of BESIII cove
 - Light hadron spectroscopy,
- e⁺e⁻ collisions in the charmoni
 - Use the properties and dec

BEPCII: Institute for High Energy Ph Beijing, China

BESIII

- The physics goals of BESIII cove
 - Light hadron spectroscopy,

Muon Counter

TOF

Be beam pipe

- e⁺e⁻ collisions in the charmoni
 - Use the properties and dec

SC magnet

- The physics goals of BESIII cover a diverse range:
 - Light hadron spectroscopy, charm physics, τ physics, charmonium physics
- e⁺e⁻ collisions in the charmonium mass region
 - Use the properties and decays of charmonium states to study QCD

• Building and running the accelerator and detector are only the first step!

- Building and running the accelerator and detector are only the first step!
 - Carefully calibrate the detectors and reconstruction algorithms
 - Translate detector-level hits and showers into analysis-level information

- Building and running the accelerator and detector are only the first step!
 - Carefully calibrate the detectors and reconstruction algorithms
 - Translate detector-level hits and showers into analysis-level information
 - Attempt to cleanly separate events of interest from backgrounds (intensive!)

Total size of data sample: ~1.31 x 10⁹ events

- Building and running the accelerator and detector are only the first step!
 - Carefully calibrate the detectors and reconstruction algorithms
 - Translate detector-level hits and showers into analysis-level information
 - Attempt to cleanly separate events of interest from backgrounds (intensive!)

Total size of data sample: ~1.31 x 10⁹ events Size of sample after signal isolation: ~4.4 x 10⁵ events Background contamination remaining: < 2%

- Building and running the accelerator and detector are only the first step!
 - Carefully calibrate the detectors and reconstruction algorithms
 - Translate detector-level hits and showers into analysis-level information
 - Attempt to cleanly separate events of interest from backgrounds (intensive!)
 - Use the analysis-level information (basically four-vectors) in the analysis
 - Account for systematic uncertainties (difficult!)

Total size of data sample: ~1.31 x 10⁹ events Size of sample after signal isolation: ~4.4 x 10⁵ events Background contamination remaining: < 2%

Amplitude analysis for constraining models

- Fairly recent puzzle: XYZ states
 - Appear to be at odds with standard quarkonium phenomenology
 - Interpretations abound: multi-quark states, loosely bound hadron molecules, hybridized states, hadro-quarkonia, gluonic excitations, rescattering effects, virtual state poles, anomalous thresholds
 - Is there a principle (or a few) that describe the new phenomena?

J. Bennett 12

PhysRevLett.110.252001 (2013)

Amplitude analysis for constraining models

Viewpoint: New Particle Hints at Four-Quark Matter

Eric Swanson, University of Pittsburgh, Pittsburgh, PA 15260, USA

Published June 17, 2013 | Physics 6, 69 (2013) | DOI: 10.1103/Physics.6.69

states, loosely bound hadron molecules, hybridized states, hadro-quarkonia, gluonic excitations, rescattering effects, virtual state poles, anomalous thresholds

- Is there a principle (or a few) that describe the new phenomena?
- At low statistics, simple fit with BW shape enough to stimulate interest
- In order to discriminate between models, need high statistics and must account for angular correlations/interference

Amplitude analysis at BESIII

- Many HEP analyses involve searches for peaks in some invariant mass spectrum -
 - Attempt to account for all backgrounds
 - Extract parameters of intermediate states

Amplitude analysis at BESIII

- Many HEP analyses involve searches for peaks in some invariant mass spectrum -
 - Attempt to account for all backgrounds
 - Extract parameters of intermediate states
- Many systems are not so simple
 - Broad, overlapping, near thresholds

 Rather than traditional "bump hunting" for states, requires more sophisticated techniques like amplitude analysis

- Coupling of initial and final states given by invariant amplitudes
- Amplitude analysis: tool to extract the complex amplitudes from experimental data
 - Requires some model that contains free parameters
 - Consider all kinematics of final state particles
 - Vary the free parameters to maximize the likelihood that the model is a good description of the data sample
- Has its own challenges
 - How to construct amplitudes? How many amplitudes are needed? Are there ambiguities? How to deal with backgrounds?

$$S_{fi} = \langle f|S|i\rangle$$

- Has its own challenges
 - How to construct amplitudes?

You will learn about this!

- Has its own challenges ullet
 - How to construct amplitudes?
 - How many amplitudes are needed?

$$J/\psi \rightarrow \gamma \eta \eta$$
; a typical BESIII "PWA"

(a) M_(GoV/c²)

(g)

6 $M^2(\gamma\eta) (GeV/C^2)^2$ 0 З 6 $M^2(\gamma\eta) (\text{GeV/c}^2)^2$ (c)

(c) M_m(GoV/c²)

Many issues related to this!

(b) M_(GoV/c²)

- Has its own challenges
 - How to construct amplitudes?
 - How many amplitudes are needed?
 - Are there ambiguities?

Somewhat inherent in observing only the amplitude squared

 $J/\psi \rightarrow \gamma \pi^0 \pi^0$; mass independent amplitude analysis

PhysRevD.92.052003 (2015)

- Has its own challenges
 - How to construct amplitudes?
 - How many amplitudes are needed?
 - Are there ambiguities?
 - How to deal with backgrounds?

PhysRevD.92.052003 (2015)

Hadron spectroscopy with charmonium decays

• BESIII has world leading samples of J/ ψ and ψ ' decays

Amplitude analysis at BESIII

Hadron spectroscopy with charmonium decays

- BESIII has world leading samples of J/ ψ and ψ ' decays
- "Glue-rich" environment in which to search for glueballs
 - The J/ψ and ψ' masses are below open charm threshold, so OZI suppressed processes dominate
 - Suppression factor on radiative decays due to fine structure constant only about a factor of 10
 - Radiative decays account for about 8% of the total cross section

- Amplitudes constructed in the covariant tensor formalism*
- Use a Breit-Wigner line shape to describe the decay dynamics
 - Easy, but mostly wrong... (more on this later)

* Zou & Bugg, Eur.Phys.J. A16 (2003) 537, Dulat & Zou, hep-ph/0403097, Dulat, Liu, Zou & Wu, hep-ph/0403136, Dulat & Zou Eur.Phys.J. A26 (2005) 125-134

- Amplitudes constructed in the covariant tensor formalism*
- Use a Breit-Wigner line shape to describe the decay dynamics
- Add intermediate states according to some prescription
 - 1. Choose some (not quite arbitrary) set of amplitudes as base model
 - Consider previous studies, states in PDG, some educated guesses

* Zou & Bugg, Eur.Phys.J. A16 (2003) 537, Dulat & Zou, hep-ph/0403097, Dulat, Liu, Zou & Wu, hep-ph/0403136, Dulat & Zou Eur.Phys.J. A26 (2005) 125-134

- Amplitudes constructed in the covariant tensor formalism
- Use a Breit-Wigner line shape to describe the decay dynamics
- Add intermediate states according to some prescription
 - 1. Choose some (not quite arbitrary) set of amplitudes as base model
 - 2. Add an additional amplitude
 - Add one additional amplitude out of a pool of candidates*
 - 3. Fit or scan likelihood to determine masses and widths of resonances

We tested the following mesons listed in PDG 2012: $f_2(1270)$, $f_0(1370)$, $f_2(1430)$, $f_0(1500)$, $f'_2(1525)$, $f_2(1565)$, $f_2(1640)$, $f_0(1710)$, $f_2(1810)$, $f_2(1910)$, $f_2(1950)$, $f_2(2010)$, $f_0(2020)$, $f_4(2050)$, $f_0(2100)$, $f_2(2150)$, $f_0(2200)$, $f_J(2220)$, $f_2(2300)$, $f_4(2300)$, $f_0(2330)$, $f_2(2340)$.

- Amplitudes constructed in the covariant tensor formalism
- Use a Breit-Wigner line shape to describe the decay dynamics
- Add intermediate states according to some prescription
 - 1. Choose some (not quite arbitrary) set of amplitudes as base model
 - 2. Add an additional amplitude
 - 3. Fit or scan likelihood to determine masses and widths of resonances
 - 4. Take likelihood ratios to determine significance of amplitude
 - 5. Throw away amplitudes with less than 5σ significance

- Amplitudes constructed in the covariant tensor formalism
- Use a Breit-Wigner line shape to describe the decay dynamics
- Add intermediate states according to some prescription
 - 1. Choose some (not quite arbitrary) set of amplitudes as base model
 - 2. Add an additional amplitude
 - 3. Fit or scan likelihood to determine masses and widths of resonances
 - 4. Take likelihood ratios to determine significance of amplitude
 - 5. Throw away amplitudes with less than 5σ significance
 - 6. Iterate until solution converges
 - Repeat and keep the most significant amplitude
 - Stop when no additional amplitudes are significant

Partial wave analysis of $J/\psi \rightarrow \gamma \eta \eta$

Mass (MeV/ c^2)	Width (MeV/ c^2)	$\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$	Significance
1468+14+23 -15-74	136+41+28 -26-100	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$	8.2σ
$1759 \pm 6^{+14}_{-25}$	$172 \pm 10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	25.0σ
$2081 \pm 13^{+24}_{-36}$	273+27+70 273-24-23	$(1.13^{+0.09}_{-0.10}) \times 10^{-4}$	13.9σ
$1513 \pm 5^{+4}_{-10}$	75^{+12+16}_{-10-8}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	11.0σ
1822 ⁺²⁹⁺⁶⁶ -24-57	229 ⁺⁵²⁺⁸⁸ -42 ⁻¹⁵⁵	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	6.4 <i>a</i>
$2362^{+31}_{-30-63}^{+140}$	$334_{-54-100}^{+62+165}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$	7.6σ
	$\frac{\text{Mass (MeV}/c^2)}{1468^{+14+23}_{-15-74}} \\ 1759 \pm 6^{+14}_{-25} \\ 2081 \pm 13^{+24}_{-36} \\ 1513 \pm 5^{+4}_{-10} \\ 1822^{+29+66}_{-24-57} \\ 2362^{+31+140}_{-30-63} \\ \end{cases}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

PhysRevD.87.092009 (2013)

*How many amplitudes are needed?

- A set of amplitudes can be "sufficient", how do we know it is "correct"?
- Common practice: Throw away amplitudes with less than 5σ significance
 - Somewhat arbitrary why not 3σ , 4σ ?
 - Often combined with other criteria contributes >1% of events, size of interference with other amplitudes
 - Really only a valid statistical criterion if the background model (i.e. all other amplitudes) are correct
 - Get "fake" 5 sigmas more often than in truly Gaussian statistics

*How many amplitudes are needed?

- A set of amplitudes can be "sufficient", how do we know it is "correct"?
- Common practice: Throw away amplitudes with less than 5σ significance
 - Somewhat arbitrary why not 3σ , 4σ ?
 - Often combined with other criteria contributes >1% of events, size of interference with other amplitudes
 - Really only a valid statistical criterion if the background model (i.e. all other amplitudes) are correct
 - Get "fake" 5 sigmas more often than in truly Gaussian statistics
- How do we know if we found the global minimum?

*How many amplitudes are needed?

- A set of amplitudes can be "sufficient", how do we know it is "correct"?
- Common practice: Throw away amplitudes with less than 5σ significance
 - Somewhat arbitrary why not 3σ , 4σ ?
 - Often combined with other criteria contributes >1% of events, size of interference with other amplitudes
 - Really only a valid statistical criterion if the background model (i.e. all other amplitudes) are correct
 - Get "fake" 5 sigmas more often than in truly Gaussian statistics
- How do we know if we found the global minimum?
- How to judge goodness of fit?

More technical challenges

- Requires many many fits!
 - Must consider additional resonances as a source of systematic uncertainty
 - These fits also have many free parameters
 - With ever increasing statistics, this becomes a computational problem

More technical challenges

- Requires many many fits!
 - Must consider additional resonances as a source of systematic uncertainty
 - These fits also have many free parameters
 - With ever increasing statistics, this becomes a computational problem
- Usually neglected: phase space dependent systematics (e.g. momentum dependent tracking efficiency)

How to treat detector resolution?

- 1. Very narrow states (e.g. K_s, J/ ψ): typically force to nominal mass via a kinematic fit
- 2. Extremely broad states (e.g. ρ): resolution does not really matter
- 3. In between (e.g. ϕ): width and detector resolution are comparable (tricky!)

How to treat detector resolution?

- 1. Very narrow states (e.g. K_s, J/ ψ): typically force to nominal mass via a kinematic fit
- 2. Extremely broad states (e.g. ρ): resolution does not really matter
- 3. In between (e.g. ϕ): width and detector resolution are comparable (tricky!)
 - Cannot convolute BW with a Gaussian because interference happens before resolution
 - Can cause significant deviations in model parameters
 - Some ideas to deal with this if the effect (e.g. KK mass for the φ): computationally expensive Gaussian sampling near measured phase space point
 - No obvious extension to a high-dimensional phase-space

Breit-Wigner Parametrization of a Resonance

- Commonly used parametrization: (interfering) Breit-Wigner model
 - Only valid for isolated, single resonance decaying into a single channel above threshold
Amplitude analysis at BESIII

Breit-Wigner Parametrization of a Resonance

- Commonly used parametrization: (interfering) Breit-Wigner model
 - Only valid for isolated, single resonance decaying into a single channel above threshold

$$I(m) = |T(m)|^2 = \frac{(\Gamma/2)^2}{(m_0 - m)^2 + (\Gamma/2)^2}$$

 $T(m) = \frac{\Gamma/2}{m_0 - m - i\Gamma/2}$

[simple Breit-Wigner (non-relativistic, constant width)]

Breit-Wigner Parametrization of a Resonance

- Commonly used parametrization: (interfering) Breit-Wigner model
 - Only valid for isolated, single resonance decaying into a single channel above threshold
- In reality resonances can
 - overlap in a single channel
 - can decay into more than one channel
 - exist in the vicinity of thresholds

Breit-Wigner Parametrization of a Resonance

- Commonly used parametrization: (interfering) Breit-Wigner model
 - Only valid for isolated, single resonance decaying into a single channel above threshold
- In reality resonances can
 - overlap in a single channel
 - can decay into more than one channel
 - exist in the vicinity of thresholds

Example in scattering:

two hypothetical overlapping resonances decaying to $\pi\pi$

 $m_A = 1275 \text{ MeV/c}^2$; $\Gamma_A = 185 \text{ MeV}$

$$m_B = 1565 \text{ MeV/c}^2$$
; $\Gamma_B = 150 \text{ MeV}$

K. Peters, arXiv:hep-ph/0412069v1

Mass independent approach

- Instead of modeling the s-dependence (eg. with a Breit-Wigner), make minimal model assumptions and measure the amplitudes independently in small bins of s
 - Construct a piecewise complex function that describes the s-dependence of the hadron dynamics
 - Provide useful results for model development

PhysRevD.92.052003 (2015)

Mass independent amplitude analysis

- The decay $J/\psi \longrightarrow \gamma \pi^0 \pi^0$ factorizes into

```
radiative transition \pi\pi interaction

\Sigma_{X=\pi\pi,KK,...} < J/\psi |H_{EM}|\gamma_{J\gamma}X_{J12} > < X_{J12} |H_{QCD}|\pi\pi > A_{J\gamma,J12}
```

- Absorb the $\pi\pi$ interaction piece into the (complex) fit parameter
- Goal: extract the function that describes the interaction so it can later be fit to any model that describes ππ dynamics

Mass independent amplitude analysis

• The decay $J/\psi \longrightarrow \gamma \pi^0 \pi^0$ factorizes into

radiative transition $\pi\pi$ interaction $\Sigma_{X=\pi\pi,KK,...} < J/\psi |H_{EM}|\gamma_{J\gamma}X_{J12} > < X_{J12} |H_{QCD}|\pi\pi > A_{J\gamma,J12}$

- Absorb the $\pi\pi$ interaction piece into the (complex) fit parameter
- Goal: extract the function that describes the interaction so it can later be fit to any model that describes ππ dynamics
- Assumptions:
 - Only 0⁺⁺ (E1) and 2⁺⁺ (E1, M2, E3) amplitudes (check the significance of the 4⁺⁺)
 - The function describing the ππ interaction is constant over a small range (15 MeV) of center of mass energy (Vs)

Mass independent amplitude analysis

• The decay $J/\psi \longrightarrow \gamma \pi^0 \pi^0$ factorizes into

radiative transition $\pi\pi$ interaction $\Sigma_{X=\pi\pi,KK,...} < J/\psi |H_{EM}|\gamma_{J\gamma}X_{J12} > < X_{J12} |H_{QCD}|\pi\pi > A_{J\gamma,J12}$

- Absorb the $\pi\pi$ interaction piece into the (complex) fit parameter
- Goal: extract the function that describes the interaction so it can later be fit to any model that describes ππ dynamics
- Assumptions:
 - Only 0⁺⁺ (E1) and 2⁺⁺ (E1, M2, E3) amplitudes (check the significance of the 4⁺⁺)
 - The function describing the $\pi\pi$ interaction is constant over a small range (15 MeV) of center of mass energy (Vs)
- Rescattering effects, KK $\rightarrow \pi\pi$ for example, have the potential to produce *phase differences* between the different components of the 2⁺⁺ amplitude
 - Below KK threshold, the phases of the 2⁺⁺ amplitudes may be constrained to be the same
 - Above KK threshold, rescattering effects introduce ambiguities

*Are there ambiguities?

- An ambiguity arises when multiple sets of parameters yield the same overall value for a function (in this case the intensity)
- Ambiguities are present in many amplitude analyses
 - π⁻ p → π⁰ π⁰ n (E852)
 - Barrelet ambiguities
- General idea:
 - Publish both solutions
 - Alternate interpretations may also be used to fit data

Intensities

Phase differences

Mass($\pi^0\pi^0$) [GeV/c²]

PhysRevD.92.052003 (2015)

PhysRevD.92.052003 (2015)

• Add background events with a negative weight (MC or data sidebands)

$$L(\vec{a}) = \prod_{i=1}^{N_{\text{data}}^{\text{sig}}} f(\vec{a}, \vec{x}_i) \prod_{j=1}^{N_{\text{data}}^{\text{bkg}}} f(\vec{a}, \vec{x}_j)$$

• Add background events with a negative weight (MC or data sidebands)

$$L(\vec{a}) = \prod_{i=1}^{N_{\text{data}}^{\text{sig}}} f(\vec{a}, \vec{x}_i) \prod_{j=1}^{N_{\text{data}}^{\text{bkg}}} f(\vec{a}, \vec{x}_j) \prod_{k=1}^{N_{\text{data}}^{\text{bkg}}} f(\vec{a}, \vec{x}_k)^{-1} \longrightarrow \prod_{i=1}^{N_{\text{data}}^{\text{bkg}}} f(\vec{a}, \vec{x}_i)^{-1} \approx \prod_{i=1}^{N_{\text{MC}}^{\text{bkg}}} f(\vec{a}, \vec{x}_i)^{-w_i}$$

• Add background events with a negative weight (MC or data sidebands)

$$L(\vec{a}) = \left(\prod_{i=1}^{N_{\text{data}}^{\text{sig}}} f(\vec{a}, \vec{x}_i) \prod_{j=1}^{N_{\text{data}}^{\text{bkg}}} f(\vec{a}, \vec{x}_j) \right) \left(\prod_{k=1}^{N_{\text{data}}^{\text{bkg}}} f(\vec{a}, \vec{x}_k)^{-1}\right) \longrightarrow \prod_{i=1}^{N_{\text{data}}^{\text{bkg}}} \prod_{i=1}^{N_{\text{data}}} f(\vec{a}, \vec{x}_i)^{-1} \approx \prod_{i=1}^{N_{\text{bkg}}} f(\vec{a}, \vec{x}_i)^{-w_i}$$
$$\mathcal{L}(\vec{a}) = \frac{e^{-\mu} \mu^{N_{\text{data}}}}{N_{\text{data}}!} \left(\prod_{i=1}^{N_{\text{data}}} f(\vec{a}, \vec{x}_i) \right) \prod_{j=1}^{N_{\text{bkg}}} f(\vec{a}, \vec{x}_j)^{-w_j}$$

• Result is signal only likelihood

What have we gained?

- Experiment independent information about scattering amplitude
 - Minimizes systematic bias arising from assumptions about $\pi\pi$ dynamics
 - Permits the development of dynamical models or parametrizations (no experimental knowledge is needed)
 - Combine results with data from other experiments in a common fit
 - Controlled study of coupled channel effects

JPAC results from MESON 2016

What have we lost?

- Still has drawbacks
 - Ambiguous solutions
 - Large number of parameters
 - Potential bias in subsequent analyses from non-Gaussian effects
- Validity and precision at a level sufficient for model development, but extraction of rigorous values for model parameters only reliably obtained by fitting directly to the data

JPAC results from MESON 2016

Try both? PWA of $J/\psi \rightarrow \gamma \phi \phi$

- Similar mass-dependent procedure as in $J/\psi \rightarrow \gamma \eta \eta$
 - Amplitudes in covariant tensor formalism
 - Data-driven background subtraction

 $-ln\,\mathcal{L}_{sig} = -(ln\,\mathcal{L}_{data} - ln\,\mathcal{L}_{bkg})$

- Resonances parametrized with relativistic Breit-Wigner with constant width
- Also perform mass-independent analysis
 - Fit for each amplitude (J^{PC}) in bins of φφ invariant mass
 - Results of the two methods are consistent

Resonance	M (MeV/ c^2)	$\Gamma~({\rm MeV}/c^2)$	B.F. (×10 ⁻⁴)	Sig.
$\eta(2225)$	2216^{+4+21}_{-5-11}	185^{+12+43}_{-14-17}	$(2.40 \pm 0.10^{+2.47}_{-0.18})$	28σ
$\eta(2100)$	2050^{+30+75}_{-24-26}	$250^{+36+181}_{-30-164}$	$(3.30\pm0.09^{+0.18}_{-3.04})$	22σ
X(2500)	2470+15+101 -19-23	230_{-35-33}^{+64+56}	$(0.17\pm0.02^{+0.02}_{-0.08})$	8.8σ
$f_0(2100)$	2101	224	$(0.43\pm 0.04^{+0.24}_{-0.03})$	24σ
$f_2(2010)$	2011	202	$(0.35\pm0.05^{+0.28}_{-0.15})$	9.5 <i>o</i>
$f_2(2300)$	2297	149	$(0.44\pm0.07^{+0.09}_{-0.15})$	6.4 <i>σ</i>
$f_2(2340)$	2339	319	$(1.91\pm0.14^{+0.72}_{-0.73})$	11σ
0 ⁻⁺ PHSP			$(2.74\pm0.15^{+0.16}_{-1.48})$	6.8 <i>o</i>

Amplitude analysis with three-body decays

- Most commonly performed using the isobar model (and extensions)
 - Express the total amplitude as a coherent sum of quasi-two-body contributions

Amplitude analysis with three-body decays

- Most commonly performed using the isobar model (and extensions)
 - Express the total amplitude as a coherent sum of quasi-two-body contributions

- Fit can be binned or unbinned, but with inherent model dependence
- Need to input strong interaction dynamics (line shapes, barrier factors, etc.)

Amplitude analysis with three-body decays

- Most commonly performed using the isobar model (and extensions)
 - Express the total amplitude as a coherent sum of quasi-two-body contributions

- Fit can be binned or unbinned, but with inherent model dependence
- Need to input strong interaction dynamics (line shapes, barrier factors, etc.)
- Alternative approaches to avoid model dependence usually involve binning

PhysRevD.89.052001 (2014)

$\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

- Amplitude analysis of $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$ decays
 - Potential exotic amplitude $(J^{PC} = 1^{-+})$ lowest orbital excitation of a two-body combination in χ_{c1} decays to three pseudoscalars
 - Several candidate exotic states decaying into different final states, such as $\eta \pi$, $\eta' \pi$, $f_1(1270)\pi$, $b_1(1235)\pi$ and $\rho \pi$ have been reported by various experiments

$$\chi_{c1} \rightarrow \eta \pi^+ \pi^-$$

- Amplitude analysis of χ
 - Potential exotic amp combination in χ_{c1} d
 - Several candidate e> η'π, f₁(1270)π, b₁(12

- Another interesting state, the a₀(980)
 - Four-quark state? ordinary qq state? dynamically generated through mesonmeson interactions?
 - Just below KK threshold: strong coupling generates cusp-like behavior in resonant amplitudes → line shape distorted so mass and width parameters do not correspond to the pole parameters
 - Use dispersion integral to describe line shape and extract information useful to determine the quark structure

 $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

Influence of thresholds is apparent (virtual channel influences distribution)

Describing the dynamics

$\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

• First nonzero coupling of $a_0(980)$ to $\eta'\pi$ (8.9 σ)

Data	$m_0 [\text{GeV}/c^2]$	$g_{\eta\pi}^2 \; [{ m GeV}/c^2]^2$	$g^2_{Kar{K}}/g^2_{\eta\pi}$	$g_{\eta^\prime\pi}^2/g_{\eta\pi}^2$
CLEO-c [10] C.Barrel [20] BESIII BESIII $(R_{31}^2 \equiv 0)$	$\begin{array}{c} 0.998 \pm 0.016 \\ 0.987 \pm 0.004 \\ 0.996 \pm 0.002 \pm 0.007 \\ 0.990 \pm 0.001 \end{array}$	$\begin{array}{c} 0.36 \pm 0.04 \\ 0.164 \pm 0.011 \\ 0.368 \pm 0.003 \pm 0.013 \\ 0.341 \pm 0.004 \end{array}$	$\begin{array}{c} 0.872 \pm 0.148 \\ 1.05 \pm 0.09 \\ 0.931 \pm 0.028 \pm 0.090 \\ 0.892 \pm 0.022 \end{array}$	$\begin{array}{c} 0.00 \pm 0.17 \\ \textbf{0.772} \\ 0.489 \pm 0.046 \pm 0.103 \\ \textbf{0.0} \end{array}$

- First evidence for a₂(1700) in this channel
- Only weak evidence (non-observation) for the $\pi_1(1400)$
 - $\pi_1(1600)$ and $\pi_1(2015)$ not significant

Decay	F [%]	Significance $[\sigma]$	$\mathcal{B}(\chi_{c1} \to \eta \pi^+ \pi^-)$ [10 ⁻³]
$\eta \pi^+ \pi^-$			$4.67 \pm 0.03 \pm 0.23 \pm 0.16$
$a_0(980)^+\pi^-$	$72.8 \pm 0.6 \pm 2.3$	>100	$3.40 \pm 0.03 \pm 0.19 \pm 0.11$
$a_2(1320)^+\pi^-$	$3.8 \pm 0.2 \pm 0.3$	32	$0.18\pm 0.01\pm 0.02\pm 0.01$
$a_2(1700)^+\pi^-$	$1.0 \pm 0.1 \pm 0.1$	20	$0.047 \pm 0.004 \pm 0.006 \pm 0.002$
$S_{\kappa\bar{\kappa}}\eta$	$2.5 \pm 0.2 \pm 0.3$	22	$0.119 \pm 0.007 \pm 0.015 \pm 0.004$
$S_{\pi\pi}\eta$	$16.4 \pm 0.5 \pm 0.7$	>100	$0.76 \pm 0.02 \pm 0.05 \pm 0.03$
$(\pi^{+}\pi^{-})_{S}\eta$	$17.8 \pm 0.5 \pm 0.6$		$0.83 \pm 0.02 \pm 0.05 \pm 0.03$
$f_2(1270)\eta$	$7.8 \pm 0.3 \pm 1.1$	>100	$0.36 \pm 0.01 \pm 0.06 \pm 0.01$
$f_4(2050)\eta$	$0.6 \pm 0.1 \pm 0.2$	9.8	$0.026 \pm 0.004 \pm 0.008 \pm 0.001$
Exotic candidates			U.L. [90% C.L.]
$\pi_1(1400)^+\pi^-$	0.58 ± 0.20	3.5	< 0.046
$\pi_1(1600)^+\pi^-$	0.11 ± 0.10	1.3	< 0.015
$\pi_1(2015)^+\pi^-$	0.06 ± 0.03	2.6	< 0.008

Amplitude analysis in charm decays

- Decays of a heavy meson into three or more light mesons is ideal for CP studies
 - Large number of light meson resonances → lots of phase motion in a non-trivial distribution over Dalitz plot

Amplitude analysis in charm decays

- Decays of a heavy meson into three or more light mesons is ideal for CP studies
 - Large number of light meson resonances → lots of phase motion in a non-trivial distribution over Dalitz plot
- For the special case of decays to three pseudoscalars, the phase space density is uniform across the Dalitz plot
 - Visible structure is a direct consequence of the dynamics of the accessible amplitudes

Amplitude analysis in charm decays

- Decays of a heavy meson into three or more light mesons is ideal for CP studies
 - Large number of light meson resonances → lots of phase motion in a non-trivial distribution over Dalitz plot
- For the special case of decays to three pseudoscalars, the phase space density is uniform across the Dalitz plot
 - Visible structure is a direct consequence of the dynamics of the accessible amplitudes
- Amplitude analysis provides complete description of data
 - Measure decay amplitudes and phases
 - Enables accurate measurements of branching fractions
 - Environment to study the effects of final state interactions

Running at threshold

- Quantum correlated D mesons
- No additional hadrons
- Effective background suppression with double-tag technique

Amplitude analysis of $D^+ \rightarrow K_S \pi^+ \pi^0$

- Isobar model of six quasi-two-body CF amplitudes plus a non resonant term
- Golden mode to study Kπ S-wave in D decays
- Cross check with a "quasi-modelindependent" analysis to test the K_sπ⁰ S-wave
 - Still use BW form for K*(1430)
 - Assumes no interaction with $\pi^{\scriptscriptstyle +}$

PhysRevD.63.092001 (2001)

Fake interference?

- Heavy ρ mesons, ρ(1450) and ρ(1700) both lie outside Dalitz-plot, but are wide
 - Tails extend into region of interest
- Both have large fit fractions
 - ... but have a small net contribution (9 ± 2) %
 - ... and have nearly 180° difference in phase

- Probably a misrepresentation of the contents of the Dalitz plot
 - Choose one (best goodness-of-fit)
 - Consider other as systematic uncertainty

PhysRevD.89.052001 (2014)

Fake interference?

- Heavy ρ mesons, ρ(1450) an outside Dalitz-plot, but are
 - Tails extend into region c
- Both have large fit fractions
 - ... but have a small net contribution (9 ± 2) %

 $\rho(1700)^+$

• ... and have nearly 180° difference in phase

Phase		Fit fraction
	149±8	75±18
1//	-45 ± 10	34 ± 11

sentation of the contents of

goodness-of-fit) systematic uncertainty

Amplitude analysis of $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$

- One of the three neutral D golden modes (large BF and low background)
- Accurate knowledge of substructure is important to reduce systematic uncertainties for analyses that use this mode as a reference
 - Absolute BF measurements of D hadronic modes
 - Along with strong phase measurement can help improve precision of γ
 - Theoretical studies of $D^0-\overline{D}^0$ mixing
- Complicated due to nonuniform phase space of four-body decay and possibility to have two separate intermediate resonances contributing

Decay mode

$$\begin{split} D[S] &\rightarrow V_1 V_2, V_1 \rightarrow P_1 P_2, V_2 \rightarrow P_3 P_4 \\ D[P] &\rightarrow V_1 V_2, V_1 \rightarrow P_1 P_2, V_2 \rightarrow P_3 P_4 \\ D[D] &\rightarrow V_1 V_2, V_1 \rightarrow P_1 P_2, V_2 \rightarrow P_3 P_4 \\ D &\rightarrow A P_1, A[S] \rightarrow V P_2, V \rightarrow P_3 P_4 \\ D &\rightarrow A P_1, A[D] \rightarrow V P_2, V \rightarrow P_3 P_4 \\ D &\rightarrow A P_1, A \rightarrow S P_2, S \rightarrow P_3 P_4 \\ D &\rightarrow V S, V \rightarrow P_1 P_2, S \rightarrow P_3 P_4 \\ D &\rightarrow V P_1, V_1 \rightarrow V_2 P_2, V_2 \rightarrow P_3 P_4 \\ D &\rightarrow P P_1, P \rightarrow V P_2, V \rightarrow P_3 P_4 \\ D &\rightarrow T S, T \rightarrow P_1 P_2, S \rightarrow P_3 P_4 \end{split}$$

Limitations on amplitude models

- Model dependence (again...)
 - Lineshapes (coupled channels, threshold effects, etc.)
 - "Sum of Breit-Wigners" model violates unitarity (especially for broad, overlapping resonances)
 - Difficult to differentiate S-wave amplitudes and non-resonant terms (can lead to unphysical phase variations)
- More robust methods
 - K-matrix (e.g. for S-wave): elegant way to consider unitarity
 - Scattering data to constrain phase variations
 - Input from theory (chiral symmetry, dispersion relations)

 BW line shape for the K*(1430) plus a parametrization for non-resonant component from scattering data

e.g. Crystal Barrel data: $p\bar{p}$ annihilation into $\pi^0\pi^0\pi^-$ in liquid D_2

- Initial state propagation into final states by S-wave scattering process
 - Describe using scattering data
 - Assumes two-body system isolated

$$F_{u}(s) = \sum_{l} [I - iK(s)\rho(s)]_{uv}^{-1} P_{v}(s).$$

Amplitude analysis of $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$

PhysRevD.95.072010 (2017)

Amplitude analysis of $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$

PhysRevD.95.072010 (2017)
Amplitude analysis of $D^0 \rightarrow K^-\pi^+\pi^-\pi^-$

Component	Amplitude	Significance (σ)
$D^0 \rightarrow \bar{K}^{*0} \rho^0$	$D^0[S] \rightarrow \bar{K}^{*0} \rho^0$	>10.0
	$D^0[P] \rightarrow \bar{K}^{*0} \rho^0$	>10.0
	$D^0[D] \rightarrow \bar{K}^{*0} \rho^0$	>10.0
$D^0 \to K^- a_1^+(1260), a_1^+(1260) \to \rho^0 \pi^+$	$D^0 \to K^- a_1^+ (1260), a_1^+ (1260)[S] \to \rho^0 \pi^+$	>10.0
	$D^0 \to K^- a_1^+ (1260), a_1^+ (1260)[D] \to \rho^0 \pi^+$	7.4
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270) \to \bar{K}^{*0}\pi^-$	$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[S] \to \bar{K}^{*0}\pi^-$	4.3
	$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[D] \to \bar{K}^{*0}\pi^-$	9.6
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270) \to K^-\rho^0$	$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[S] \to K^-\rho^0$	>10.0
$D^0 \rightarrow K^- \pi^+ \rho^0$	$D^0 \rightarrow (\rho^0 K^-)_{\Lambda} \pi^+, \ (\rho^0 K^-)_{\Lambda} [D] \rightarrow K^- \rho^0$	9.6
	$D^0 \rightarrow (K^- \rho^0)_{\rm p} \pi^+$	7.0
	$D^0 \rightarrow (K^- \pi^+)_{\rm S, wave} \rho^0$	5.1
	$D^0 \rightarrow (K^- \rho^0 \pi^+)_V \pi^+$	6.8
$D^0 \to \bar{K}^{*0} \pi^+ \pi^-$	$D^0 \rightarrow (\bar{K}^{*0}\pi^-)_{\rm p}\pi^+$	8.5
	$D^0 \rightarrow \bar{K}^{*0} (\pi^+ \pi^-)_{\rm s}$	8.9
	$D^0 \rightarrow (\bar{K}^{*0}\pi^-)_{\rm v}\pi^+$	9.7
$D \rightarrow K^- \pi^+ \pi^+ \pi^-$	$D^0 \rightarrow ((K^-\pi^+)_{\rm S, wave}\pi^-)_{\rm A}\pi^+$	>10.0
	$D^0 \rightarrow K^-((\pi^+\pi^-)_s\pi^+)_s$	>10.0
le quit 100/ a prese france representation	$D^0 \rightarrow (K^- \pi^+)_{\text{S, wave}} (\pi^+ \pi^-)_{\text{S}}$	>10.0
bout 40% comes from nonresonant	$D^0[S] \to (K^- \pi^+)_V (\pi^+ \pi^-)_V$	8.8
-body ($D^0 \rightarrow K^-\pi^+\pi^-\pi^+$) and three-body $^0\rightarrow K^-\pi^+\rho^0$ and $D^0 \rightarrow K^{*-}\pi^+\pi^-$) decays	$D^0 \rightarrow (K^-\pi^+)_{\rm S, wave} (\pi^+\pi^-)_{\rm V}$	5.8
	$D^0 \rightarrow (K^- \pi^+)_V (\pi^+ \pi^-)_S$	>10.0
	$D^0 \to (K^- \pi^+)_{\rm T} (\pi^+ \pi^-)_{\rm S}$	6.8
	$D^0 \to (K^- \pi^+)_{\rm c} \dots (\pi^+ \pi^-)_{\rm T}$	9.7

Amplitude analysis of $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$

		The amplitudes listed below are tested when determining
Component	An	the nominal fit model, but not used in our final fit result.
		(1) Cascade amplitudes (-) $K^{-}(1270)(-9K^{-}) + -9K^{-}$ D means
$D^0 \to \bar{K}^{*0} \rho^0$	$D^0[S]$	(a) $K_1(12/0)(\rho^* K_0)\pi^+, \rho^* K_0$ D-wave (b) $K^{-}(1400)(\bar{K}^{*0}\pi^-)\pi^+, \bar{K}^{*0}\pi^-$ S and D waves
	$D^0[P]$	(b) $K_1(1400)(K^*\pi)\pi^+, K^*\pi^-$ 5 and D-waves (c) $K^{*-}(1410)(\bar{K}^{*0}\pi^-)\pi^+$
	D ⁰ D	(c) $K^{*-}(1410)(K^{*}n)n^{+}$ (d) $K^{*-}(1430)(\bar{K}^{*0}\pi^{-})\pi^{+} K^{*-}(1430)(K^{-}n^{0})\pi^{+}$
$D^0 \to K^- a^+ (1260) a^+ (1260) \to a^0 a^+$	$D^0 = V^{-} a^{+} (1260)$	(a) $K_2^{(1+30)}(\bar{K}^{*0}\pi^{-})\pi^{+}$, $K_2^{(1+30)}(\bar{K}^{-}\rho^{0})\pi^{+}$ (e) $K^{*-}(1680)(\bar{K}^{*0}\pi^{-})\pi^{+}$, $K^{*-}(1680)(K^{-}\rho^{0})\pi^{+}$
$D^{\circ} \to K \ a_1 \ (1200), \ a_1 \ (1200) \to \rho^{\circ} \pi^{\circ}$	$D^{\circ} \rightarrow \Lambda a_1^{\circ} (1200)$	(f) $K_{2}^{*-}(1770)(\bar{K}^{*0}\pi^{-})\pi^{+}, K_{2}^{*-}(1770)(K^{-}\rho^{0})\pi^{+}$
	$D^0 \to K^- a_1^+(1260)$	(g) $K^-a_2^+(1320)(\rho^0\pi^+)$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270) \to \bar{K}^{*0}\pi^-$	$D^0 \to K_1^-(1270)\pi^+$	(h) $K^{-}\pi^{+}(1300)(\rho^{0}\pi^{+})$
	$D^0 \to K^{-}(1270)\pi^+$	(i) $K^{-}a_{1}^{+}(1260)(f_{0}(500)\pi^{+})$
$D^0 \rightarrow K^-(1270) \sigma^+ K^-(1270) \rightarrow K^- \sigma^0$	$D^0 = K^-(1270)\pi^+$	(2) Quasi-two-body amplitudes
$D^* \rightarrow K_1(12/0)\pi^*, K_1(12/0) \rightarrow K^*\rho^*$	$D^* \rightarrow K_1(12/0)\pi^*$	(a) $\bar{K}^{*0} f_0(500)$
$D^{o} \rightarrow K^{-}\pi^{+}\rho^{o}$	$D^0 \rightarrow (\rho^0 K^-)_A \pi^+$	(b) $\bar{K}^{*0} f_0(980)$
	$D^0 \rightarrow$	(3) Three-body amplitudes
	$D^0 \rightarrow (k$	(a) $K^{*0}(\pi^+\pi^-)_V S$, <i>P</i> - and <i>D</i> -waves
	$D^0 \rightarrow 0$	(b) $(K^-\pi^+)_V \rho^0 S$, P and D-waves
$D^0 \rightarrow \bar{k}^{*0} \pi^+ \pi^-$	D^0	(c) $K_{2}^{+\circ}(1450)(\pi^{+}\pi^{-})_{S}$
$D^* \rightarrow K^* n^* n$	$D \rightarrow D$	(d) $K_2^{*}(1450)\rho^{*}$ (a) $\bar{K}^{*0}f_{*}(1270)$
	$D^{\circ} \rightarrow I$	(c) $K^{-} f_{2}(1270)$ (f) $(K^{-} \pi^{+})_{2} f_{2}(1270)$
	$D^0 \rightarrow ($	(1) $(K \pi)_{SJ_2(1270)}$ (g) $K^-(a^0 \pi^+)_{st}$
$D \rightarrow K^- \pi^+ \pi^+ \pi^-$	$D^0 \rightarrow ((K^-))$	(b) $K^{-}(\rho^{0}\pi^{+})_{p}$
	$D^0 \rightarrow K^-$	(i) $K^{-}(\rho^{0}\pi^{+})_{A}$
	$D^0 \rightarrow (K^- \pi$	(i) $K^{-}(\rho^{0}\pi^{+})_{T}$
oout 40% comes from nonresonant	$D^{(C)} \rightarrow (L^{(L)})$	(k) $(\bar{K}^{*0}\pi^{-})_{T}\pi^{+}$
body ($D^0 \rightarrow K^-\pi^+\pi^-\pi^+$) and three-body	$D^{\circ}[S] \rightarrow (K)$	(1) $(K^- \rho^0)_{\rm T} \pi^+$
$D \rightarrow K - \pi + \alpha 0$ and $D 0 \rightarrow K - \pi + \pi - 1$ decays	$D^0 \rightarrow (K^- \pi$	(m) $(\bar{K}^{*0}\pi^{-})_{A}\pi^{+}$, $\bar{K}^{*0}\pi^{-}S$ and D-waves
$r \rightarrow R n p^{\circ} and D^{\circ} \rightarrow R n n) decays$	$D^0 \rightarrow (K)$	(4) Four-body nonresonance amplitudes
	$D^0 \rightarrow (K)$	(a) $(K^{-}\pi^{+})_{T}(\pi^{+}\pi^{-})_{V}$ <i>P</i> - and <i>D</i> -waves
	$D^0 \rightarrow (K^- \pi$	(b) $(K^{-}\pi^{+})_{V}(\pi^{+}\pi^{-})_{T} P$ - and D-waves
	$D \rightarrow (K M)$	(c) $(K^-\pi^+)_V(\pi^+\pi^-)_V P$ - and D-waves
		(d) $(K^{-}(\pi^{+}\pi^{-})_{S})_{A}\pi^{+}$

PhysRevD.95.072010 (2017)

Common challenges for amplitude analyses

- Requires many many fits!
 - Must consider additional resonances as a source of systematic uncertainty
 - These fits also have many free parameters
 - With every increasing statistics, this becomes a computational problem
- A set of amplitudes can be "sufficient", but how do we know it is "correct"?
- Usually neglected: phase space dependent systematics (e.g. momentum dependent tracking efficiency)
- How to treat detector resolution?
 - Difficult for unbinned fits
 - Not a worry for broad resonances, but what about narrow ones?
- How do we know if we found the global minimum?
- How to judge goodness of fit?
- How to deal with multiple solutions?

Summary

- BES III has impressive data sets for light hadron spectroscopy, charm at threshold, XYZ physics, etc.
- Amplitude analysis plays a key role in the BESIII physics program
 - Many new results, with much more to come!
- Especially with increasing statistics, challenging and interesting problems
 - We have beautiful data that are extremely hard to fit very well

8 200

1.5 2 2.5 3 3.5 4 4. s_{ππ} [GeV²/c⁴]

Summary

- BES III has impressive data sets for light hadron spectroscopy, charm at threshold, XYZ physics, etc.
- Amplitude analysis plays a key role in the BESIII physics program
 - Many new results, with much more to come!
- Especially with increasing statistics, challenging and interesting problems
 - We have beautiful data that are extremely hard to fit very well
 - We need you!
 - ...to come up with unique solutions

Go Penguins!

Penguins repeat Stanley Cup with Game 6 win

Extra slides

Amplitude analysis at BESIII

BESIII at BEPCII

- The physics goals of BESIII cover a diverse range:
 - Light hadron spectroscopy, charm physics, τ physics, charmonium physics

Amplitude analysis of the $\pi^0\pi^0$ system produced in radiative J/ψ decays

Mass independent fit to extract a piecewise function that describes the dynamics of the $\pi^0\pi^0$ system is determined as a function of $M_{\pi0\pi0}$

$$J/\psi o \eta \phi \pi^+\pi^-$$

- Observed Y(2175): possible strangeonium counterpart of Y(4260)
- Observed η(1295): existence is questionable

BESIII at BEPCII

- The physics goals of BESIII cover a diverse range:
 - Light hadron spectroscopy, **charm physics**, **τ physics**, charmonium physics

BESIII at BEPCII

- The physics goals of BESIII cover a diverse range:
 - Light hadron spectroscopy, charm physics, τ physics, **charmonium physics**
- XYZ physics:
 - $Z_c(3900)^{\pm}$ to $\pi^+\pi^-J/\psi$ (2013)
 - $Z_c(3900)^0$ to $\pi^0\pi^0 J/\psi$ (2015)
 - $Z_c(3885)^{\pm}$ to (DD*)[±] (2014)
 - Z_c(3885)⁰ to (DD*)⁰ (2015)
 - $Z_c(4020)^{\pm}$ to $\pi^+\pi^-$ hc (2013)
 - $Z_c(4020)^0$ to $\pi^0\pi^0h_c$ (2014)
 - $Z_c(4025)^{\pm}$ to $(D^*D^*)^{\pm}$ (2013)
 - Z_c(4025)⁰ to (D*D*)⁰ (2015)
 - Observation of X(3823) (2015)
 - Y states in π⁺π⁻ J/ψ (2017) and π⁺π⁻h_c (2017)

• ...

Figure by R. Mitchell

Summary of Z states observed at BESIII

- Several Z states have been measured in cc and open charm final states
- Isospin triplet appears to be established for all of them
- Masses and widths are comparable in measurements to $\pi J/\psi$ and $D(*)D^*$

Amplitude analysis

• Use the Intensity function to calculate a (properly normalized) probability to find an event at some position in phase space \vec{x} , with model parameters θ :

$$f(\vec{x}|\theta) = \frac{\eta(\vec{x})I(\vec{x}|\theta)}{\int \eta(\vec{x})I(\vec{x}|\theta)dx},$$

and fold in Poisson statistics to obtain a likelihood:

$$L(\vec{x},\theta) = \frac{(e^{-\mu}\mu^N)}{N!} \prod_{i=1}^N \frac{\eta(\vec{x_i})I(\vec{x_i}|\theta)}{\int \eta(\vec{x})I(\vec{x}|\theta)d\vec{x}}. \quad \text{where } \mu = \int \eta(\vec{x})I(\vec{x}|\theta)d\vec{x}$$

 Take the natural log of the likelihood and cancel like terms (drop terms that are constant in θ):

$$\ln L = \sum_{i=1}^{N} \ln I(\vec{x_i}|\theta) - \int \eta(\vec{x}) I(\vec{x}|\theta) d\vec{x},$$

This term is approximated using a phase space MC sample

Hadron spectroscopy with charmonium decays

- BESIII has world leading samples of J/ ψ and ψ ' decays
- "Glue-rich" environment
 - The J/ψ and ψ' masses are below open charm threshold, so OZI suppressed processes dominate
 - Suppression factor on radiative decays due to fine structure constant only about a factor of 10
 - Radiative decays about 8% of the total cross section
- (Naive) Flavor-tagging with decays to light mesons

K-matrix (for S-wave)

Reconstruct 00⁺⁺ wave based on several data sources

Use parameterization in amplitude analysis of $D \rightarrow K_S \pi^+ \pi^-$

BaBar: B \rightarrow D^(*)K^(*), D \rightarrow K_S $\pi^+\pi^-$ and K_SK⁺K⁻

 χ^2 /DOF = 1.11 (1.20)

PhysRevD.78.034023 (2008)

Could also extract S-wave information from J/ ψ decays?

- Extract scalar spectrum from J/ $\psi \rightarrow \gamma PP$ (eg. $\gamma \pi^0 \pi^0$) in a model independent way
 - Easily produced in e⁺e⁻ collisions
 - No interaction with final state photon
 - Very clean neutral channel (backgrounds ~2%) and relatively simple amplitude analysis (J^{PC} = even⁺⁺ only)

• Results may be combined with those of similar reactions for a more comprehensive study of the light scalar meson spectrum

$J/\psi \rightarrow \gamma \pi^0 \pi^0$: Alternate Results

- Nominal results include subtraction of γη(') backgrounds
- Repeat analysis without background subtraction (assume only signal events)
- Difference between the nominal and alternate results gives a very conservative estimate of systematic effect from γη(') backgrounds

Note on background subtraction

- Not all events in the data sample are signal events!
- Approximate the effect of backgrounds using a MC sample or sidebands (better description, but comes with challenges) and remove with a term in the likelihood
 - Parametrize backgrounds and include in PDF

Importance of final state interactions

- Long distance strong interaction effects can cause significant changes in decay rates and phases of decay amplitudes
 - Rich substructure in Dalitz plot spectra indicate complexity of FSI
- Use weak three-body decays of open heavy flavor mesons to study interference between intermediate resonances
 - More kinematic freedom than two-body final states
 - Intermediate resonances dominate and cause non-uniform distribution of events in Dalitz plot
- Better understanding of final state interactions in D decays is important to reduce uncertainties related to $D^0-\overline{D}^0$ mixing parameters and of the angle γ

