	J^{P}	$\tau=(-1)^{J}$	$\eta=\tau P$
Scalar	0^{+}	+1	+1
Pseudoscalar	0^{-}	+1	-1
Vector	1^{-}	-1	+1
Pseudovector	1^{+}	-1	-1
Tensor	2^{+}	+1	+1

$$
\begin{array}{c|c}
\pi^{-} p \rightarrow \pi^{0} n & \rho \\
\pi^{-} p \rightarrow \eta n & a_{2} \\
K^{-} p \rightarrow \bar{K}^{0} n & a_{2}, \rho \\
\pi^{ \pm} p \rightarrow \pi^{ \pm} p & f, \rho, \mathcal{P} \\
\hline \gamma p \rightarrow \pi^{0} p & \omega, \rho, h_{1}, b_{1} \\
\gamma p \rightarrow \pi^{+} n & a, \rho, \pi, b_{1}
\end{array}
$$

$$
\begin{aligned}
M_{1} & =\frac{1}{2} \gamma_{5} \gamma_{\mu} \gamma_{\nu} \mathbf{F}^{\mu \nu} \\
M_{2} & =\gamma_{5} p_{3, \mu}\left(p_{2}+p_{4}\right)_{\nu} \mathbf{F}^{\mu \nu} \\
M_{3} & =\gamma_{5} \gamma_{\mu} p_{3, \nu} \mathbf{F}^{\mu \nu} \\
M_{4} & =\frac{i}{2} \epsilon_{\alpha \beta \mu \nu} \gamma^{\alpha} p_{3}^{\beta} \mathbf{F}^{\mu \nu} \\
\mathbf{F}^{\mu \nu} & \equiv \epsilon^{\mu} p_{1}^{\nu}-\epsilon^{\nu} p_{1}^{\mu} \\
\mathbf{A}_{\mu_{4}, \mu_{2} \mu_{1}}^{\mathrm{s}} & =\bar{u}_{\mu_{4}}\left(p_{4}\right) \sum_{i=1}^{4} A_{i}\left(\text { scalars, } \mu_{1}\right) M_{i} u_{\mu_{2}}\left(p_{2}\right) \\
\mathbf{A}_{\lambda_{4} \lambda_{2}, \lambda_{1}}^{\mathrm{t}} & =\bar{u}_{\lambda_{4}}\left(p_{4}\right) \sum_{i=1}^{4} A_{i}\left(\text { scalars }, \lambda_{1}\right) M_{i} v_{\lambda_{2}}\left(-p_{2}\right)
\end{aligned}
$$

In the t-channel center-of-mass frame

$$
\begin{aligned}
p_{1}^{\mu} & =\left(k_{t}, 0,0, k_{t}\right) \\
p_{2}^{\mu} & =\left(-E_{N}^{t},-p_{t} \sin \theta_{t}, 0,-p_{t} \cos \theta_{t}\right) \\
p_{3}^{\mu} & =\left(-E_{\pi}^{t}, 0,0, k_{t}\right) \\
p_{4}^{\mu} & =\left(E_{N}^{t},-p_{t} \sin \theta_{t}, 0,-p_{t} \cos \theta_{t}\right) \\
\epsilon^{\mu} & =(0, \mp 1,-\mathrm{i}, 0) / \sqrt{2} \\
v_{ \pm}\left(-p_{2}\right) & =\binom{-\sqrt{E_{N}^{t}-m_{N}} \chi_{2,1}}{ \pm \sqrt{E_{N}^{t}+m_{N}} \chi_{2,1}}, \bar{u}_{ \pm}\left(p_{4}\right)=\binom{\sqrt{E_{N}^{t}+m_{N}} \chi_{2,1}^{\dagger}}{\mp \sqrt{E_{N}^{t}-m_{N}} \chi_{2,1}^{\dagger}}^{T} \\
\chi_{1} & =\binom{\cos \theta / 2}{\sin \theta_{t} / 2}, \chi_{2}=\binom{-\sin \theta_{t} / 2}{\cos \theta_{t} / 2}
\end{aligned}
$$

$$
\begin{aligned}
& A_{++, 1}^{t}=\sqrt{2} k_{t} \frac{\sin \theta_{t}}{2}[\sqrt{t} \overbrace{\left(A_{1}-2 m_{N} A_{4}\right)}^{-F_{1}}-2 p_{t} \overbrace{\left(A_{1}+t A_{2}\right)}^{F_{2}}] \\
& A_{--, 1}^{t}=\sqrt{2} k_{t} \frac{\sin \theta_{t}}{2}[\sqrt{t} \overbrace{\left(A_{1}-2 m_{N} A_{4}\right)}^{-F_{1}}+2 p_{t} \overbrace{\left(A_{1}+t A_{2}\right)}^{F_{2}}] \\
& A_{+-, 1}^{t}=\sqrt{2} k_{t} \sin ^{2} \frac{\theta_{t}}{2}[-2 p_{t} \sqrt{t} \underbrace{A_{3}}_{F_{4}}-\underbrace{\left(2 m_{N} A_{1}-t A_{4}\right)}_{F_{3}}] \\
& A_{-+, 1}^{t}=\sqrt{2} k_{t} \cos ^{2} \frac{\theta_{t}}{2}[2 p_{t} \sqrt{t} \underbrace{A_{3}}_{F_{4}}-\underbrace{\left(2 m_{N} A_{1}-t A_{4}\right)}_{F_{3}}]
\end{aligned}
$$

These are not eigenstates of parity! But the F_{i} are:

$$
\begin{aligned}
& \mathbf{P ~ A}_{\lambda_{4} \lambda_{2}, \lambda_{\mathbf{1}}}^{\mathbf{t}} \neq \pm \mathbf{A}_{\lambda_{4} \lambda_{2}, \lambda_{1}}^{\mathbf{t}}, \quad \mathbf{P} \mathbf{F}_{\mathbf{i}}= \pm \mathbf{F}_{\mathbf{i}} \\
& F_{1}, F_{3} \leftrightarrow \eta=+1 \quad(\rho, \omega, \ldots), \quad F_{2}, F_{4} \leftrightarrow \eta=-1\left(\pi, b_{1}, \ldots\right)
\end{aligned}
$$

$$
\begin{aligned}
& |\mathrm{Amp}|^{2} \propto \frac{\mathrm{~d} \sigma}{\mathrm{~d} \mathbf{t}} \xrightarrow{s \text { large }} \frac{1}{32 \pi}[\underbrace{\frac{\left|F_{3}\right|^{2}-t\left|F_{1}\right|^{2}}{4 m_{N}^{2}-t}}_{\rho, \omega, \ldots}+\underbrace{\left|F_{2}\right|^{2}-t\left|F_{4}\right|^{2}}_{\pi, b_{1}, \ldots}] \\
& \boldsymbol{\Sigma}=\frac{\sigma_{\perp}-\sigma_{\|}}{\sigma_{\perp}+\sigma_{\|}} \xrightarrow{s \text { large }} \frac{(\rho, \omega, \ldots)-\left(\pi, b_{1}, \ldots\right)}{(\rho, \omega, \ldots)+\left(\pi, b_{1}, \ldots\right)}
\end{aligned}
$$

t-channel helicity amplitudes: relate observables and naturality of exchanges!

And what do we learn from the s-channel?
From factorization:
helicity-flip amplitudes go with $\sqrt{-\boldsymbol{t}}$!

$\Sigma\left(\pi^{-} \Delta^{++}\right)$

