Veneziano model and application to Dalitz plot analysis

Adam Szczepaniak, Indiana U./JLab

Motivation
Properties
Application to $J / \Psi \rightarrow 3 \pi$ decays
Generalizations (dual models)

physical domain
in the s-channel

$$
\begin{aligned}
& E_{\overline{3}}=-E_{3}>0 \\
& E_{\overline{4}}=-E_{4}>0
\end{aligned}
$$

2-to-2 kinematics
e.g. $\Pi^{0} \Pi^{0}->\Pi^{0} \Pi^{0}: A(s, t, u)$

$$
s=(1+2)^{2} \quad t=(1+3)^{2} \quad u=(1+4)^{2}
$$

$$
s+t+u=4 m^{2}
$$

physical domain in the t-channel
$E_{2}^{-}=-E_{2}>0$
$E_{4}=-E_{4}>0$

peaks in s from resonances in (12)

$$
\begin{aligned}
A(s, t) & =\sum_{l=0}^{\infty}(2 l+1) A_{l}(s) P_{l}\left(z_{s}\right) \\
z_{s} & =1+\frac{2 t}{s-4 m^{2}}
\end{aligned}
$$

$1+\overline{3}->\overline{2}+4$
peaks in t from resonances in (1 $\overline{3}$)

$$
\begin{gathered}
A(s, t)=\sum_{l=0}^{\infty}(2 l+1) A_{l}(t) P_{l}\left(z_{t}\right) \\
z_{t}=1+\frac{2 s}{t-4 m^{2}}
\end{gathered}
$$

to reproduce peaks in t (or s) need to continue the s (or t) channel p.w. sum outside its domain of convergence

Analytical continuation: simple example

$$
\begin{aligned}
& A(s, t)=A\left(s, t\left(s, z_{s}\right)\right)=\sum_{l=0}^{\infty}(2 l+1) A_{l}(s) P_{l}\left(z_{s}\right) \\
& t\left(s, z_{s}\right)=-\left(1-z_{s}\right) \frac{s-4 m^{2}}{2}
\end{aligned}
$$

$\left|z_{s}\right|<1$ in the s-channel and $z_{s}<-1$ in the t-channel

$$
A\left(z_{s}\right)=\sum_{l=0}^{\infty}\left(-z_{s}\right)^{l}=1-z_{s}+z_{s}^{2}+\cdots
$$

$$
\text { well defined for }\left|z_{s}\right|<1
$$

$$
A\left(z_{s}\right)=\frac{1}{1+z_{s}}
$$

for large $-z_{s}$

$$
A\left(z_{s}\right)=\frac{1}{1+z_{s}}=\left(z_{s}\right)^{\alpha}\left[1+O\left(1 / z_{s}\right)\right]_{\alpha=-1}
$$

compare with starting point

$$
\begin{aligned}
& A(s, t)=A\left(s, t\left(s, z_{s}\right)\right)=\sum_{l=0}^{\infty}(2 l+1) A_{l}(s) P_{l}\left(z_{s}\right) \\
& t\left(s, z_{s}\right)=-\left(1-z_{s}\right) \frac{s-4 m^{2}}{2}
\end{aligned}
$$

$$
t\left(s, z_{s}\right)=-\left(1-z_{s}\right) \frac{1}{2} \text { we derived the large }+\mathrm{t} \text { behavior ! }
$$

$$
t \propto-z_{s} \text { when }(t \rightarrow+\infty)
$$

- there is a pole in the physical t region ("resonance")
- if a non-integer, tasks as a function of t the amplitude has a branch point: particle production at lathe t -channel energy
- the leading term at large t is "simple": it must come from some specific property of the p.w. series

Exercise: find the large-zs behavior using the SommerfeldWatson transform.

Analytical continuation: realistic example

$$
\begin{gathered}
\left.A(s, t)=\sum_{l=0}^{\infty}(2 l+1) A_{l}(s) P_{l}\left(z_{s}\right)=\sum_{l=0}^{\infty} \frac{\beta(s)}{l-\alpha(s)} \frac{\left[P_{l}\left(z_{s}\right)-P_{l}\left(-z_{s}\right)\right]}{2} \quad \quad \quad{ }^{* *}\right) \\
\alpha(s)=\frac{1}{2}+s+i \gamma \rho(s) \quad \rho(s) \beta(s)=\operatorname{Im} \alpha(s) \quad \quad(*) \\
\gamma \approx \Gamma_{\rho} m_{\rho}
\end{gathered}
$$

- $\mathrm{A}_{1}(\mathrm{~s}) \sim$ Breit-Wigner of the rho-meson
- $\operatorname{Re}(a(s))=1 / 2+s$: linear Regge trajectory

$$
\rho(s)=\sqrt{1-4 m_{\pi}^{2} / s}
$$

- $\operatorname{Im}(\mathrm{a}(\mathrm{s}))=$ is related to resonance widths
- the relation between a (trajectory) and β (residue) follows from unitarity: $\operatorname{lm} \mathrm{A}_{1}(\mathrm{~s})=\left|\mathrm{A}_{1}(\mathrm{~s})\right|^{2} \rho(\mathrm{~s})$
- Resonances with different spins in $A_{1}, A_{3}, A_{5}, \ldots$ are related by poles in I of the function A_{1}

Exercise:show that

$$
\sum_{l=0}^{\infty} \frac{z_{s}^{l} \pm\left(-z_{s}\right)^{l}}{l-\alpha} \propto \frac{1 \pm e^{i \pi \alpha}}{\sin \pi \alpha}\left(-z_{s}\right)^{\alpha}
$$

Exercise:show that (*) follows from unitarity
Exercise:show that (**) has a Breit-Wigner form

- the leading term at large t is "simple": it must come from some specific property of the p.w. series -> it comes from right most singularity of partial waves in the angular momentum plane

$$
\sum_{l=0}^{\infty} \frac{z_{s}^{l} \pm\left(-z_{s}\right)^{l}}{l-\alpha} \propto \frac{1 \pm e^{i \pi \alpha}}{\sin \pi \alpha}\left(-z_{s}\right)^{\alpha}
$$

Regge theory = origin and properties of singularities of p.w. in the angular momentum plane

- it is possible ("simple") to construct models of partial waves in one channel (e.g. s) which have Regge poles and produce right asymptotic behavior in another (e.g. t). It is not easy to do it simultaneously
s-channel p.w. : s-channel resonances

$$
A(s, t)=\sum_{l}^{\infty}(2 l+1) A_{l}(s) P_{l}(s), A_{l}(s)=\sum_{i=\text { Regge poles }} \frac{\beta_{i}(s)}{l-\alpha_{i}(s)}
$$

Q: Should you add t-channel resonances (interference model) ?
A: No. (resonances in t and s are dual not additive)
A finite number of t-channel resonances
will break s-channel analyticity

$$
\sum_{l=0}^{L_{\max }}(2 l+1) A_{l}(t) P_{l}\left(z_{t}\right) \rightarrow s^{L_{\text {max }}}
$$

An infinite number of t-channel resonance -> double counting of $\mathbf{A}(\mathbf{s}, \mathrm{t})$
Veneziano model = has simultaneous resonances in s an channel and proper asymptotic behavior. To do this requil number of p.w/resonances (why?)

What functions have an infinite number of poles (resonances) to be used to represent (model) the amplitude A(s,t)?

The Gamma function !!!

$$
\Gamma(z) \sim \frac{(-1)^{n}}{\Gamma(n+1)} \frac{1}{n+z} \quad \mathrm{z} \sim-\mathrm{n}
$$

so we want something like

$$
A(s, t) \sim \Gamma(-t) \Gamma(-s)
$$

$$
A(s, t) \sim \Gamma(-t) \Gamma(-s)
$$

- to connect poles at $\mathrm{t}(\mathrm{or} \mathrm{s})=1,2,3 \ldots$ with physical masses use the Regge trajectory

$$
A(s, t) \sim \Gamma(n-\alpha(s)) \Gamma(n-\alpha(t))
$$

- n, m determine location of first poles, e.g. $\Gamma(-\mathrm{a}(\mathrm{s}))$ has, for $\mathrm{a}(\mathrm{s})=$ $0.5+\mathrm{s}$, the first pole at $\mathrm{s}=-1 / 2$ i.e. particle with imaginary mass. But $\Gamma(1-a(s))$ has the first pole at $s=+1 / 2$ i.e. the rho-meson
- simultaneous poles in s and t("overlapping channels") are unexpected. To remove them use

$$
A(s, t) \sim \frac{\Gamma(n-\alpha(s)) \Gamma(n-\alpha(t))}{\Gamma(n+m-\alpha(s)-\alpha(t))}
$$

it has poles and zeros!

- what is missing is kinematical (spin) and symmetry (e.g. isospin) factors

Examples:

$\Pi \Pi \quad->\pi \Pi$

- after isospin decomposition there are three scalar amplitudes A(s,t,u), B(s,t,u), C(s,t,u) -> Veneziano

$\pi \mathbf{N}->\pi \mathbf{N}$

-there are two scalar amplitudes $\mathrm{A}(\mathrm{s}, \mathrm{t}), \mathrm{B}(\mathrm{s}, \mathrm{t})$

V $\boldsymbol{\Pi}->\boldsymbol{\Pi} \pi$

-there is one scalar amplitude (*)

Exercise: verify (*)

Veneziano amplitude: "compact" expression for the full amplitude

$$
A(s, t)=\frac{\Gamma(-\alpha(s)) \Gamma(-\alpha(t))}{\Gamma(-\alpha(s)-\alpha(t))} \quad \alpha(s)=a+b s
$$

$\mathrm{A}(\mathrm{s}, \mathrm{t})$ can be written as sum over resonances in ether channel.

$$
A(s, t)=\sum_{k} \frac{\beta_{k}(t)}{k-\alpha(s)}=\sum_{k} \frac{\beta_{k}(s)}{k-\alpha(t)}
$$

Note: in V-model resonance couplings, β, are fixed! (*)

$$
\beta_{k}(t) \propto(1+\alpha(t))(2+\alpha(t)) \cdots(k+\alpha(t))
$$

Exercise: verify (*)

$$
V(p, \lambda) \rightarrow \pi^{i}\left(p_{1}\right) \pi^{j}\left(p_{2}\right) \pi^{\grave{k}}\left(p_{3}\right)
$$

$$
\begin{aligned}
& A(s, t, u)=\epsilon_{i j k} \epsilon_{\mu \nu \alpha \beta} \epsilon_{\mu}(p, \lambda) p_{1}^{\nu} p_{2}^{\alpha} p_{3}^{\beta} \\
& \times\left[A_{n, m}(s, t)+A_{n, m}(s, u)+A_{n, m}(t, u)\right]
\end{aligned}
$$

$$
A_{n, m}(s, t) \equiv \frac{\Gamma\left(n-\alpha_{s}\right) \Gamma\left(n-\alpha_{t}\right)}{\Gamma\left(n+m-\alpha_{s}-\alpha_{t}\right)} .
$$

$$
\begin{aligned}
\alpha(s) & =\alpha_{0}+\alpha^{\prime} s \\
\alpha(s) & =\frac{1}{2}+s
\end{aligned}
$$

no-double poles correct asymptotic limit $n \geqq m \geq 1$

Exercise: verify (*)

Resonances couplings, β, should depend on final state particles: a linear superposition of Veneziano amplitudes can be used to suppress or enhance individual resonances or trajectories

$$
M=\epsilon_{\mu \nu \alpha \beta} p_{1}^{\mu} p_{2}^{\nu} p_{3}^{\alpha} \epsilon^{\beta} A(s, t, u)
$$

$$
A_{n, m}(s, t)=\sum_{k}^{\infty} \frac{\beta(t)}{k-\alpha(s)}=\sum_{k}^{\infty} \frac{\beta(s)}{k-\alpha(t)}
$$

How to isolate individual poles ?

S
Use a linear combination of $A_{2,1}$ and $A_{2,2}$ to remove pole at $a_{s}=2$
$A_{2,2}=\frac{\Gamma\left(2-\alpha_{s}\right) \Gamma\left(2-\alpha_{t}\right)}{\Gamma\left(4-\alpha_{s}-\alpha_{t}\right)} \quad$ has poles at $\mathrm{a}_{\mathrm{s}}=2,3,4, \ldots$
$A_{3,1}, A_{3,2}, A_{3,3}$
$A_{4,1}, A_{4,2}, A_{4,3}, A_{4,4} \quad$ have poles at $a_{s}=4,5,6, \ldots$ etc.

$$
A_{n, m}(s, t) \rightarrow \mathcal{A}(s, t)=\sum_{n \geq 1, n \leq m \leq 1} c_{n, m} A_{n, m}(s, t)
$$

remove all poles but the one at $a=1$

$$
\begin{gathered}
c_{n, 1}=\frac{c_{1,1}}{\Gamma(n)}, c_{n, 2}=-\frac{c_{1,1}}{\Gamma(n-1)}, c_{n, m}=0 \text { for } m>2 \\
\mathcal{A}_{1}(s, t)=c_{1,1} \frac{2-\alpha_{s}-\alpha_{t}}{\left(1-\alpha_{s}\right)\left(1-\alpha_{t}\right)}
\end{gathered}
$$

... but the Regge limit is now lost !
remove all poles between $N \geq a \geq 2$

$$
\begin{aligned}
\mathcal{A}_{1}(s, t ; N) & =c_{1,1} \frac{2-\alpha_{s}-\alpha_{t}}{\left(1-\alpha_{s}\right)\left(1-\alpha_{t}\right)} \text { has Regge limit is for } s>N \\
& \times \frac{\Gamma\left(N+1-\alpha_{s}\right) \Gamma\left(N+1-\alpha_{t}\right)}{\Gamma(N) \Gamma\left(N+2-\alpha_{s}-\alpha_{t}\right)}
\end{aligned}
$$

In the past this was done by choosing an arbitrary set of n, m and fitting $\mathrm{c}(\mathrm{n}, \mathrm{m})$ to the data (e.g. Lovelace, Phys. Lett. B28, 265 (1968),Atarelli, Rubinstein, Phys. Rev. I83, I469 (1969))

The "new" model does this in a systematic way. In addition it allows for imaginary non-linear (and complex) trajectories without introducing "ancestors"

$$
\begin{aligned}
& \text { Application of the Veneziano Model in Charmonium Dalitz Plot Analysis } \\
& \mathcal{A}_{n}(s, t ; N)=\frac{2 n-\alpha_{s}-\alpha_{t}}{\left(n-\alpha_{s}\right)\left(n-\alpha_{t}\right)} \sum_{i=1}^{n} a_{n, i}\left(-\alpha_{s}-\alpha_{t}\right)^{i-1} \\
& \times \frac{\Gamma\left(N+1-\alpha_{s}\right) \Gamma\left(N+1-\alpha_{t}\right)}{\Gamma(N+1-n) \Gamma\left(N+n+1-\alpha_{s}-\alpha_{t}\right)}
\end{aligned}
$$

n : number of Regge trajectories
$\mathrm{a}_{\mathrm{n}, \mathrm{i}}$ determine resonance couplings
N : determines the onset of Regge behavior
$\alpha(\mathrm{s}), \alpha(\mathrm{t})=\operatorname{Re} \alpha+\mathrm{i} \operatorname{Im} \alpha:$ with Im α related to resonance widths

Different authors employed the Veneziano model for the analysis of the at-rest annihilation $N \bar{N} \rightarrow 3 \pi$, using a finite number of Veneziano terms.

- Lovelace ${ }^{2}$: a single term amplitude, $n=m=1$, $\alpha_{s}=0.483+0.885 s+0.28 i \sqrt{s-4 m^{2}}$
- Altarelli ${ }^{3}$: 5 terms with $n+m \leq 3$ (to reproduce the zero at $\alpha_{s}+\alpha_{t} \simeq 3$)
- Gopal ${ }^{4}$: 5 terms with $n+m \leq 3$, $\alpha_{s}=0.483+0.885 s+i A\left(s-4 m^{2}\right)^{B}$, $B<1$

[^0]All poles below $\mathrm{a}=\mathrm{N}$ except at $\mathrm{a}=\mathrm{n}$

$$
\begin{aligned}
\mathcal{A}_{n}(s, t ; N) & =a_{n, 0} \frac{2 n-\alpha_{s}-\alpha_{t}}{\left(n-\alpha_{s}\right)\left(n-\alpha_{t}\right)}\left[\prod_{i=1}^{n-1}\left(a_{n, i}-\alpha_{s}-\alpha_{t}\right)\right] \\
& \times \frac{\Gamma\left(N+1-\alpha_{s}\right) \Gamma\left(N+1-\alpha_{t}\right)}{\Gamma(N+1-n) \Gamma\left(N+n+1-\alpha_{s}-\alpha_{t}\right)}
\end{aligned}
$$

$$
\text { at } a_{s}=n \text { residue is a polynomial in } t \text { of order } n-1
$$

$$
\mathrm{t}
$$ (remember to add 1 from the Levi-Civita tensor)

$$
\begin{aligned}
& A(s, t, u)=\epsilon_{i j k} \epsilon_{\mu \nu \alpha \beta} \epsilon_{\mu}(p, \lambda) p_{1}^{\nu} p_{2}^{\alpha} p_{3}^{\beta} \\
& \times\left[A_{n, m}(s, t)+A_{n, m}(s, u)+A_{n, m}(t, u)\right] \\
& \\
& \mathrm{A}_{1} \text { has } \rho(770) \\
& \mathrm{A}_{3} \text { has } \rho(1700), \rho_{3}(1690) \\
& \mathrm{A}_{5} \text { has } \rho^{\prime \prime}(2150), \rho_{3}(2250), \rho_{5}(2350)
\end{aligned}
$$

$m_{2}=\sqrt{s_{2}}=\sqrt{2-\frac{1}{2}}=1.23$

$$
m_{4}=\sqrt{s_{4}}=\sqrt{4-\frac{1}{2}}=1.87
$$

FIG. 2: Dalitz plot projection of the di-pion mass distribution from J / ψ decay. The solid is the result of the fit with three amplitudes and the dashed line with the amplitude \mathcal{A}_{1} alone. The insert shows the mass region of the ρ_{3} and its contribution from the fit with the full set of amplitudes (solid line) as compared. Absence of the structure at 1.7 GeV from the fit with the \mathcal{A}_{1} amplitude is indicated by the dashed line.

FIG. 3: Dalitz plot projection of the di-pion mass distribution from ψ^{\prime} decay. The solid is the result of the fit with three amplitudes and the dashed line is the fit with \mathcal{A}_{1} alone.

B5 amplitude:

Reggeons/ Resonances in all 5 channels

Double-Regge Exchange Limit for the $\gamma p \rightarrow K^{+} K^{-} p$ Reaction
M. Shi, ${ }^{1,2, *}$ I.V. Danilkin, ${ }^{2}$ C. Fernández-Ramírez, ${ }^{2}$ V. Mathieu, ${ }^{3,4}$ M. R. Pennington, ${ }^{2}$ D. Schott, ${ }^{5}$ and A. P. Szczepaniak ${ }^{2,3,4}$
(Joint Physics Analysis Center)

$$
\begin{aligned}
B_{5}\left(s_{A B}, s_{A 1}, s_{12}, s_{23}, s_{B 3}\right)= & B_{4}\left(-\alpha_{12},-\alpha_{A 1}\right) B_{4}\left(-\alpha_{23},-\alpha_{B 3}\right) \\
& \times{ }_{3} F_{2}\left(\alpha_{A B}-\alpha_{12}-\alpha_{23},-\alpha_{A 1},-\alpha_{B 3} ;-\alpha_{12}-\alpha_{A 1},-\alpha_{23}-\alpha_{B 3}\right) .
\end{aligned}
$$

Fig. 10.3. Invariant mass distribution for $\pi^{+} \pi^{-}$from $\bar{p} n \rightarrow$ $\pi^{+} \pi^{-} \pi^{-}$. Data taken from Anninos es al. (1968). Theoretical curves are those of Lovelace (1969b) and Berger (1969a)
$\kappa^{-} \mathrm{p} \rightarrow \pi^{-} \pi^{+} \Lambda$ IN VENEZIANO model

Reviews of Modern Physics • April 1971 • Part I

on-pion mass distributions and Legendre polynomial coefficients for $\pi N \rightarrow \pi \pi N$ at $6 \mathrm{GeV} / c$ from Crennel et al. (1968) The columns are, from left to right, for $\pi^{-} p \rightarrow \pi^{+} \pi^{-} n, \pi^{-} p \rightarrow \pi^{-} \pi^{0} p, \pi^{+} p \rightarrow \pi^{+} \pi^{+} n$.

[^0]: ${ }^{2}$ C. Lovelace, Phys. Lett. 25B (1968), 264
 ${ }^{3}$ G. Altarelli, Phys. Rev. 183 (1969), 1469
 ${ }^{4}$ G. P. Gopal, Phys. Rev. D 3 (1971), 2262

