Quark Models

 for baryons2015 International Summer Workshop on ReactionTheory
June 8-19,2015@Bloomiinton, Indiana, US
E. Santopinto INFN
Genova
santopinto@ge.infn.it

Basic idea of Constituent Quark Models (CQM)

Constituent Quarks
At variance with QCD quarks: CQ acquire mass \& size

LQCD results: $\mathrm{SU}(6) \times \mathrm{O}(3) \mathrm{QM}$ states up to $\approx 2.2 \mathrm{GeV}$

J. J. Dudek_R. G. Edwards

Phys.Rev. D85 (2012) 054016

LQCD (De Rújula, Georgi, Glashow, 1975)

the quark interaction contains
a long range spin-independent confinement
a short range spin dependent term

Spin-independence \longrightarrow SU(6) configurations

$\operatorname{SU}(3)$
3 flavours: $\quad 9=\left(\begin{array}{l}u \\ d \\ s\end{array}\right) \geq\left(q_{\alpha}\right) \quad \alpha=1,2,3$

- invariance under rotation in $u_{1} d_{i} s$ space [~ 15% violation in mass spectrum]

$$
\left.q \rightarrow q^{\prime}=U^{U q} \quad \cup: \begin{array}{l}
3 \times 3 \\
\text { unitary } \\
\text { unimodular }
\end{array}\right\} S \cup(3
$$

$$
e^{i \theta \sum_{j} n_{j} \lambda_{j}}
$$

$$
\text { J } j=1, \ldots 8\left[-3^{2}-1\right]
$$

λ_{j} : Gell-Mann
generators of infinitesima matrices

$$
\begin{aligned}
& {\left[\lambda_{i}, \lambda_{j}\right]=2 } f_{i j} \kappa \lambda_{\kappa} \quad \text { LIE } \\
& \underset{>}{ } \rightarrow \text { structure constants }
\end{aligned}
$$

- $\lambda_{k}=\left(\begin{array}{cc}\tau_{k} & 0 \\ 0 & 0\end{array}\right) \quad k=1,2,3 \quad \operatorname{SU}(2) \subset \operatorname{SU}(3)$
- only 2 commute: λ_{3}, λ_{3}

$$
T_{2}=\frac{1}{2} \lambda_{3} \quad y=\frac{1}{\sqrt{3}} \lambda_{8}
$$

($3^{\text {rd }}$ isospin comp.) (hypercharge)

$$
\begin{aligned}
& (u, d) \text { QUARKS AMD } S U(2) \\
& \Phi_{y}=\binom{u}{d} \quad \text { in absence of eam. interactions } \\
& \rightarrow \text { Invariance under rotation in the } \\
& \text { CHARGE SPACE } \\
& \phi_{q} \rightarrow \phi_{q}^{\prime}=U \phi_{q} \\
& \text { U: } 2 \times 2 \text { element of } \\
& \left.\begin{array}{l}
\text { unitary } \\
\operatorname{det}(U)=1 \text { [unimodular] }
\end{array}\right\} \quad S \cup(2) \\
& U=e^{i \theta} \vec{n} \cdot \frac{1}{2} \vec{\tau} \text { - generators of infinitesimal } \\
& \begin{array}{l}
\text { rotation axis of rotation } \quad \operatorname{Sp}(\vec{\tau})=0 \\
\text { angle }
\end{array} \\
& \tau_{j}: j=1,2,3 \text { (Pauli matrices) } 3=2^{2}-1 \\
& \text { - satisfy the Lie-algebra } \\
& {\left[\tau_{i}, \tau_{j}\right]=2 i \varepsilon_{i j k} \tau_{k} \quad i j, k=1,2,3} \\
& \text { - describe the quark isospin } \\
& \text { - } \varepsilon_{\text {jut }} \text { (antisyum. tensor) structure constants }
\end{aligned}
$$

```
STATES IN A GIVEN IRR,REP. ARE LABELLED
BY TWO QUANTUM NUMBERS, T_, Y
```

3

quarks
fund. repr. 3

antiquarks
$\overline{3}$ (conjug. of 3
日 ($N-1$ rows)
8

BARYON
OCTET

Young diagram technique for SU(N)

 the fundamental N -dimensional representation is denoted by a box and the irr.rep.of three objects can be obtained as$$
\begin{gathered}
\square \otimes \square \otimes \square=\exists_{A} \oplus \oplus \oplus \oplus \oplus \square M \\
N \otimes N \otimes N=\frac{1}{6} N(N-1)(N-2)+2 \cdot \frac{1}{3}(N+1) N(N-1)+\frac{1}{6}(N+2)(N+1) N
\end{gathered}
$$

The advantage of this method is two-fold: first the pattern is general, being valid for any $\operatorname{SU}(\mathrm{N})$; furthermore each Young tableaux with n boxes defines an irreducible representation of the group Sn containing all the permutations of n objects and therefore it belongs to a definite symmetry type. the labels $\mathrm{A}, \mathrm{M}, \mathrm{S}$ refer to antisymmetry, mixed symmetry and symmetry for the exchange of the 3 quark coordinates. In the case of $S U(2)$ (spin), the antisymmetric 3-quark state does not exist, because only two different states are available for three particles.

Young diagram rules:

1° rule antisymetry for box in columns, symmetry for box in rows
2° rule the number of box in a column cannot exceed the
number of states (N) accessible to each particle

3 rule lower rows cannot have more box than the upper one

DIMENSIONS for Young diagrams for SU(N). Ex.calculate also for $\operatorname{SU}(3), S U(6)$

$$
d=\frac{F}{H}
$$

$$
\begin{aligned}
& H=\text { product of "hooks" } \\
& \text { for each box } \\
& \operatorname{su}(2): \begin{array}{lll}
2 & 2 \cdot 1 \\
1 & 2 \cdot 1 & 2 \cdot 3 \\
2 \cdot 1 & =3
\end{array} \\
& \begin{array}{|l|l|l|l|l}
\hline 2 & 3 & \frac{2 \cdot 3 \cdot 1}{3 \cdot 1 \cdot 1}=2 \quad \begin{array}{ll}
2 & 3
\end{array} \frac{2 \cdot 3 \cdot 4}{3 \cdot 2 \cdot 1}=4 \quad \begin{array}{l}
\text { Ex.calculate for } \mathrm{SU}(3) \\
\hline 1
\end{array} & & \mathrm{SU}(6)
\end{array}
\end{aligned}
$$

SPIN STATES SU(2)

If we adopt the standard angular momentum notation I((s1,s2)S_12,S_3)S >, the explicit form of the $3 q$ spinstates is:

$$
\begin{aligned}
& \Phi_{\mathrm{MA}}=\left(\left(\frac{1}{2} \frac{1}{2}\right) 0, \frac{1}{2}\right) \frac{1}{2}>\equiv \frac{11_{3}^{3}}{2} \\
& \Phi_{\mathrm{MS}}=\left\lvert\,\left(\left(\frac{1}{2} \frac{1}{2}\right) 1, \frac{1}{2}\right) \frac{1}{2}>\equiv \frac{112}{3}\right. \\
& \left.\Phi_{\mathrm{S}}=\left(\left(\frac{1}{2} \frac{1}{2}\right) 1, \frac{1}{2}\right) \frac{3}{2}\right\rangle \equiv \mathrm{T}^{1213}
\end{aligned}
$$

the suffixes indicate also the symmetry for the exchange of quarks in the pair with total spin $\mathrm{S}_{12}=0$ or 1 .

The SU(3) irr.rep. are constructed following to same general scheme, the corresponding dimensions and symmetry types being

$$
\mathrm{SU}(3): 3 \otimes 3 \otimes 3=1 \oplus 8 \oplus 8 \oplus 10
$$

A M M S

In the case of non-strange baryons, the resulting states coincide with the standard isospin ones, detoned, similarly to the spin states by

$\chi_{M A}, \chi_{M S}, \chi_{S}$,

The strongest component of the quark-quark interaction is spin independent. In this case the flavour and spin states are combined into $\operatorname{SU}(6)$ multiplets with the dimensions

Each $\operatorname{SU}(6)$ state can be analyzed with respect to its spin ,SU(2), and flavour $\operatorname{SU}(3)$ content. Keeping in mind the symmetry properties of the various states involved, one can easily obtain the following decomposition:

$$
\begin{aligned}
& 20={ }^{4} 1+{ }^{2} 8 \\
& 70={ }^{2} 1+{ }^{2} 8+{ }^{4} 8+{ }^{2} 10 \\
& 56={ }^{2} 8+{ }^{4} 10
\end{aligned}
$$

In the r.h. sides the suffixes denote of course the multiplicity $2 S+1$ of the $3 q$ spin states, while the underlined numbers are the dimensions of the $\operatorname{SU}(3)$ flavour multiplets

Each $\operatorname{SU}(6)$ state can be analyzed with respect to its spin , $\mathrm{SU}(2)$, and flavour $\mathrm{SU}(3)$ content. Keeping in mind the symmetry properties of the various states involved, one can easily obtain the following decomposition:

$$
\begin{aligned}
& 20={ }^{4} 1+{ }^{2} \underline{8} \\
& 70={ }^{2} 1+{ }^{2} 8+{ }^{4} 8+{ }^{2} \underline{10} \\
& \underline{56}={ }^{2} 8+{ }^{4} 10
\end{aligned}
$$

Multiplication table:

	A	M	S
A	S	M	A
M	M	A, M	M
M	M	M	
S	A	M	S

$*$ What about $c 0104 r$?

$$
\rightarrow \operatorname{SU(3)} \underset{\text { colour }}{ }
$$

- Y.D. above oiK. ($\operatorname{SU}(3)$
flavour
- there is a SU(3) colour singlet baryons are colourless
- B is completely antisymmetric

$$
\frac{1}{\sqrt{6}} \varepsilon^{a b c} q^{a}(1) q^{b}(2) q^{c}(3)
$$

Casimir Operators

- DEFINED IN TERMS OFF THE GENERATORS
- COMMUTE WITH ALL GENERATORS
\longrightarrow they have a definite value for each irreducible representation THEY LABEL THE TR.
$S U(N), N-1 \quad$ Casimir op.

$$
\begin{aligned}
& S \cup(2): \quad t_{i}=\frac{1}{2} \tau_{i} \\
& C=\sum_{i=1}^{3} t_{i}^{2} \quad \rightarrow T(T+i) \\
& S \cup(3): \quad F:=\frac{1}{2} \lambda_{i} ; \quad i=1,-8 \\
& C_{i}=\sum_{i=1}^{8} F_{i}^{2} \text { unitary spin } E^{2} \\
& C_{2} \rightarrow O\left(F,{ }^{3}\right)
\end{aligned}
$$

dim. ire. repp. $1 \quad 3 \quad \overline{3}, 8 \quad 6 \quad 10$

$$
F^{2} \quad 0 \quad 4 / 34 / 3 \quad 3 \quad 10 / 3 \quad 6
$$

PROBLEMS

1. - Calculate the dimensions of
$日, \square \square, \square \square$ in $S U(3)$ and in $S U(6)$
2. - show that \square is a SU(3)-singlet
3.- Show that in $S U(3)$ one has $3 \otimes 3-1 \oplus 8$
4.- Prove the SU(6) decomposition scheme

THREE-QUARK WAVE FUNCTION

$$
\begin{aligned}
& \Psi_{3 q}=\theta_{\text {colour }} \times \chi_{\text {spin }} \times \phi_{\text {iso }} \times \psi_{\text {space }} \\
& \mathrm{SU}(3)_{c} \quad \mathrm{SU}(2) \quad \mathrm{SU}(3)_{f} \quad \mathrm{O}(3)
\end{aligned}
$$

SU(6) limit: (spin-independent interaction)

$$
\operatorname{SU}(3)_{c} \quad \operatorname{SU}(6) \quad O(3)
$$

Permutation symmetry: $\Psi_{3 q}$ must be antisymmetric $\theta_{\text {colour }}$ is a colour singlet $\Rightarrow A$ the rest must be symmetric

SU(6) \& O(3) wf have the same symmetry (A, MS, MA, S)

$\mathrm{SU}(6)$ configurations for three quark states

$$
\begin{array}{r}
6 \times 6 \times 6= \\
\text { A } 20+70+70+56 \\
\text { A } \quad \text { M } S
\end{array}
$$

Notation

$$
\left(\mathrm{d}, \mathrm{~L}^{\pi}\right)
$$

$$
\begin{aligned}
& \mathrm{d}=\operatorname{dim} \text { of } \mathrm{SU}(6) \text { irrep } \\
& \mathrm{L}=\text { total orbital angular momentum } \\
& \pi=\text { parity }
\end{aligned}
$$

PDG 4* \& 3*

$$
\pi=1
$$

$$
\pi=1
$$

$$
\pi=-1
$$

M

now New notation on PDG

$$
\begin{array}{ll}
I=\frac{3}{2} \quad J^{P}=\frac{31^{+}}{2} & P_{33}(\Delta) \\
I=\frac{1}{2} \quad J^{P}=\frac{5^{+}}{2} & F_{15} \\
I=\frac{1}{2} J^{P}=\frac{3}{2} & D_{13} \\
I=\frac{1}{2} \quad J^{P}=\frac{1^{+}}{2} & P_{11}
\end{array}
$$

$$
\begin{gathered}
X_{2 I 2 T} \\
X=S, P, D, . .
\end{gathered}
$$

referred to the wave of the out. going pion

Harmonic Oscillator states
$x=\left(\rho^{2}+\lambda^{2}\right)^{1 / 2} \quad$ hyperradius
$\fallingdotseq E=\left(3+N_{\text {h.0 }}\right) \hbar \omega \quad \omega=\frac{\alpha^{2}}{m}$
$\psi_{3 q}>e^{-\frac{\alpha^{2}}{2}\left(\rho^{2}+\lambda^{2}\right)} \leftrightarrow\left\{\begin{array}{l}e^{-\frac{\alpha^{2}}{2}\left(r_{1}^{2}+r_{2}^{2}+r_{3}^{2}\right)} \\ \text { without c.m. motion }\end{array}\right.$
\rightarrow Quark Shell Model

$$
N=2(\nu+r)+l_{\rho}+l_{\lambda}
$$

$$
\alpha^{2}=(3 \mathrm{~km})^{1 / 2}
$$

$$
\begin{aligned}
& \frac{{ }_{1}^{2} \vec{\lambda}}{2} \\
& \vec{S}=\frac{1}{\sqrt{2}}\left(\vec{r}_{1}-\vec{r}_{2}\right) \\
& \vec{\lambda}=\frac{1}{\sqrt{6}}\left(\vec{r}_{1}+\vec{r}_{2}-2 \vec{r}_{3}\right) \\
& \begin{aligned}
H=3 m+\frac{P_{j}^{2}+P_{\lambda}^{2}}{2 m} & +\frac{1}{2} \sum_{i<j} k r_{i}^{2} \\
\frac{3}{2} k\left(\rho^{2}+\lambda^{2}\right) & =\frac{3}{2} k x^{2}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& E=(3+N) \hbar \omega \quad \omega=\frac{\alpha^{2}}{m} \\
& \begin{array}{l}
N_{n .0}=2(\nu+n)+l_{\rho}+l_{\lambda} \\
\text { hie. } \\
x^{\alpha}!
\end{array} \quad \alpha^{2}=(3 \mathrm{~km})^{1 / 2}
\end{aligned}
$$

General structure of the h.o. Wave functions

The general structure of the h.o. wave functions is

$$
\Psi_{N L T}=\mathcal{N}\left(P_{N}(\rho, \lambda) e^{-\frac{\alpha^{2}}{2}\left(\rho^{2}+\lambda^{2}\right)} Y_{b}\left(\Omega_{p}\right) Y_{1}\left(\Omega_{\lambda}\right)\right.
$$

TABLE 2 - The harmonic oscillator wave functions for the 3-quark system $[5,6]$ according to eq. (8). The presence of two items in the same line means that the correct symmetry property is obtained with a linear combination of the two wave functions. The quantity J_{2} in the normalization factor is given by $4 \alpha^{3} / \sqrt{\pi}$ and $t(=A, M, S)$ denotes the type o permutation symmetry. The parity Π is $(-)^{N}$.

$\Psi_{n L t}$	N	v	n	${ }_{\rho}$	I_{λ}	L	Π	N / J_{2}	P_{N}
ψ_{005}	0	0	0	0	0	0	+	1	1
$\psi_{11 \mathrm{M}}^{\rho}$	1	0	0	1	0	1	-	$\alpha \sqrt{2 / 3}$	ρ
$\psi_{11 \mathrm{M}}^{\lambda}$	1	0	0	0	1	1	-	$\alpha \sqrt{2 / 3}$	λ
$\psi_{20 S}$	2	1	0	0	0	0	+	$1 / \sqrt{3}$	$\alpha^{2}\left(\rho^{2}+\lambda^{2}\right)-3$
$\psi_{20 \mathrm{M}}$	2	0	1	0	0	0	+	$\alpha^{2} / \sqrt{3}$	$\rho^{2-} \lambda^{2}$
$\psi_{22 S / 22 M}$	2	0	0	2	0	2	+	$2 \alpha^{2} / \sqrt{15}$	ρ^{2}
$\Psi_{22 S / 22 M}$	2	0	0	0	2	2	+	$2 \alpha^{2} / \sqrt{15}$	λ^{2}
$\psi^{\prime}{ }_{20 M}^{\prime}$	2	0	0	1	1	0	+	$2 \alpha^{2 / 3}$	$\rho \lambda$
$\psi_{21 A}$	2	0	0	1	1	1	+	$2 \alpha^{2 / 3}$	$p \lambda$
$\psi_{22 M}^{\prime}$	2	0	0	1	1	2	+	$2 \alpha^{2 / 3}$	$\rho \lambda$

Table 6. Three-quark states with positive parity. For simplicity of notation, we have omitted the coupling to the total angula, momentum L of the second column

Resonance	$L_{S_{3}}^{P}$	S	T	$\mathrm{SU}(6)$ configurations
P11	0_{S}^{+}	$\begin{aligned} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{3}{2} \\ & \frac{1}{2} \\ & \frac{3}{2} \\ & \frac{3}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{3}{2} \\ & \frac{1}{2} \\ & \frac{3}{2} \\ & \frac{3}{2} \\ & \frac{1}{2} \\ & \frac{3}{2} \\ & \frac{3}{2} \\ & \frac{3}{2} \\ & \frac{3}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{3}{2} \\ & \frac{3}{2} \end{aligned}$	$\begin{aligned} & \frac{1}{2} \\ & \frac{3}{2} \\ & \frac{3}{2} \\ & \frac{3}{3} \\ & \frac{3}{2} \\ & \hline \end{aligned}$	$\psi_{00} Y_{[0] 00} \Omega_{S}$
	0_{S}^{+}			$\psi_{10} Y_{[0] 00} \Omega_{S}$
	0_{S}^{+}			$\psi_{20} Y_{[0] 00} \Omega_{S}$
	0_{M}^{+}			$\psi_{22} \frac{1}{\sqrt{2}}\left[Y_{[2] 00} \Omega_{M S}+Y_{[2] 11} \Omega_{M A}\right]$
	2_{M}^{+}			$\psi_{22} \frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}\left(Y_{[2] 20}-Y_{[2] 02}\right) \phi_{M S}+Y_{[2] 11} \phi_{M A}\right] \chi_{S}$
P13	2_{M}^{+}			$\psi_{22} \frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}\left(Y_{[2] 20}-Y_{[2] 00}\right) \Omega_{M S}+Y_{[2] 11} \Omega_{M A}\right]$
	2_{M}^{+}			$\psi_{22} \frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}\left(Y_{[2] 20}-Y_{[2] 02}\right) \phi_{M S}+Y_{[2] 11} \phi_{M A}\right] \chi_{S}$
	0_{M}^{+}			$\psi_{22} \frac{1}{\sqrt{2}}\left[Y_{[2] 00} \phi_{M S}+Y_{[2] 11} \phi_{M A}\right] \chi_{S}$
	2_{S}^{+}			$\psi_{22} \frac{1}{\sqrt{2}}\left[Y_{[2] 20}+Y_{[2] 02}\right] \Omega_{S}$
F15	2_{M}^{+}			$\psi_{22} \frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}\left(Y_{[2] 20}-Y_{[2] 02}\right) \Omega_{M S}+Y_{[2] 11} \Omega_{M A}\right]$
	2_{M}^{+}			$\psi_{22} \frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}\left(Y_{[2] 20}-Y_{[2] 02}\right) \phi_{M S}+Y_{[2] 11} \phi_{M A}\right] \chi_{S}$
	2_{S}^{+}			
F17	2_{M}^{+}			$\psi_{22} \frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}\left(Y_{[2] 20}-Y_{[2] 02}\right) \phi_{M S}+Y_{[2] 11} \phi_{M A}\right] \chi_{S}$
P31	2_{S}^{+}			$\psi_{22} \frac{1}{\sqrt{2}}\left[\left(Y_{[2] 20}+Y_{[2] 02}\right] \chi_{S} \phi_{S}\right.$
	0_{M}^{+}			$\psi_{22} \frac{1}{\sqrt{2}}\left[Y_{[2] 00} \chi_{M S}+Y_{[2] 11} \chi_{M A}\right] \phi_{S}$
P33	0_{S}^{+}			$\psi_{00} Y_{[0] 00} \chi_{S} \phi_{S}$
	0_{S}^{+}			$\psi_{10} Y_{[0] 00} \chi_{S} \phi_{S}$
	0_{S}^{+}			$\psi_{20} Y_{[0] 00} \chi_{S} \phi_{S}$
	2_{S}^{+}			$\psi_{22} \frac{1}{\sqrt{2}}\left[Y_{[2] 20}+Y_{[2] 02} \chi^{\prime} \chi_{S} \phi_{S}\right.$
	2_{M}^{+}			$\psi_{22} \frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}\left(Y_{[2] 20}-Y_{[2] 02}\right) \chi_{M S}+Y_{[2] 11} \chi_{M A}\right] \phi_{S}$
F35	2_{M}^{+}			$\psi_{22} \frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}\left(Y_{[2] 20}-Y_{[2] 02}\right) \chi_{M S}+Y_{[2] 11} \chi_{M A}\right] \phi_{S}$
	2_{S}^{+}			$\psi_{22} \frac{1}{\sqrt{2}}\left[Y_{[2] 20}+Y_{[2] 02}\right]^{2} \chi_{S} \phi_{S}$
F37	2_{S}^{+}			$\psi_{22} \frac{1}{\sqrt{2}}\left[Y_{[2] 20}+Y_{[2] 02}\right] \chi_{S} \phi_{S}$

$$
\begin{aligned}
\chi_{M S} & =\left\lvert\,\left(\left(\frac{1}{2}, \frac{1}{2}\right) 1, \frac{1}{2}\right) \frac{1}{2}>\right. \\
\chi_{M A} & =\left|\left(\left(\frac{1}{2}, \frac{1}{2}\right) 0, \frac{1}{2}\right) \frac{1}{2}\right\rangle \\
\chi_{S} & =\left|\left(\left(\frac{1}{2}, \frac{1}{2}\right) 1, \frac{1}{2}\right) \frac{3}{2}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
\Omega_{S} & =\frac{1}{\sqrt{2}}\left[\chi_{M A} \phi_{M A}+\chi_{M S} \phi_{M S}\right] \\
\Omega_{M S} & =\frac{1}{\sqrt{2}}\left[\chi_{M A} \phi_{M A}-\chi_{M S} \phi_{M S}\right] \\
\Omega_{M A} & =\frac{1}{\sqrt{2}}\left[\chi_{M A} \phi_{M S}+\chi_{M S} \phi_{M A}\right], \\
\Omega_{A} & =\frac{1}{\sqrt{2}}\left[\chi_{M A} \phi_{M S}-\chi_{M S} \phi_{M A}\right]
\end{aligned}
$$

Table 7. Three quark states with negative parity

Resonances	$L_{S_{3}}^{P}$	S	T	States
$S 11$	1_{M}^{-}	$\frac{1}{2}$	$\frac{1}{2}$	$\psi_{11} \frac{1}{\sqrt{2}}\left[Y_{[1] 10} \Omega_{M A}+Y_{[1] 01} \Omega_{M S}\right]$
	1_{M}^{-}	$\frac{1}{2}$	$\frac{1}{2}$	$\psi_{21} \frac{1}{\sqrt{2}}\left[Y_{[1] 10} \Omega_{M A}+Y_{[1] 01}\right] \Omega_{M S}$
	1_{M}^{-}	$\frac{3}{2}$	$\frac{1}{2}$	$\psi_{11} \frac{1}{\sqrt{2}}\left[Y_{[1] 10} \phi_{M A}+Y_{[1] 01} \phi_{M S}\right] \chi_{S}$
	1_{M}^{-}	$\frac{3}{2}$	$\frac{1}{2}$	$\psi_{21} \frac{1}{\sqrt{2}}\left[Y_{[1] 10} \phi_{M A}+Y_{[1] 01} \phi_{M S}\right] \chi_{S}$
$D 13$	1_{M}^{-}	$\frac{1}{2}$	$\frac{1}{2}$	$\psi_{11} \frac{1}{\sqrt{2}}\left[Y_{[1] 10} \Omega_{M A}+Y_{[1] 01} \Omega_{M S}\right]$
	1_{M}^{-}	$\frac{1}{2}$	$\frac{1}{2}$	$\psi_{21} \frac{1}{\sqrt{2}}\left[Y_{[1] 10} \Omega_{M A}+Y_{[1] 01}\right] \Omega_{M S}$
	1_{M}^{-}	$\frac{3}{2}$	$\frac{1}{2}$	$\psi_{11} \frac{1}{\sqrt{2}}\left[Y_{[1] 10} \phi_{M A}+Y_{[1] 01} \phi_{M S}\right] \chi_{S}$
	1_{M}^{-}	$\frac{3}{2}$	$\frac{1}{2}$	$\psi_{21} \frac{1}{\sqrt{2}}\left[Y_{[1] 10} \phi_{M A}+Y_{[1] 01} \phi_{M S}\right] \chi_{S}$
$D 15$	1_{M}^{-}	$\frac{3}{2}$	$\frac{1}{2}$	$\psi_{11} \frac{1}{\sqrt{2}}\left[Y_{[1] 10} \phi_{M A}+Y_{[1] 01} \phi_{M S}\right] \chi_{S}$
	1_{M}^{-}	$\frac{3}{2}$	$\frac{1}{2}$	$\psi_{21} \frac{1}{\sqrt{2}}\left[Y_{[1] 10} \phi_{M A}+Y_{[1] 01} \phi_{M S}\right] \chi_{S}$
$S 31$	1_{M}^{-}	$\frac{1}{2}$	$\frac{3}{2}$	$\psi_{11} \frac{1}{\sqrt{2}}\left[Y_{[1] 10} \chi_{M A}+Y_{[1] 01} \chi_{M S}\right] \phi_{S}$
	1_{M}^{-}	$\frac{1}{2}$	$\frac{3}{2}$	$\psi_{21} \frac{1}{\sqrt{2}}\left[Y_{[1] 10} \chi_{M A}+Y_{[1] 01} \chi_{M S}\right] \phi_{S}$
$S 33$	1_{M}^{-}	$\frac{1}{2}$	$\frac{3}{2}$	$\psi_{11} \frac{1}{\sqrt{2}}\left[Y_{[1] 10} \chi_{M A}+Y_{[1] 01} \chi_{M S}\right] \phi_{S}$
	1_{M}^{-}	$\frac{1}{2}$	$\frac{3}{2}$	$\psi_{21} \frac{1}{\sqrt{2}}\left[Y_{[1] 10} \chi_{M A}+Y_{[1] 01} \chi_{M S}\right] \phi_{S}$

Flavor wave functions

the flavor wave functions $\left|(p, q), I, M_{I}, Y\right\rangle$

(i) The octet baryons $(p, q)=(1,1)$:

$$
\begin{aligned}
|(1,1), 1 / 2,1 / 2,1\rangle & : \phi_{\rho}(p)=[|u d u\rangle-|d u u\rangle] / \sqrt{2}, \\
& : \phi_{\lambda}(p)=[2|u u d\rangle-|u d u\rangle-|d u u\rangle] / \sqrt{6}, \\
|(1,1), 1,1,0\rangle & : \phi_{\rho}\left(\Sigma^{+}\right)=[|s u u\rangle-|u s u\rangle] / \sqrt{2}, \\
& : \phi_{\lambda}\left(\Sigma^{+}\right)=[|s u u\rangle+|u s u\rangle-2|u u s\rangle] / \sqrt{6}, \\
|(1,1), 0,0,0\rangle & : \phi_{\rho}(\Lambda)=[2|u d s\rangle-2|d u s\rangle-|d s u\rangle+|s d u\rangle-|s u d\rangle+|u s d\rangle] / \sqrt{12}, \\
& : \phi_{\lambda}(\Lambda)=[-|d s u\rangle-|s d u\rangle+|s u d\rangle+|u s d\rangle] / 2, \\
|(1,1), 1 / 2,1 / 2,-1\rangle \quad & : \phi_{\rho}\left(\Xi^{0}\right)=[|s u s\rangle-|u s s\rangle] / \sqrt{2}, \\
: & \phi_{\lambda}\left(\Xi^{0}\right)=[2|s s u\rangle-|s u s\rangle-|u s s\rangle] / \sqrt{6} .
\end{aligned}
$$

(ii) The decuplet baryons $(p, q)=(3,0)$:

$$
\begin{array}{rll}
|(3,0), 3 / 2,3 / 2,1\rangle & : & \phi_{S}\left(\Delta^{++}\right)=|u u u\rangle, \\
|(3,0), 1,1,0\rangle & : & \phi_{S}\left(\Sigma^{+}\right)=[|s u u\rangle+|u s u\rangle+|u u s\rangle] / \sqrt{3}, \\
|(3,0), 1 / 2,1 / 2,-1\rangle & : & \phi_{S}\left(\Xi^{0}\right)=[|s s u\rangle+|s u s\rangle+|u s s\rangle] / \sqrt{3}, \\
|(3,0), 0,0,-2\rangle & : & \phi_{S}\left(\Omega^{-}\right)=|s s s\rangle .
\end{array}
$$

(iii) The singlet baryons $(p, q)=(0,0)$:

$$
|(0,0), 0,0,0\rangle: \phi_{A}(\Lambda)=[|u d s\rangle-|d u s\rangle+|d s u\rangle-|s d u\rangle+|s u d\rangle-|u s d\rangle] / \sqrt{6}
$$

The S_{3} invariant space-spin-flavor $(\Psi=\psi \chi \phi)$ baryon wave functions are given by

$$
\begin{aligned}
{ }^{2} 8\left[56, L^{P}\right] & : \psi_{S}\left(\chi_{\rho} \phi_{\rho}+\chi_{\lambda} \phi_{\lambda}\right) / \sqrt{2}, \\
{ }^{2} 8\left[70, L^{P}\right] & :\left[\psi_{\rho}\left(\chi_{\rho} \phi_{\lambda}+\chi_{\lambda} \phi_{\rho}\right)+\psi_{\lambda}\left(\chi_{\rho} \phi_{\rho}-\chi_{\lambda} \phi_{\lambda}\right)\right] / 2, \\
{ }^{4} 8\left[70, L^{P}\right] & :\left(\psi_{\rho} \phi_{\rho}+\psi_{\lambda} \phi_{\lambda}\right) \chi_{S} / \sqrt{2} \\
{ }^{2} 8\left[20, L^{P}\right] & : \psi_{A}\left(\chi_{\rho} \phi_{\lambda}-\chi_{\lambda} \phi_{\rho}\right) / \sqrt{2} \\
{ }^{4} 10\left[56, L^{P}\right]: & \psi_{S} \chi_{S} \phi_{S}, \\
{ }^{2} 10\left[70, L^{P}\right] & :\left(\psi_{\rho} \chi_{\rho}+\psi_{\lambda} \chi_{\lambda}\right) \phi_{S} / \sqrt{2} \\
{ }^{2} 1\left[70, L^{P}\right] & :\left(\psi_{\rho} \chi_{\lambda}-\psi_{\lambda} \chi_{\rho}\right) \phi_{A} / \sqrt{2} \\
{ }^{4} 1\left[20, L^{P}\right] & : \psi_{A} \chi_{S} \phi_{A} .
\end{aligned}
$$

Magnetic moments of Baryons

Single quark magnetic moment operator

$$
\vec{\mu}_{j}=\frac{e_{j}}{2 m_{j}} \vec{\sigma}_{j}
$$

μ_{B} is given by the matrix element

$$
\left.<B \frac{1}{2}, \frac{1}{2}\right)\left|\sum_{j=1,2,3} \frac{e_{j}}{2 m_{j}} \vec{\sigma}_{j}\right| B\left(\frac{1}{2}, \frac{1}{2}\right)>
$$

proton
the u pair is in a symmetric (triplet) spin state $\chi(1, m)$
(the antisimmetry is ensured by the color wf)
$\phi(1 / 2, s)$ spin state of the third quark
proton state

$$
\begin{aligned}
\psi\left(\frac{1}{2}, \frac{1}{2}\right) & =\sqrt{\frac{2}{3}} \chi(1,1) \phi\left(\frac{1}{2},-\frac{1}{2}\right)-\sqrt{\frac{1}{3}} \chi(1,0) \phi\left(\frac{1}{2}, \frac{1}{2}\right) \\
\mu_{p} & =\frac{2}{3}\left(2 \mu_{u}-\mu_{d}\right)+\frac{1}{3} \mu_{d}=\frac{4}{3} \mu_{u}-\frac{1}{3} \mu_{d}
\end{aligned}
$$

neutron (u and interchanged)

$$
\mu_{n}=\frac{4}{3} \mu_{d}-\frac{1}{3} \mu_{u} \quad \frac{\mu_{n}}{\mu_{p}}=-\frac{2}{3} \quad(\exp -0.685)
$$

Baryon magnetic moments in nuclear magnetons (n.m.), normalised to proton and lambda moments

Baryon	Magnetic moment in quark model	Predicted, n.m.	Observed, n.m.
p	$\frac{4}{3} \mu_{u}-\frac{1}{3} \mu_{d}$	+2.79	+2.793
n	$\frac{4}{3} \mu_{d}-\frac{1}{3} \mu_{u}$	-1.86	-1.913
Λ	μ_{s}	-0.61	-0.614 ± 0.005
Σ^{+}	$\frac{4}{3} \mu_{u}-\frac{1}{3} \mu_{s}$	+2.68	$+2.46 \pm 0.01$
Σ^{-}	$\frac{4}{3} \mu_{d}-\frac{1}{3} \mu_{s}$	-1.04	-1.16 ± 0.03
Ξ^{0}	$\frac{4}{3} \mu_{s}-\frac{1}{3} \mu_{u}$	-1.44	-1.25 ± 0.014
Ξ^{-}	$\frac{4}{3} \mu_{s}-\frac{1}{3} \mu_{d}$	-0.51	-0.65 ± 0.01
Ω^{-}	$3 \mu_{s}$	-1.84	-2.02 ± 0.05

The baryon current
QUARKS ARE THE FUNDAMENTAL CARRIERS OF THE BARYON: CHARGE

$$
\left.x\right|_{q} j_{\mu}^{(B)}=\sum_{i=1}^{3} j_{\mu}^{(q)}(i)
$$

$\overline{9} \gamma_{\mu} 9$
quark current (pointlike quarks)
non relativistic reduction:

$$
\begin{aligned}
& \rho(\vec{q})=\sum_{i} e_{i} e^{i \vec{q} \cdot \vec{r}_{i}} \\
& \vec{j}(\vec{q})=\frac{1}{2 m} \sum_{i} e_{i}\left[\vec{p}_{i}+\vec{p}_{i}+i \overrightarrow{r_{q}}(i) \times \vec{q}\right] e^{i \vec{q} \cdot \vec{r}_{i}} \text {, } \quad \text { quark spin }
\end{aligned}
$$

quark charge

$$
\begin{aligned}
& e_{i}=\frac{1}{2}\left[\frac{1}{3}+c_{0}^{9}(i)\right] \\
& (u, d \quad \text { only) }
\end{aligned}
$$

$$
\vec{\jmath}_{B}=\langle B| \vec{\jmath}|B\rangle
$$

for e.m.
excitation
example : magnetic moments $\quad\left\{\begin{array}{l}N_{\text {hyp }}=\end{array}\right.$
nucleon isospin

$$
=\frac{e \hbar}{2 M_{N} c} \cdot \frac{1+5 c_{0}^{d}}{2}=\int 3 \mu_{N} \text { proton }
$$

Note: $\left\langle\vec{\sigma}^{q}\right\rangle=\frac{1}{3} \vec{\sigma}_{N}$

$$
\left\langle\vec{\sigma}^{4} \tau_{0}^{9}\right\rangle=\frac{5}{9} \vec{\sigma}_{N} \tau_{0}
$$

Ex. $\left\langle r^{2}\right\rangle _p=1 / \alpha^{\wedge} 2=0.89 \mathrm{fm}^{2}, \quad \alpha=1.23 \mathrm{fm}^{-1}$

$$
\begin{aligned}
& \text { The Isgur and Karl model } \\
& \text { (how to correct the defect of to the H.O. model) } \\
& H=3 m+\frac{\rho_{\rho}^{2}+p_{\lambda}^{2}}{2 m}+L(\vec{\rho}, \vec{\lambda})+H_{\text {myp }}\left(\vec{\rho}, \vec{\lambda}, \overrightarrow{\sigma_{i}}\right) \quad L=\sum_{i k i}\left(\frac{1}{2} K \rho_{i j}^{2}+U\left(r_{i j}\right)\right)=v_{\text {cont }}
\end{aligned}
$$

The term $L(\vec{\rho}, \vec{\lambda})$ provides confinement again through a h.o. potential, to which however an anharmonic term U is added

$$
\begin{gathered}
L=\sum_{i<i}\left(\frac{1}{2} k r_{i j}^{2}+U\left(r_{i j}\right)\right) \equiv V_{\text {conf }} \\
H_{\text {hyp }}=\frac{2 \alpha_{s}}{3 m^{2}} \sum_{i<j}\left\{\frac{8 \pi}{3} \vec{S}_{i} \vec{S}_{j} \delta\left(\vec{r}_{i j}\right)+\frac{1}{r_{i j}^{3}}\left[\frac{3\left(\overrightarrow{S_{i}} \cdot \overrightarrow{r_{i j}}\right)\left(\overrightarrow{S_{j}} \cdot \vec{r}_{i j}\right)}{r_{i j}^{2}} \cdot \vec{S}_{i} \cdot \vec{S}_{j}\right]\right\} \\
a_{m}=3\left(\alpha / \pi^{\left.\frac{1}{2}\right)^{3} \int d \rho(\alpha \rho)^{m} U(\sqrt{2} \rho) \exp \left(-\alpha^{2} \rho^{2}\right)}\right.
\end{gathered}
$$

through the quantities

for em. excitation
example magnetic moments, $\left\{\begin{array}{l}N_{\text {hyp }}=x\end{array}\right.$
nucleon isospit

$$
=\frac{e \hbar}{2 M_{N} c} \cdot \frac{1+5 c_{0}^{\prime}}{2}=\int-2 \mu_{N} \text { proton }
$$

Note: $\left\langle\vec{\sigma}^{q}\right\rangle=\frac{1}{3} \vec{\sigma}_{N}$

$$
\left\langle\vec{\sigma}^{4} \tau_{0}^{q}\right\rangle=\frac{5}{9} \vec{\sigma}_{N} \tau_{0}
$$

Ex. $\left\langle r^{2}\right\rangle _p=1 / \alpha^{\wedge} 2$

Algebraic solution of the Coulomb problem

A) three dimensions $\frac{1}{r}$
\therefore angular momentum $\rightarrow \mathbf{O}(3)$ symmetry
\therefore Runge-Lenz vector $\rightarrow \mathrm{O}(4)$ symmetry

$$
\begin{aligned}
H= & -\frac{1}{2\left[C_{2}(O(4))+1\right]} \rightarrow \quad E=-\frac{1}{2 n^{2}} \\
& {\left[C_{2}(O(4)) \text { Casimir for } O(4)\right] }
\end{aligned}
$$

since

$$
\mathrm{C}_{2}(\mathrm{O}(4))=\omega(\omega+2) \quad \mathrm{n}=\omega+1
$$

In general the eigenvalues of $\mathrm{C}_{-} 2(\mathrm{O}(\mathrm{N}))=\omega(\omega+\mathrm{N}-2)$

algebraic solution to the hyperCoulomb problem

B) six dimensions $\frac{1}{x}$
\therefore hyperangular invariance $\rightarrow \mathbf{O}(6)$ symmetry
\therefore "Runge-Lenz vector" $\rightarrow \mathrm{O}(7)$ symmetry

$$
\begin{array}{ccc}
H=-\frac{1}{2\left[C_{2}(O(7))+(5 / 2)^{2}\right]} & \rightarrow & \mathbf{E}=-\frac{1}{2 n^{2}} \\
v+1 \quad((v-1) / 2)^{2} & \\
C_{2}(O(7))=\omega(\omega+5) & \mathrm{n}=\omega+5 / 2 \\
\omega(\omega+v-1) & & \omega+(v-1) / 2
\end{array}
$$

$$
\begin{array}{ll}
H=\sum_{i=1}^{6} \frac{p_{i}^{2}}{2 m}-\frac{t}{x} & p_{i}=\left(\vec{p}_{j}, \vec{p}_{\lambda}\right) \\
q_{i}=(\vec{g}, \vec{\lambda}) \\
L_{i j}=q_{i} p_{j}-q_{j} p_{i} & x=\left(\sum q_{i}^{2}\right)^{1 / 2}
\end{array}
$$(6) 15 generators

$$
\left[H, L_{i j}\right]=0
$$

"Runge-Lenz" vector:

$$
M_{i}=\frac{1}{2 m}\left(P_{j} L_{i j}+L_{i j} P_{j}\right)-\frac{\tau}{x} q_{i}
$$

$[H, M i]=0 \quad$ generalization of classical R.L. vector

The Models
 (CQM)

some other Constituent Quark Model

different CQMs for bayons

	Kin. Energy	SU(6) inv	SU(6) viol	date
Isgur-Karl	non rel	h.o. + shift	OGE	$1978-9$
Capstick-Isgur	rel	string + coul-like	OGE	1986
U(7) B.I.L.	rel M^2	vibr+L	Guersey-R	1994
Hyp. O(6)	non rel/rel	hyp.coul+linear	OGE	1995
Glozman Riska	non rel/relPlessas	h.o./linear	GBE	1996
Bonn	rel	linear 3-body	instanton	2001

Non strange spectrum

Hypercentral Constituent Quark Model hCQM

free parameters fixed from the spectrum

Comment
The description of the spectrum is the first task of a model builder

Hypercentral Constituent Quark Model hCQM

free parameters fixed from the spectrum

Comment
The description of the spectrum is the first task of a model builder

LQCD (De Rújula, Georgi, Glashow, 1975)

the quark interaction contains
a long range spin-independent confinement
a short range spin dependent term

Spin-independence \longrightarrow SU(6) configurations

$\mathrm{SU}(6)$ configurations for three quark states

$$
\begin{array}{r}
6 \times 6 \times 6= \\
\text { A } 20+70+70+56 \\
\text { A } \quad \text { M } S
\end{array}
$$

Notation

$$
\left(\mathrm{d}, \mathrm{~L}^{\pi}\right)
$$

$$
\begin{aligned}
& \mathrm{d}=\operatorname{dim} \text { of } \mathrm{SU}(6) \text { irrep } \\
& \mathrm{L}=\text { total orbital angular momentum } \\
& \pi=\text { parity }
\end{aligned}
$$

$\mathrm{SU}(6)$ configurations for three quark states

$$
\begin{array}{r}
6 \times 6 \times 6= \\
\text { A } 20+70+70+56 \\
\text { A } \quad \text { M } S
\end{array}
$$

Notation

$$
\left(\mathrm{d}, \mathrm{~L}^{\pi}\right)
$$

$$
\begin{aligned}
& \mathrm{d}=\operatorname{dim} \text { of } \mathrm{SU}(6) \text { irrep } \\
& \mathrm{L}=\text { total orbital angular momentum } \\
& \pi=\text { parity }
\end{aligned}
$$

Jacobi coordinates

Hyperspherical Coordinates

$$
\begin{aligned}
& \left(\rho, \Omega_{\rho}, \lambda, \Omega_{\lambda}\right) \Rightarrow\left(x, t, \Omega_{\rho}, \Omega_{\lambda}\right) \\
& x=\sqrt{\rho^{2}+\lambda^{2}} \quad \text { hyperradius } \\
& t=\operatorname{arctg} \frac{\rho}{\lambda} \quad \text { hyperangle }
\end{aligned}
$$

$\mathrm{L}^{2}(\Omega) \mathrm{Y}_{[\gamma]}(\Omega)=-\gamma(\gamma+4) \mathrm{Y}_{[\gamma]}{ }^{\gamma=2 \Omega^{2}(\Omega)^{t^{p}+h_{\lambda}}} \quad L^{2}(\Omega) \Leftrightarrow C_{2}(O(6))$
γ grand angular quantum number

$$
\sum_{i<j} V\left(\mathrm{r}_{i j}\right) \approx V(x)+\ldots
$$

$$
\gamma=2 n+I_{\rho}+I_{\lambda}
$$

Hasenfratz et al. 1980:
$\Sigma \mathrm{V}\left(\mathrm{r}_{\mathrm{i}}, \mathrm{r}_{\mathrm{j}}\right)$ is approximately hypercentral

Hypercentral Hypothesis
 $$
V=V(x)
$$

Factorization

$$
\psi\left(x, t, \Omega_{\rho}, \Omega_{\lambda}\right)=\begin{array}{cc}
\psi_{\nu \gamma}(x) & Y_{\left[\gamma, l_{\rho}, l_{\lambda}\right]} \\
\text { ("dynamics") } & \text { ("geometry") }
\end{array}
$$

Only one differential equation in x (hyperradial equation)

Hypercentral Model
Genoa group, 1995

$$
V(x)=-\tau / x+\alpha x
$$

Hypercentral approximation of

$$
\mathrm{V}=-\mathrm{b} / \mathrm{r}+\mathrm{cr}
$$

- QCD fundamental mechanism

> 3-body forces

Carlson et al, 1983 Capstick-Isgur 1986 hCQM 1995

- Flux tube model

Two analytical solutions

$$
\begin{aligned}
& \text { hyperCoulomb } \quad-\tau / \mathrm{x} \\
& \text { h. o. } \quad \sum_{\mathrm{i}<\mathrm{j}} 1 / 2 \mathrm{k}\left(\mathrm{r}_{\mathrm{i}}-\mathrm{r}_{\mathrm{j}}\right)^{2}=3 / 2 \mathrm{k} \mathrm{x}^{2}
\end{aligned}
$$

- H.O.
- W.fs $e^{-\alpha 2 r 2}$
- F.F. $\mathrm{e}^{-\alpha 2 \mathrm{r} 2 / 6}$
- Transition form factor :
- Polynomial $\times \mathrm{e}^{-\alpha 2 \mathrm{r} 2 / 6}$
- Hyp.
- W.fs Polinomial $e^{-b r}$
- F.F. : $1 /\left(1+Q^{2} / b^{\wedge} 2\right)^{7 / 2}$
- Transition f.f.:

Polynomial×

$$
1 /\left(1+Q^{2} / b^{\wedge} 2\right)^{(7+n) / 2}
$$

Quark-antiquark lattice potential
G.S. Bali Phys. Rep. 343, 1 (2001)

Introducing $S U(6)$ violation

$$
\begin{gathered}
\text { Hypercentral Model (1) } \\
H_{3 q}=3 m+\sum_{i=1}^{3} \frac{\mathbf{p}_{i}^{2}}{2 m}+V(x)+H_{h y p}
\end{gathered}
$$

M. Ferraris, M. M. Giannini, M. Pizzo, E. Santopinto, L. Tiator, Phys. Lett. B364 (1995), 231

- $V(x)=-\frac{\tau}{x}+\alpha x ; \quad H_{l u y p}=A\left[\sum_{i<j} V^{S}\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right) \quad \sigma_{i} \cdot \sigma_{j}+\right.$ tensor $]$
- 3 parameters $\tau \alpha A \leftarrow$ fixed to the spectrum, $m=\frac{M}{3}$

$$
\begin{aligned}
& \tau=4.59 \\
& \alpha=1.61 \mathrm{fm}^{-1} \\
& \mathrm{~A} \Leftarrow(N-\Delta) \\
& \quad \mathrm{X}=\sqrt{\rho^{2}+\lambda^{2}}
\end{aligned}
$$

hyperradius

Results (predictions) with the Hypercentral Constituent Quark Model

for

- Helicity amplitudes

Elastic nucleon form factors

The helicity amplitudes

HELICITY AMPLITUDES

Extracted from electroproduction of mesons

Definition

$$
\begin{array}{lll}
\mathrm{A}_{1 / 2}=\left\langle\mathrm{N}^{*} J_{2}=1 / 2\right| \mathrm{H}^{\top} \mathrm{em}\left|N J_{2}=-1 / 2\right\rangle & \S \\
\mathrm{A}_{3 / 2}=\left\langle\mathrm{N}^{*} J_{2}=3 / 2\right| \mathrm{H}_{\mathrm{em}}^{\top}\left|N J_{2}=1 / 2\right\rangle & \S \\
\mathrm{S}_{1 / 2}=\left\langle\mathrm{N}^{*} J_{2}=1 / 2\right| \mathrm{H}_{\mathrm{em}}^{\mathrm{L}}\left|N J_{\mathrm{z}}=1 / 2\right\rangle &
\end{array}
$$

$\mathrm{N}, \mathrm{N}^{*}$ nucleon and resonance as 3 q states
$\mathrm{H}^{\top}{ }_{e m} \mathrm{H}_{\mathrm{em}}$ model transition operator
§ results for the negative parity resonances:
M. Aiello, M.G., E. Santopinto J. Phys. G24, 753 (1998)

Systematic predictions for transverse and longitudinal amplitudes E. Santopinto, M.G., submitted to PR C

Definition

$$
\begin{aligned}
& \mathrm{A}_{1 / 2}=<\mathrm{N}^{*} \mathrm{~J}_{\mathrm{z}}=1 / 2\left|\mathrm{H}_{\mathrm{em}}^{\mathrm{T}}\right| \mathrm{NJ}_{\mathrm{z}}=-1 / 2> \\
& \mathrm{A}_{3 / 2}=<\mathrm{N}^{*} \mathrm{~J}_{\mathrm{z}}=3 / 2\left|\mathrm{H}_{\mathrm{em}}^{\mathrm{e}}\right| \mathrm{NJ}_{\mathrm{z}}=1 / 2> \\
& \mathrm{S}_{1 / 2}=<\mathrm{N}^{*} \mathrm{~J}_{\mathrm{z}}=1 / 2\left|\mathrm{H}^{\mathrm{L}}{ }_{\mathrm{em}}\right| \mathrm{N}_{\mathrm{z}}=1 / 2>
\end{aligned}
$$

$\mathrm{N}, \mathrm{N}^{*}$ nucleon and resonance as 3 q states $\mathrm{H}^{\mathrm{T}} \mathrm{em}^{\mathrm{H}} \mathrm{H}_{\mathrm{em}}^{1}$ model transition operator
\S results for the negative parity resonances:
M. Aiello, M.G., E. Santopinto J. Phys. G24, 753 (1998)

Systematic predictions for transverse and longitudinal amplitudes E. Santopinto et al. , Phys. Rev. C86, 065202 (2012)

Proton and neutron electro-excitation to 14 resonances

$\mathrm{N}(1520) 3 / 2^{-}$transition amplitudes

$\mathrm{N} 1440)^{1 ⁄ 2}+$
(Roper)

transition amplitudes

E. Santopinto, M.Giannini,Phys. Rev. C86, 065202 (2012)

Neutron photocouplings

hCQM: E. Santopinto, M.G. Phys. Rev. C86, 065202 (2012)
Bonn: A.V. Anisovich et al., EPJ A49, 67 (2013)

E. Santopinto, M.Giannini,Phys. Rev. C86, 065202 (2012)

E. Santopinto, M.Giannini,Phys. Rev. C86, 065202 (2012)

- The hCQM seems to provide realistic three-quark wave functions
- The main reason is the presence of the hypercoulomb term

Solvable model
$V(x)=-\tau / x+\alpha x \quad$ linear term treated as a perturbation wf mainly concentrated in the low x region
> energy levels expressed analytically
$>$ unperturbed wf given by the $1 / x$ term
$>$ major contribution to the helicity amplitudes

Good results due to semplicity
E. Santopinto, F. Iachello, M.Giannini, Eur. Phys. J. A 1, 307 (1998)
$A_{m}^{p} N(1520) D 13$

Green curves H.O.
Blue curves hCQM

The nucleon elastic form factors

- elastic scattering of polarized electrons on polarized protons
- measurement of polarizations
asymmetry gives directly the ratio $\mathrm{G}_{\mathrm{E}}^{\mathrm{p}} / \mathrm{G}_{\mathrm{M}}^{\mathrm{p}}$
- discrepancy with Rosenbluth data (?)
- linear and strong decrease
- pointing towards a zero (!)
- new data (jan 2010) seem to confirm the behaviour

With a calculated radius of about 0.5 fm the e.m. form factors predicted by the hCQM are not good!

BUT

relativity is needed

RELATIVITY

Various levels

- relativistic kinetic energy
- Lorentz boosts
- Relativistic dynamics
- quark-antiquark pair effects (meson cloud)
- relativistic equations (BS, DS)

Relativistic corrections to form factors

- Breit frame
- Lorentz boosts applied to the initial and final state
- Expansion of current matrix elements up to first order in quark momentum
- Results

$$
\begin{aligned}
& \mathrm{A}_{\text {rel }}\left(\mathrm{Q}^{2}\right)=\mathrm{F} \quad \mathrm{~A}_{\text {n.rel }}\left(\mathrm{Q}_{\text {eff }}^{2}\right) \\
& \mathrm{F}=\text { kin factor } \quad \mathrm{Q}^{2}{ }_{\text {eff }}=\mathrm{Q}^{2}\left(\mathrm{M}_{\mathrm{N}} / \mathrm{E}_{\mathrm{N}}\right)^{2}
\end{aligned}
$$

De Sanctis et al. EPJ 1998

Full curves: hCQM with relativistic corrections
Dashed curves: hCQM in different frames

Elastic Form Factors in the hCQM
 M. De Sanctis, M.M. Giannini, L. Repetto, E. Santopinto, Phys. Rev. C62, (2000) 025208.

Construction of a fully relativistic theory Relativistic Dynamics

Three forms (Dirac):
Light (LF), Instant (IF), Point (PF)

Point form:

Composition of angular momentum states as in the non relativistic case

Moving three-quark states are obtained through (interaction free) Lorentz boosts (velocity states)

Construction of a fully relativistic theory Relativistic Dynamics

Relativistic Hamiltonian Dynamics for a fixed number of particles (Dirac)

Construction of a representation of the Poincaré generators P_{μ} (tetramomentum), J_{k} (angular momenta), K_{i} (boosts) obeying the Poincaré group commutation relations
in particular

$$
\left[P_{\mathrm{k}}, K_{\mathrm{i}}\right]=\mathrm{i} \delta_{\mathrm{kj}} H
$$

Moving three-quark states are obtained through (interaction free) Lorentz boosts (velocity states)

Three forms:
Light (LF), Instant (IF), Point (PF)
Differ in the number and type of (interaction) free generators

Point form: $\quad P_{\mu}$ interaction dependent J_{k} and $K_{\mathrm{i}} \quad$ free

Composition of angular momentum states as in the non relativistic case

Mass operator $\quad \mathrm{M}=\mathrm{M}_{0}+\mathrm{M}_{\mathrm{I}}$

$$
\mathrm{M}_{0}=\Sigma_{\mathrm{i}} \sqrt{\overrightarrow{\mathbf{p}}_{\mathrm{i}}^{2}+\mathrm{m}^{2}} \quad \Sigma_{\mathrm{i}} \overrightarrow{\mathbf{p}}_{\mathrm{i}}=0
$$

$\overrightarrow{\mathbf{P}}_{\mathrm{i}}$ undergo the same Wigner rotation $->\mathrm{M}_{0}$ is invariant Similar reasoning for the hyperradius

The eigenstates of the relativistic hCQM are interpreted as eigenstates of the mass operator M

Moving three-quark states are obtained through (interaction free) Lorentz boosts (velocity states)

- Boosts to initial and final states

Calculated values!

- Expansion of current to any order

-Conserved current

Genoa group, Phys. Rev. C76, 062201 (2007)

Relativistic hCQM In Point Form

Y.B. Dong, M.Giannini., E. Santopinto,

A. Vassallo,

Few-Body Syst. 55 (2014) 873-876

please note

- the medium Q^{2} behaviour is fairly well reproduced
- there is lack of strength at low Q^{2} (outer region) in the e.m. transitions
- emerging picture:
quark core plus (meson or sea-quark) cloud

Meson cloud

Quark core

Conclusions First Part

- CQM provide a good systematic frame for baryon studies
- fair description of e.m. properties (specially N-N* transitions)
- possibility of understanding missing mechanisms
-quark antiquark pairs effects
unquenching: important break through

