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FIG. 5: Results for baryon excited states using the ensemble with m⇡ = 524 MeV are shown versus JP . Symbols are as
described in Fig. 4.
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We present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic
clover lattices. A method for operator construction is introduced that allows for the reliable iden-
tification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic
lattice. Using this method, we are able to determine a spectrum of single-particle states for spins
up to and including J = 7

2

, of both parities, the first time this has been achieved in a lattice cal-
culation. We find a spectrum of states identifiable as admixtures of SU(6) ⌦ O(3) representations
and a counting of levels that is consistent with the non-relativistic qqq constituent quark model.
This dense spectrum is incompatible with quark-diquark model solutions to the “missing resonance
problem” and shows no signs of parity doubling of states.

I. INTRODUCTION

Explaining the excitation spectrum of baryons is core
to our understanding of QCD in the low-energy regime,
and if we truly understand QCD in the strong-coupling
regime, we should be able to confront experimental spec-
troscopic data with first-principles calculations within
QCD. The experimental investigation of the excited
baryon spectrum has been a long-standing element of
the hadronic-physics program. An important goal has
been the search for so-called “missing resonances”, bary-
onic states predicted by the quark model based on three
constituent quarks but which have not yet been ob-
served experimentally; should such states not be found,
it may indicate that the baryon spectrum can be mod-
eled with fewer e↵ective degrees of freedom, such as in
quark-diquark models. In the past decade, there has
been an extensive program to collect data on electro-
magnetic production of one and two mesons at Je↵erson
Lab, MIT-Bates, LEGS, MAMI, ELSA, and GRAAL. To
analyse these data, and thereby refine our knowledge of
the baryon spectrum, a variety of physics analysis models
have been developed at Bonn, George Washington Uni-
versity, Je↵erson Laboratory and Mainz.

The experimental e↵orts outlined above should be
complemented by high-quality ab initio computations
within lattice QCD. Historically, the calculation of the
masses of the lowest-lying states, for both baryons and
mesons, has been a benchmark calculation of this dis-
cretized, finite-volume computational approach, where
the aim is well-understood control over the various sys-
tematic errors that enter into a calculation; for a recent
review, see [1]. However, there is now increasing e↵ort
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aimed at calculating the excited states of the theory, with
several groups presenting investigations of the low-lying
excited baryon spectrum, using a variety of discretiza-
tions, numbers of quark flavors, interpolating operators,
and fitting methodologies [2–5]. Some aspects of these
calculations remain unresolved and are the subject of in-
tense e↵ort, notably the ordering of the Roper resonance
in the low-lying Nucleon spectrum.

A basis of baryon operators for states at rest, re-
specting the (cubic) symmetry of the lattice, was de-
veloped in Refs. [6, 7], and subsequently used in cal-
culations of the excited state Nucleon spectrum in
both quenched QCD[8], and with two dynamical quark
flavors[9]. In parallel, we studied Clover fermions on
anisotropic lattices[10, 11], with a finer temporal than
spatial resolution, enabling the hadron correlation func-
tions to be observed at short temporal distances and
hence many energy levels to be extracted. Crucial to
our determination of the spectrum has been the use of
the variational method [12–14] with a large number of in-
terpolating operators at both the source and the sink; we
developed and used the “distillation” method, enabling
the necessary correlation functions to be computed in an
e�cient manner. A recent calculation of the Nucleon, �
and ⌦ excited-state spectrum demonstrated the e�cacy
of the method[15].

In this paper, we expand the above program of
computations considerably, extending to baryons the
spin-identification techniques developed for mesons in
Refs. [16, 17]. We develop a new basis of interpolat-
ing operators with good total angular momentum, J , in
the continuum, which are then subduced to the various
lattice irreducible representations (irreps). We find that
the subduced operators retain a memory of their contin-
uum antecedents to a remarkable degree. For example,
hadron correlation functions between operators subduced
from di↵erent continuum spins J are suppressed relative
to those subduced from the same J , illustrating an ap-
proximate realization of rotational symmetry at the scale
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veloped in Refs. [6, 7], and subsequently used in cal-
culations of the excited state Nucleon spectrum in
both quenched QCD[8], and with two dynamical quark
flavors[9]. In parallel, we studied Clover fermions on
anisotropic lattices[10, 11], with a finer temporal than
spatial resolution, enabling the hadron correlation func-
tions to be observed at short temporal distances and
hence many energy levels to be extracted. Crucial to
our determination of the spectrum has been the use of
the variational method [12–14] with a large number of in-
terpolating operators at both the source and the sink; we
developed and used the “distillation” method, enabling
the necessary correlation functions to be computed in an
e�cient manner. A recent calculation of the Nucleon, �
and ⌦ excited-state spectrum demonstrated the e�cacy
of the method[15].

In this paper, we expand the above program of
computations considerably, extending to baryons the
spin-identification techniques developed for mesons in
Refs. [16, 17]. We develop a new basis of interpolat-
ing operators with good total angular momentum, J , in
the continuum, which are then subduced to the various
lattice irreducible representations (irreps). We find that
the subduced operators retain a memory of their contin-
uum antecedents to a remarkable degree. For example,
hadron correlation functions between operators subduced
from di↵erent continuum spins J are suppressed relative
to those subduced from the same J , illustrating an ap-
proximate realization of rotational symmetry at the scale
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We present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic
clover lattices. A method for operator construction is introduced that allows for the reliable iden-
tification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic
lattice. Using this method, we are able to determine a spectrum of single-particle states for spins
up to and including J = 7

2

, of both parities, the first time this has been achieved in a lattice cal-
culation. We find a spectrum of states identifiable as admixtures of SU(6) ⌦ O(3) representations
and a counting of levels that is consistent with the non-relativistic qqq constituent quark model.
This dense spectrum is incompatible with quark-diquark model solutions to the “missing resonance
problem” and shows no signs of parity doubling of states.

I. INTRODUCTION

Explaining the excitation spectrum of baryons is core
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troscopic data with first-principles calculations within
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and fitting methodologies [2–5]. Some aspects of these
calculations remain unresolved and are the subject of in-
tense e↵ort, notably the ordering of the Roper resonance
in the low-lying Nucleon spectrum.
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flavors[9]. In parallel, we studied Clover fermions on
anisotropic lattices[10, 11], with a finer temporal than
spatial resolution, enabling the hadron correlation func-
tions to be observed at short temporal distances and
hence many energy levels to be extracted. Crucial to
our determination of the spectrum has been the use of
the variational method [12–14] with a large number of in-
terpolating operators at both the source and the sink; we
developed and used the “distillation” method, enabling
the necessary correlation functions to be computed in an
e�cient manner. A recent calculation of the Nucleon, �
and ⌦ excited-state spectrum demonstrated the e�cacy
of the method[15].

In this paper, we expand the above program of
computations considerably, extending to baryons the
spin-identification techniques developed for mesons in
Refs. [16, 17]. We develop a new basis of interpolat-
ing operators with good total angular momentum, J , in
the continuum, which are then subduced to the various
lattice irreducible representations (irreps). We find that
the subduced operators retain a memory of their contin-
uum antecedents to a remarkable degree. For example,
hadron correlation functions between operators subduced
from di↵erent continuum spins J are suppressed relative
to those subduced from the same J , illustrating an ap-
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LQCD (De Rújula, Georgi, Glashow, 1975)	


	


 the quark interaction contains	


	

a long range spin-independent confinement	



          a short range spin dependent term	



Spin-independence         SU(6) configurations	









Ex.	
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  baryon	
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  in	
  the	
  Y	
  (	
  Y=B+S)	
  ,T_z	
  plane	
  	
  
	
  	
  
	
  
	
  
	
  
	
  
	
  



The	
  advantage	
  of	
  this	
  method	
  is	
  two-­‐fold:	
  first	
  the	
  pacern	
  	
  is	
  general,	
  
being	
  valid	
  for	
  any	
  SU(N);	
  furthermore	
  each	
  Young	
  tableaux	
  with	
  n	
  boxes	
  
defines	
  an	
  irreducible	
  representa7on	
  of	
  the	
  group	
  Sn	
  containing	
  all	
  the	
  
permuta7ons	
  of	
  n	
  objects	
  and	
  therefore	
  it	
  belongs	
  to	
  a	
  definite	
  
symmetry	
  type.	
  the	
  labels	
  A,M,S	
  refer	
  to	
  an7symmetry,	
  mixed	
  symmetry	
  
and	
  symmetry	
  for	
  the	
  exchange	
  of	
  the	
  3	
  quark	
  coordinates.	
  In	
  the	
  case	
  of	
  
SU(2)	
  (spin),	
  the	
  an7symmetric	
  3-­‐quark	
  state	
  does	
  not	
  exist,	
  because	
  only	
  
two	
  different	
  states	
  are	
  available	
  for	
  three	
  par7cles.	
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Both the single quark and the three-quark states form a basis for some irreducible representation 
of the group SU(2). The decomposition scheme of such representations can be better described 
by means of the Young diagram technique, according to which the fundamental N-dimensional 
representation (in this case the 2-component quark spinor) is denoted by a box (n): 

A M M S (2) 

the corresponding dimensions are: 

The advantage of this method is two-fold: first the pattern given by (2) is general, being valid for 
any SU(N); furthermore each Young tableaux with n boxes defines an irreducible representation 
of the group S n containing all the permutations of n objects and therefore it belongs to a definite 
symmetry type. In (2) the labels A,M,S refer to antisymmetry, mixed symmetry and symmetry for the 
exchange of the 3 quark coordinates. In the case of SU(2) (spin), the antisymmetric 3-quark state 
does not exist, because only two different states are available for three particles. 

If we adopt the standard angular momentum notation I((S 1,s2) $12,$3)S>, the explicit form of the 
3q spin states is: 

I, 11 1 1 ~MA = I t (~ '~)  o, 

*MS (1 1(2"2") zl 1~2. [~[~] = 1 , - ,  > -- 
(3) 

~s ( 1 1  1)  3 = ( ~ ) 1 ,  ~ > -  

in (3) the suffixes indicate also the symmetry for the exchange of quarks in the pair with total spin 
$12=0 or 1. 

The SU(3) flavour states are constructed from the quark ones following to the general scheme (2), 
the corresponding dimensions and symmetry types being 

SU(3): 3 @ 3 @ 3  = 1 ~ 8 ~ 8 ~ 1 0  
A M M S (4) 
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  momentum	
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In	
  the	
  case	
  of	
  non-­‐strange	
  baryons,	
  the	
  resul7ng	
  states	
  coincide	
  with	
  the	
  standard	
  

isospin	
  ones,	
  detoned,	
  similarly	
  to	
  the	
  spin	
  states	
  by	
  	
  	
  	
  

The	
  strongest	
  component	
  of	
  the	
  quark-­‐quark	
  interac7on	
  is	
  spin	
  independent.	
  In	
  
this	
  case	
  the	
  flavour	
  and	
  spin	
  states	
  are	
  combined	
  into	
  SU(6)	
  mul7plets	
  with	
  the	
  
dimensions	
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In the case of non-strange baryons, the resulting states coincide with the standard isospin ones, 
detoned, similarly to (3), by ZMA, X:MS ,Z,S, according to the coupling scheme. 

As we shall see in the next section, the strongest component of the quark-quark interaction is spin 
independent. In this case the flavour and spin states are combined into SU(6) multiplets with the 
dimensions (see eq. (2)): 

6 ® 6 ® 6  = 20 E) 70 ~ 70 E) 56 
A M M S 

Each SU(6) state can be analyzed with respect to its spin and flavour content. Keeping in mind the 
symmetry properties of the various states involved, one can easily obtain the following 
decomposition: 

2o= 41+ 2~. 

7o= 21 + 28.48+ 210 (5) 

56= 28 + 410 

in the r.h. sides the suffixes denote of course the multiplicity 2S+1 of the 3q spin states, while the 
underlined numbers are the dimensions of the flavour multiplets in (4). 

The colour part of the wave function (1) is quickly handled. Baryon states must be colour singlets 
and then (see eq. (4)) ~colour is antisymmetric. The overall antisymmetry of (1) being ensured by 
~coSour the rest must be completely symmetric for the exchange of quark coordinates. As a 
consequence, the SU(6) and space parts of (1) belong to the same symmetry type. 

It is convenient to introduce a shorthand notation for the SU(6) multiplets, taking into account also 
the space part: ~,  LP), where d is the dimension of the SU(6) representation and L, P are the total 
orbital angular momentum and parity, respectively. Each multiplet contains many states, which in 
general can be denoted as 

[ B 2S+Ixj > t 

B (=N orA) specifies the SU(3)flavou r octet or decuplet (the singlet being usually not considered); 
25+1Xj is the common spectroscopic notation where X = S, P, D .... stays for L and J for the total 

angular momentum (spin) of the state. Finally, t = A, M, S specifies the symmetry type for both the 
SU(6) and space parts of the wave function. 

Apart from the assumption of spin-independence of the qq interaction, the above classification is 
quite general and the energy of the states is still to be considered. To this end, one introduces 
usually a harmonic oscillator quark-quark interaction: this choice has the obvious advantages that 
it accounts very simply for the confinement of quarks and it allows an analytical treatment of the 
baryon states. 

Each	
  SU(6)	
  state	
  can	
  be	
  analyzed	
  with	
  respect	
  to	
  its	
  spin	
  ,SU(2),and	
  flavour	
  SU(3)	
  
content.	
  Keeping	
  in	
  mind	
  the	
  symmetry	
  proper7es	
  of	
  the	
  various	
  states	
  involved,	
  
one	
  can	
  easily	
  obtain	
  the	
  following	
  decomposi7on:	
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angular momentum (spin) of the state. Finally, t = A, M, S specifies the symmetry type for both the 
SU(6) and space parts of the wave function. 

Apart from the assumption of spin-independence of the qq interaction, the above classification is 
quite general and the energy of the states is still to be considered. To this end, one introduces 
usually a harmonic oscillator quark-quark interaction: this choice has the obvious advantages that 
it accounts very simply for the confinement of quarks and it allows an analytical treatment of the 
baryon states. 
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SU(6) configurations for three quark states 
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                    A      M    M      S 

Notation 
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d = dim of SU(6) irrep 
L = total orbital angular momentum 
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The general structure of the h.o. wave functions is 

. .~. (p2+ X2) 
~NLt I N PN (p '~') e Yip(f).p) Y, (~..~) (8) 

N is a normalization factor, PN a polynomial having degree N and the spherical harmonics have 

to be combined to a definite total orbital angular momentum L; t (=A,M,S) is the symmetry type. In 
Table 2 all the h.o. 3q-states up to the N=2 shell are reported. It is interesting to note that the first 
two levels have a definite permutation property and the first spatially antisymmetric state occurs in 
the N=2 shell. 

TABLE 2 - The harmonic oscillator wave functions for the 3-quark system 
[5,6] according to eq. (8). The presence of two items in the same line 
means that the correct symmetry property is obtained with a linear 
combination of the two wave functions. The quantity J2 in the 
normalization factor is given by 4a3/v~-~ and t(=A,M,S) denotes the type of 
permutation symmetry.The parity ]T is (-) N 

~nLt N v n Ip I~. L T] N/J2 PN 

~00S 0 0 0 0 0 0 + 1 1 

~'11M 1 0 0 1 0 1 ~ 2v"2~3 p 

• IlM 1 0 0 0 1 1 o¢ 2~ /~  ~. 

~20S 2 1 0 0 0 0 + 1/'V~- ~2(p2+~.2)-3 
~20M 2 0 1 0 0 0 + ~2/v/~- p2.~2 

~22S/22M 2 0 0 2 0 2 + 2o~2/vrl-5 p2 

1P'22S/22 M 2 0 0 0 2 2 + 20¢2/lv~ ~2 
~'20M 2 0 0 1 1 0 + 2(x2/3 p~. 
~21A 2 0 0 1 1 1 + 2(x2/3 p~. 
1p"22 M 2 0 0 1 1 2 + 2o~2/3 p~. 
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Table 6. Three-quark states with positive parity. For simplicity of notation, we have omitted the coupling to the total angular
momentum L of the second column

Resonance LP
S3 S T SU(6) configurations

P11 0+
S

1
2

1
2  00Y[0]00⌦S

0+
S

1
2

1
2  10Y[0]00⌦S

0+
S

1
2

1
2  20Y[0]00⌦S

0+
M

1
2

1
2  22

1p
2
[Y[2]00⌦MS + Y[2]11⌦MA]

2+
M

3
2

1
2  22

1p
2
[ 1p

2
(Y[2]20 � Y[2]02)�MS + Y[2]11�MA]�

S

P13 2+
M

1
2

1
2  22

1p
2
[ 1p

2
(Y[2]20 � Y[2]02)⌦MS + Y[2]11⌦MA]

2+
M

3
2

1
2  22

1p
2
[ 1p

2
(Y[2]20 � Y[2]02)�MS + Y[2]11�MA]�

S

0+
M

3
2

1
2  22

1p
2
[Y[2]00�MS + Y[2]11�MA]�

S

2+
S

1
2

1
2  22

1p
2
[Y[2]20 + Y[2]02]⌦S

F15 2+
M

1
2

1
2  22

1p
2
[ 1p

2
(Y[2]20 � Y[2]02)⌦MS + Y[2]11⌦MA]

2+
M

3
2

1
2  22

1p
2
[ 1p

2
(Y[2]20 � Y[2]02)�MS + Y[2]11�MA]�

S

2+
S

1
2

1
2  22

1p
2
[Y[2]20 + Y[2]02]⌦S

F17 2+
M

3
2

1
2  22

1p
2
[ 1p

2
(Y[2]20 � Y[2]02)�MS + Y[2]11�MA]�

S

P31 2+
S

3
2

3
2  22

1p
2
[(Y[2]20 + Y[2]02]�S�S

0+
M

1
2

3
2  22

1p
2
[Y[2]00�MS + Y[2]11�MA]�

S

P33 0+
S

3
2

3
2  00Y[0]00�S�S

0+
S

3
2

3
2  10Y[0]00�S�S

0+
S

3
2

3
2  20Y[0]00�S�S

2+
S

3
2

3
2  22

1p
2
[Y[2]20 + Y[2]02]�S�S

2+
M

1
2

3
2  22

1p
2
[ 1p

2
(Y[2]20 � Y[2]02)�MS + Y[2]11�MA]�

S

F35 2+
M

1
2

3
2  22

1p
2
[ 1p

2
(Y[2]20 � Y[2]02)�MS + Y[2]11�MA]�

S

2+
S

3
2

3
2  22

1p
2
[Y[2]20 + Y[2]02]�S�S

F37 2+
S

3
2

3
2  22

1p
2
[Y[2]20 + Y[2]02]�S�S

terest in this article. In these Tables, the second, third
and fourth columns show the angular momentum, LP

S3
,

the spin, S, and isospin, T . States are shown in the last
column. They are written in terms of the hyperradial wave
functions,  

!�

, of Table 2, of the hyperspherical harmon-
ics, (Y

[�]

)
S3 , of Table 1, of the spin states, �

MS

, �
MA

, �
S

,
defined as

�
MS

= |((1
2
,
1
2
)1,

1
2
)
1
2
>, (1)

�
MA

= |((1
2
,
1
2
)0,

1
2
)
1
2
>, (2)

�
S

= |((1
2
,
1
2
)1,

1
2
)
3
2
>, (3)

and of the isospin states �
MS

, �
MA

, �
S

, defined in a sim-
ilar way. In order to simplify the notation, the following
combinations of spin and isospin wave functions with def-
inite S

3

symmetry are used

⌦
S

=
1p
2
[�
MA

�
MA

+ �
MS

�
MS

], (4)

⌦
MS

=
1p
2
[�
MA

�
MA

� �
MS

�
MS

], (5)

⌦
MA

=
1p
2
[�
MA

�
MS

+ �
MS

�
MA

], (6)

⌦
A

=
1p
2
[�
MA

�
MS

� �
MS

�
MA

], (7)

Table 7. Three quark states with negative parity

Resonances LP
S3 S T States

S11 1�
M

1
2

1
2  11

1p
2
[Y[1]10⌦MA + Y[1]01⌦MS ]

1�
M

1
2

1
2  21

1p
2
[Y[1]10⌦MA + Y[1]01]⌦MS

1�
M

3
2

1
2  11

1p
2
[Y[1]10�MA + Y[1]01�MS ]�

S

1�
M

3
2

1
2  21

1p
2
[Y[1]10�MA + Y[1]01�MS ]�

S

D13 1�
M

1
2

1
2  11

1p
2
[Y[1]10⌦MA + Y[1]01⌦MS ]

1�
M

1
2

1
2  21

1p
2
[Y[1]10⌦MA + Y[1]01]⌦MS

1�
M

3
2

1
2  11

1p
2
[Y[1]10�MA + Y[1]01�MS ]�

S

1�
M

3
2

1
2  21

1p
2
[Y[1]10�MA + Y[1]01�MS ]�

S

D15 1�
M

3
2

1
2  11

1p
2
[Y[1]10�MA + Y[1]01�MS ]�

S

1�
M

3
2

1
2  21

1p
2
[Y[1]10�MA + Y[1]01�MS ]�

S

S31 1�
M

1
2

3
2  11

1p
2
[Y[1]10�MA + Y[1]01�MS ]�

S

1�
M

1
2

3
2  21

1p
2
[Y[1]10�MA + Y[1]01�MS ]�

S

S33 1�
M

1
2

3
2  11

1p
2
[Y[1]10�MA + Y[1]01�MS ]�

S

1�
M

1
2

3
2  21

1p
2
[Y[1]10�MA + Y[1]01�MS ]�

S

The coupling of the orbital, L, and spin, S, angular mo-
mentum to the total angular momentum J is not shown
in these Tables. The color part, a SU(3) singlet, is also
omitted for simplicity.
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Table 6. Three-quark states with positive parity. For simplicity of notation, we have omitted the coupling to the total angular
momentum L of the second column
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terest in this article. In these Tables, the second, third
and fourth columns show the angular momentum, LP

S3
,

the spin, S, and isospin, T . States are shown in the last
column. They are written in terms of the hyperradial wave
functions,  
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, of Table 2, of the hyperspherical harmon-
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and of the isospin states �
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MA
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, defined in a sim-
ilar way. In order to simplify the notation, the following
combinations of spin and isospin wave functions with def-
inite S
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Table 7. Three quark states with negative parity
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The coupling of the orbital, L, and spin, S, angular mo-
mentum to the total angular momentum J is not shown
in these Tables. The color part, a SU(3) singlet, is also
omitted for simplicity.
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This paper concludes our analysis of q3 configurations in baryons. The next step is the study of more

complex configurations of quarks and gluons, such as hybrid quark-gluon states qqq−g, pentaquark states

q4q and multiquark meson-baryon bound states qqq − qq.

Acknowledgements

This work is supported in part by DGAPA-UNAM under project IN101997, by CONACyT under project

32416-E and by D.O.E. Grant DE-FG02-91ER40608.

A Spin-flavor wave functions

Here we list the conventions used for the spin and flavor wave functions which are consistent with the

choice of Jacobi coordinates of Eq. (2.3). They coincide with the conventions of [27].

A.1 Spin wave functions

The spin wave functions |S, MS〉 are given by [27]:

|1/2, 1/2〉 : χρ = [| ↑↓↑ 〉 − | ↓↑↑ 〉]/
√

2 ,

: χλ = [2| ↑↑↓ 〉 − | ↑↓↑ 〉 − | ↓↑↑ 〉]/
√

6 ,

|3/2, 3/2〉 : χS = | ↑↑↑ 〉 . (A.1)

We only show the state with the largest component of the projection MS = S. The other states are

obtained by applying the lowering operator in spin space.

A.2 Flavor wave functions

For the flavor wave functions |(p, q), I, MI , Y 〉 we adopt the convention of [8] with (p, q) = (g1 − g2, g2).

(i) The octet baryons (p, q) = (1, 1):

|(1, 1), 1/2, 1/2, 1〉 : φρ(p) = [|udu〉 − |duu〉]/
√

2 ,

: φλ(p) = [2|uud〉 − |udu〉 − |duu〉]/
√

6 ,

|(1, 1), 1, 1, 0〉 : φρ(Σ
+) = [|suu〉 − |usu〉]/

√
2 ,

: φλ(Σ+) = [|suu〉 + |usu〉 − 2|uus〉]/
√

6 ,

|(1, 1), 0, 0, 0〉 : φρ(Λ) = [2|uds〉 − 2|dus〉 − |dsu〉 + |sdu〉 − |sud〉 + |usd〉]/
√

12 ,

: φλ(Λ) = [−|dsu〉 − |sdu〉 + |sud〉 + |usd〉]/2 ,

19
|(1, 1), 1/2, 1/2,−1〉 : φρ(Ξ

0) = [|sus〉 − |uss〉]/
√

2 ,

: φλ(Ξ0) = [2|ssu〉 − |sus〉 − |uss〉]/
√

6 . (A.2)

(ii) The decuplet baryons (p, q) = (3, 0):

|(3, 0), 3/2, 3/2, 1〉 : φS(∆++) = |uuu〉 ,

|(3, 0), 1, 1, 0〉 : φS(Σ+) = [|suu〉 + |usu〉 + |uus〉]/
√

3 ,

|(3, 0), 1/2, 1/2,−1〉 : φS(Ξ0) = [|ssu〉 + |sus〉 + |uss〉]/
√

3 ,

|(3, 0), 0, 0,−2〉 : φS(Ω−) = |sss〉 . (A.3)

(iii) The singlet baryons (p, q) = (0, 0):

|(0, 0), 0, 0, 0〉 : φA(Λ) = [|uds〉 − |dus〉 + |dsu〉 − |sdu〉 + |sud〉 − |usd〉]/
√

6 . (A.4)

We only show the highest charge state MI = I with Q = I + Y/2. The other charge states are obtained

by applying the lowering operator in isospin space.

B Baryon wave functions

The S3 invariant space-spin-flavor (Ψ = ψχφ) baryon wave functions are given by

28[56, LP ] : ψS(χρφρ + χλφλ)/
√

2 ,

28[70, LP ] : [ψρ(χρφλ + χλφρ) + ψλ(χρφρ − χλφλ)]/2 ,

48[70, LP ] : (ψρφρ + ψλφλ)χS/
√

2 ,

28[20, LP ] : ψA(χρφλ − χλφρ)/
√

2 ,

410[56, LP ] : ψSχSφS ,

210[70, LP ] : (ψρχρ + ψλχλ)φS/
√

2 ,

21[70, LP ] : (ψρχλ − ψλχρ)φA/
√

2 ,

41[20, LP ] : ψAχSφA . (B.1)

The quark orbital angular momentum L is coupled with the spin S to the total angular momentum J of

the baryon.
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: φλ(Ξ0) = [2|ssu〉 − |sus〉 − |uss〉]/
√

6 . (A.2)

(ii) The decuplet baryons (p, q) = (3, 0):

|(3, 0), 3/2, 3/2, 1〉 : φS(∆++) = |uuu〉 ,

|(3, 0), 1, 1, 0〉 : φS(Σ+) = [|suu〉 + |usu〉 + |uus〉]/
√

3 ,

|(3, 0), 1/2, 1/2,−1〉 : φS(Ξ0) = [|ssu〉 + |sus〉 + |uss〉]/
√

3 ,

|(3, 0), 0, 0,−2〉 : φS(Ω−) = |sss〉 . (A.3)

(iii) The singlet baryons (p, q) = (0, 0):

|(0, 0), 0, 0, 0〉 : φA(Λ) = [|uds〉 − |dus〉 + |dsu〉 − |sdu〉 + |sud〉 − |usd〉]/
√

6 . (A.4)

We only show the highest charge state MI = I with Q = I + Y/2. The other charge states are obtained

by applying the lowering operator in isospin space.

B Baryon wave functions

The S3 invariant space-spin-flavor (Ψ = ψχφ) baryon wave functions are given by

28[56, LP ] : ψS(χρφρ + χλφλ)/
√

2 ,

28[70, LP ] : [ψρ(χρφλ + χλφρ) + ψλ(χρφρ − χλφλ)]/2 ,

48[70, LP ] : (ψρφρ + ψλφλ)χS/
√

2 ,

28[20, LP ] : ψA(χρφλ − χλφρ)/
√

2 ,

410[56, LP ] : ψSχSφS ,

210[70, LP ] : (ψρχρ + ψλχλ)φS/
√

2 ,

21[70, LP ] : (ψρχλ − ψλχρ)φA/
√

2 ,

41[20, LP ] : ψAχSφA . (B.1)

The quark orbital angular momentum L is coupled with the spin S to the total angular momentum J of

the baryon.
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Magnetic moments of Baryons

Single quark magnetic moment operator

~µj =
ej
2mj

~�j (1)

µB is given by the matrix element
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Introduction to Nucleon Resonances 
3 - T H E  B A R Y O N  S P E C T R U M .  

With the classification introduced in the previous section the known resonances fit into a simple 
scheme, accounting for the observed succession of spin and isospin quantum numbers in 
correspondence with the average increase of the energy levels. 

A detailed description of the baryon spectrum needs a more specific dynamical model. Many 
models have been proposed in recent years: the non-relativistic CQM [12,13] using different qq 
interactions [14], the bag model in various formulations [15], the Skyrme model [16] and the 
collective approach [17]. 

Let us briefly recall the main features of the non-relativistic CQM. The Isgur-Karl model [12-13] is 
QCD motivated in the sense that the One-Gluon-Exchange (OGE) mechanism is assumed as a 
basis for the construction of the quark hamiltonian. The non-relativistic limit of the OGE interaction 
contains a long-range spin-independent part and a short-range spin-dependent term [18]. The 
hamiltonian (7) is generalized to the following one 

2 p 2 + p  k 
H = 3 m +  P2m +L(p_~)+Hhyp( p,- ~.~G~.) (14) 

The term L(p, ~.) provides confinement again through a h.o. potential, to which however an 
anharmonic term U is added 

L= E ( 1 K  ~ + U (rij)) -Vconf 
i<j 

TABLE 5 - The 3-quark SU(6) energy spectrum after the introduction of 
the 2-body potential U [12,13]. •n = 3m + (3 + N) he) are the h.o. levels, 
while am (m=0,2,4) are determined by the moments of the U potential: 

am = 3 (ed~)3 J" dp (e.p) m U(v~-p) exp(- ~2p2) 

through the quantities 

E 0 = E: 0 + a 0 ; Q =~eo - a 0 / 2  + a 2 / 3  ; A = -5 /4  a0+ 5/3 a 2 -1/3 a 4 

E(,5~,0 +) = E 0 

E(56',0 +) = E 0 + 2 ~ - A 

E ( 5 6 , 2  +) = E 0 + 2 EZ - 2~/5 

E(?,,.Q,1 +) = E 0 + 2 

E(.7.0.,I") = E o ÷ 

E(Z.0.,0 +) = E 0 + 2 Q - ~ /2  

E(7..Q,2 +) = E 0 + 2 £~ - A/5 
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264 M . M .  Giannini 
The potential U does not violate the SU(6) symmetry, but eliminates the degeneracy of the SU(6) 
multiplets in the various shells. The resulting energy pattern is richer than the h.o. one, with shifts 
depending only on the moments am of the potential (see Table 5). 

The last term in eq. (14) is called the hyperfine interaction, since it has the same form than the 
spin-dependent (Breit-Fermi) part of the electromagnetic interaction between charged particles: 

- 1 r 3 (s,. rij)(Sj" rij ) = . : 1 1  
Hhyp= 3m 2 ' . ~i ~jjJ' (15) 

t < J IJ IJ 

where % is the strong coupling constant and S i are the spins of the quarks. The spin-dependence 
violates SU(6) and the physical states are then superposition of SU(6) configurations. The effect 
of the various modification to the h.o. potential is shown pictorially in Fig. 4. The important 
consequence of Hl~y p, besides giving rise to a mixing of the SU(6) h.o. states, is to produce a N-A 
mass difference: 

2GeV I 

t 
l'SGeVi I~u~ 

1GeV 
i 
, T ' *  V h . o .  

SUI6) 
- -  I20,1 *) COH 

(?°'2+) L\  
(~,2") ,~ , \  
(7o.o') '~ ,  " '~~ 

 .~. % N1t6801 
' , , ~  

,s_6',0") .~',, \ \ \  
• ,, \ , , , - ,~\  

V" \~. { \ .~ .  ~), t~Al1212j ). Af  
- - . ( 5 6 , 0 " 3  f ' '  

"'~!~ N(9/)O} 

U )Hhyp ~ 0GE 

Fig. 4. The h.o. spectrum (left), the arrangement of the SU(6) states after 
the introduction of the U potential (middle) and some of the most relevant 
experimental levels (right). The lines show the mixing produced by the 
hyperfine part of the one-gluon-exchange interaction in order to built the 
physical states. 

The	
  Isgur	
  and	
  Karl	
  model	
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  correct	
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The	
  Models	
  	
  	
  	
  
(CQM)	
  

	
  
	
  some	
  other	
  Cons7tuent	
  Quark	
  Model	
  	
  	
  



different	
  CQMs	
  for	
  bayons	
  

Kin. Energy SU(6) inv SU(6) viol date

Isgur-Karl non rel h.o. + shift OGE 1978-9

Capstick-Isgur rel string + coul-like OGE 1986

U(7)  B.I.L. rel M^2 vibr+L Guersey-R 1994

Hyp.   O(6) non rel/rel hyp.coul+linear OGE 1995

Glozman Riska non rel/relPlessas h.o./linear GBE 1996

Bonn rel linear 3-body instanton 2001
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LQCD (De Rújula, Georgi, Glashow, 1975)	


	


 the quark interaction contains	


	

a long range spin-independent confinement	



          a short range spin dependent term	



Spin-independence         SU(6) configurations	





SU(6) configurations for three quark states 

6 X 6 X 6 = 20 + 70 + 70 + 56 
                    A      M    M      S 

Notation 
(d, Lπ) 

d = dim of SU(6) irrep 
L = total orbital angular momentum 
π = parity 
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Hyperspherical	
  harmonics	
  

Hasenfratz	
  et	
  al.	
  1980:	
  	
  	
  	
  	
  	
  	
  
	
  Σ V(ri,rj)	
  	
  	
  is	
  approximately	
  hypercentral	
  	
  

One can introduce the hyperspherical coordinates, which are obtained by
substituting ⌅ = |�⌅| and ⇥ = |�⇥| with the hyperradius, x, and the hyperangle,
⇤, defined respectively by

x =
⇥

�⌅2 + �⇥2 , ⇤ = arctg(
⌅

⇥
). (2)

Using these coordinates, the kinetic term in the three-body Schrödinger equation
can be rewritten as [?]

� 1
2m

(�⌅ + �⇥) = � 1
2m

(
�2

�x2
+

5
x

�

�x
� L2(⇥⌅,⇥⇥, ⇤)

x2
) . (3)

where L2(⇥⌅,⇥⇥, ⇤) is the six-dimensional generalization of the squared angular
momentum operator. Its eigenfunctions are the well known hyperspherical har-
monics [?] Y[�]l⇥l�(⇥⌅,⇥⇥, ⇤) having eigenvalues �(� + 4), with � = 2n + l⌅ + l⇥
(n is a non negative integer); they can be expressed as products of standard
spherical harmonics and Jacobi polynomials.

In the hypercentral Constituent Quark Model (hCQM) [1], the quark inter-
action is assumed to depend on the hyperradius x only V = V3q(x). It has been
observed many years ago that a two-body quark-quark potential leads to matrix
elements in the baryon space quite similar to those of a hypercentral potential
[?]. On the other hand, a two body potential, treated in the hypercentral ap-
proximation [12], that is averaged over angles and hyperangle, is transformed
into a potential which depends on x only; in particular, a power-like two-body
potential

�
i<j (rij)n in the hypercentral approximation is given by a term pro-

portional to xn. The hypercentral approximation has been shown to be valid,
since it provides a good description of baryon dynamics, specially for the lower
states [12].

The hyperradius x is a function of the coordinates of all the three quarks
and then V3q(x) has also a three-body character. There are many reasons sup-
porting the idea of considering three-body interactions. First of all, three-body
mechanisms are certainly generated by the fundamental multi-gluon vertices
predicted by QCD, their explicit treatment is however not possible with the
present theoretical approaches and the presence of three-body mechanisms in
quark dynamics can be simply viewed as ”QCD-inspired”. Furthermore, flux
tube models, which have been proposed as a QCD-based description of quark in-
teractions [], lead to Y-shaped three-quark configurations, besides the standard
��like two-body ones. A three-body confinement potential has been shown to
arise also if the quark dynamics is treated within a bag model [?]. Finally, it
should be reminded that threee-body forces have been considered also in the
calculations by ref. [?] and in the relativized version of the Isgur-Karl model
[7].

For a hypercentral potential the three-quark wave function is factorized

⇧3q(�⌅,�⇥) = ⇧⇤�(x) Y[�]l⇥l�(⇥⌅,⇥⇥, ⇤) (4)
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Quark-antiquark lattice potential	

 G.S. Bali Phys. Rep. 343, 1 (2001)	



V = - b/r + c r	
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 N, N* nucleon and resonance as 3q states	
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em Hl

em   model transition operator	


	


§  results for the negative parity resonances:   	


      M. Aiello, M.G., E. Santopinto J. Phys. G24, 753 (1998)	


	


Systematic predictions for transverse and longitudinal amplitudes	


    E. Santopinto et al. , Phys. Rev. C86, 065202 (2012)	


	



Proton and neutron electro-excitation to 14 resonances	
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N(1520) 3/2- transition amplitudes	



E. Santopinto, M. Giannini.	


Phys. Rev. C86, 	


065202 (2012)	
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Figure 15: (Color on line) The P11(1440) proton transverse (a) and longitudinal
(b) helicity amplitudes predicted by the hCQM (full curves), in comparison with
the data of refs. [134], [131] and the Maid2007 analysis [121] of the data by
refs. [135],[132], [133] and [136]. The PDG point [63] is also shown. The figure
is taken from ref. [46] (Copyright (2012) by the American Physical Society).

expect that their internal structures have strong similarities and that a good
description of the N�� transition from factors is possible only with a relativistic
approach. Such feature is further supported by the fact that the transitions to
the higher resonances are only slightly a↵ected by relativistic e↵ects [30].

The Roper excitation is reported in Fig. 15. Because of the 1

x term in the
hypercentral potential of Eq. (82), the Roper resonance can be included in the
first resonance region, at variance with h.o. models, which predict it to be a 2 h̄!
state. There are problems in the low Q2 region, but for the rest the agreement
is interesting, specially if one remembers that the curves are predictions and the
Roper has been often been considered a crucial state, non easily included into a
constituent quark model description. In particular, the longitudinal excitation
is quite di↵erent from zero [105], in agreement with the hCQM and at variance
with the hybrid qqq-gluon model [104]. In the present model, the Roper is a
hyperradial excitation of the nucleon.

We consider now the excitations to some negative resonances [45, 46], namely
the D13(1520) and the S11(1525) ones, reported in Figs. 16 and 17, respectively.

The agreement in the case of the S11 is remarkable, specially if one considers
that the hCQM curve for the transverse transition has been published three
years in advance [45] with respect to the recent TJNAF data [131], [139], [141],
[142].

It is interesting to discuss the influence of the hyperfine mixing on the ex-
citation of the resonances. Usually there is only a small di↵erence between the
values calculated with or without hyperfine interaction. In some cases, however
the excitation strength vanishes in the SU(6) limit, as already mentioned in
Table 6, the non vanishing result is then entirely due to the hyperfine mixing
of states. In the case of the S11(1650) resonance, the resulting transverse and
longitudinal excitations have a relevant strength.

The three helicity amplitudes of the D13(1700) resonance are again non zero
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FIG. 5. (Color online) The S11(1525) proton transverse (a) and
longitudinal (b) helicity amplitudes predicted by the hCQM (full
curve), in comparison with the data of Ref. [67] (open diamonds),
[49] (full diamonds), [68] (crosses), [69] (open squares), [70] (full
squares), the MAID2007 analysis [50] (full triangles) of the data by
Ref. [51], and the compilation of the Bonn-Mainz-DESY data of
Refs. [71–74] (stars), presented in Ref. [70]. The PDG point [38]
(pentagon) is also shown.

B. The transition form factors

Taking into account the Q2 behavior of the transition
matrix elements, one can calculate the hCQM helicity
amplitudes [35].

In order to compare results with the experimental data,
the calculation should be performed in the rest frame of the
resonance (see, e.g., Ref. [48]). The nucleon and resonance
wave functions are calculated in their respective rest frames
and, before evaluating the matrix elements given in Eqs. (12),
one should boost the nucleon to the resonance c.m.s. In our
nonrelativistic approach such boost is trivial but not correct,
because of the large nucleon recoil. In order to minimize the
discrepancy between the nonrelativistic and the relativistic
boost when comparing results with the experimental data, we
use the Breit frame, as in Refs. [4,35]. Therefore we use the
following kinematic relation:

!k2 = Q2 + (W 2 − M2)2

2(M2 + W 2) + Q2
, (16)

where M is the nucleon mass, W is the mass of the resonance,
k0 and !k are the energy and the momentum of the virtual
photon, respectively, and Q2 = !k2 − k2

0. For consistency, in
the calculations we have used the values of W given by the
model and not the phenomenological ones.
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FIG. 6. (Color online) The proton helicity amplitudes predicted
by the hCQM for the excitation of S31(1620) (a) and S11(1650) (b),
respectively, in comparison with the data of Ref. [49] (A1/2 open
diamonds, S1/2 full diamonds), [75] (A1/2 open diamonds, S1/2 full
diamonds), the compilation reported in Ref. [65] and the MAID2007

analysis [50] (A1/2 up triangles, S1/2 down triangles) of the data in
Refs. [51,52], and the compilation of the Bonn-Mainz-DESY data of
Refs. [71–74] (crosses) presented in Ref. [70]. The PDG points [38]
(pentagons) are also shown.

The matrix elements of the e.m. transition operator between
any two 3q states are expressed in terms of integrals involving
the hyper-radial wave functions and are calculated numer-
ically. The computer code has been tested by comparison
with the analytical results obtained with the h.o. model of
Refs. [13,14] and with the analytical model of Ref. [45].

C. The excitation to the ! resonance

The N − ! helicity amplitudes are shown in Fig. 2. The
transverse excitation to the ! resonance has a lack of strength
at low Q2, a feature in common with all CQM calculations.
The medium-high-Q2 behavior is decreasing too slowly with
respect to data, similar to what happens for the nucleon
elastic form factors [20,23]. In this case, the nonrelativistic
calculations are improved by taking into account relativistic
effects. Since the ! resonance and the nucleon are in the
ground state SU(6) configuration, we expect that their internal
structures have strong similarities and that a good description
of the N − ! transition from factors is possible only with a
relativistic approach. Such a feature is further supported by
the fact that the transitions to the higher resonances are only
slightly affected by relativistic effects [20].

065202-6

E. Santopinto, M.Giannini,Phys. Rev. C86, 065202 (2012)	


	
  



68	
  

D33(1700)	
  

A	
  3/2	
  

A	
  1/2	
  

E. Santopinto, M.Giannini,Phys. Rev. C86, 065202 (2012)	
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  wave	
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  hypercoulomb	
  term	
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  amplitudes	
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- elastic scattering of polarized      	


	

electrons on polarized protons	



-  measurement of polarizations   	


	

asymmetry gives directly the 	

ratio  

Gp
E/Gp

M	



-  discrepancy with Rosenbluth data (?)	



-  linear and strong decrease	



-  pointing towards a zero (!)	


	


- new data (jan 2010) seem to confirm 	



	

 	

the behaviour	







With	
  a	
  calculated	
  radius	
  of	
  about	
  0.5	
  fm	
  
the	
  e.m.	
  form	
  factors	
  predicted	
  by	
  the	
  hCQM	
  

are	
  not	
  good!	
  

BUT	
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  needed	
  



RELATIVITY	
  

Various	
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  kine7c	
  energy	
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  Lorentz	
  boosts	
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  dynamics	
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  pair	
  effects	
  (meson	
  cloud)	
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Relativistic corrections to form factors	



•  Breit frame	


•  Lorentz boosts applied to the initial and final state	


•  Expansion of current matrix elements up to first     	


	

order in quark momentum	



•  Results	


Arel (Q2) = F  An.rel(Q2

eff)	


F = kin factor 	

 	

 Q2

eff = Q2 (MN/EN)2	
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calculated	





Construction of a fully relativistic theory	


Relativistic Dynamics	



Three forms (Dirac):	


	

Light (LF), Instant (IF), Point (PF)	



Composition of angular momentum states as in the 
non relativistic case 	



Point form: 	
  

Moving three-quark states are obtained through 	


(interaction free) Lorentz boosts   (velocity states)	





Construction of a fully relativistic theory	


Relativistic Dynamics	



Relativistic Hamiltonian Dynamics	


                   for a fixed number of particles    (Dirac)	


	


Construction of a representation of the Poincaré generators	


     	

Pµ (tetramomentum), Jk (angular momenta), Ki (boosts)	


 	

obeying the Poincaré group commutation relations	


    in particular             	


                                           [Pk , Ki ] = i δkj H	



Three forms:	


	

Light (LF), Instant (IF), Point (PF)	



Differ in the number and type of (interaction) free generators	



Moving three-quark states are obtained through 	


(interaction free) Lorentz boosts   (velocity states)	





Point form:         Pµ interaction dependent	


                            Jk  and Ki      free	



Composition of angular momentum states as in the 
non relativistic case 	



M = M0 + MI	

Mass operator	



M0 = Σi	

 pi
2 + m2

	

   Σi pi = 0	



Pi undergo the same Wigner rotation -> M0 is invariant	


Similar reasoning for the hyperradius	
  

The eigenstates of the relativistic hCQM are interpreted as	


eigenstates of the mass operator M	



Moving three-quark states are obtained through 	


(interaction free) Lorentz boosts   (velocity states)	
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Calculated values!	


• Boosts to initial and final states	


• Expansion of current to any order	



• Conserved current	
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Relativistic hCQM	


In Point Form	
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  please	
  note	
  

•  the	
  medium	
  Q2	
  behaviour	
  is	
  fairly	
  well	
  reproduced	
  
•  there	
  is	
  lack	
  of	
  strength	
  at	
  low	
  Q2	
  (outer	
  region)	
  in	
  the	
  e.m.	
  

transi7ons	
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Conclusions First Part 	



§  CQM provide a good systematic frame for baryon studies	



§  fair description of e.m. properties (specially N-N* transitions)	



§  possibility of understanding missing mechanisms	



§ quark antiquark pairs effects 	


              unquenching: important break through	



	




