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FIG. 5: Results for baryon excited states using the ensemble with m⇡ = 524 MeV are shown versus JP . Symbols are as
described in Fig. 4.
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We present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic
clover lattices. A method for operator construction is introduced that allows for the reliable iden-
tification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic
lattice. Using this method, we are able to determine a spectrum of single-particle states for spins
up to and including J = 7

2

, of both parities, the first time this has been achieved in a lattice cal-
culation. We find a spectrum of states identifiable as admixtures of SU(6) ⌦ O(3) representations
and a counting of levels that is consistent with the non-relativistic qqq constituent quark model.
This dense spectrum is incompatible with quark-diquark model solutions to the “missing resonance
problem” and shows no signs of parity doubling of states.

I. INTRODUCTION

Explaining the excitation spectrum of baryons is core
to our understanding of QCD in the low-energy regime,
and if we truly understand QCD in the strong-coupling
regime, we should be able to confront experimental spec-
troscopic data with first-principles calculations within
QCD. The experimental investigation of the excited
baryon spectrum has been a long-standing element of
the hadronic-physics program. An important goal has
been the search for so-called “missing resonances”, bary-
onic states predicted by the quark model based on three
constituent quarks but which have not yet been ob-
served experimentally; should such states not be found,
it may indicate that the baryon spectrum can be mod-
eled with fewer e↵ective degrees of freedom, such as in
quark-diquark models. In the past decade, there has
been an extensive program to collect data on electro-
magnetic production of one and two mesons at Je↵erson
Lab, MIT-Bates, LEGS, MAMI, ELSA, and GRAAL. To
analyse these data, and thereby refine our knowledge of
the baryon spectrum, a variety of physics analysis models
have been developed at Bonn, George Washington Uni-
versity, Je↵erson Laboratory and Mainz.

The experimental e↵orts outlined above should be
complemented by high-quality ab initio computations
within lattice QCD. Historically, the calculation of the
masses of the lowest-lying states, for both baryons and
mesons, has been a benchmark calculation of this dis-
cretized, finite-volume computational approach, where
the aim is well-understood control over the various sys-
tematic errors that enter into a calculation; for a recent
review, see [1]. However, there is now increasing e↵ort
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aimed at calculating the excited states of the theory, with
several groups presenting investigations of the low-lying
excited baryon spectrum, using a variety of discretiza-
tions, numbers of quark flavors, interpolating operators,
and fitting methodologies [2–5]. Some aspects of these
calculations remain unresolved and are the subject of in-
tense e↵ort, notably the ordering of the Roper resonance
in the low-lying Nucleon spectrum.

A basis of baryon operators for states at rest, re-
specting the (cubic) symmetry of the lattice, was de-
veloped in Refs. [6, 7], and subsequently used in cal-
culations of the excited state Nucleon spectrum in
both quenched QCD[8], and with two dynamical quark
flavors[9]. In parallel, we studied Clover fermions on
anisotropic lattices[10, 11], with a finer temporal than
spatial resolution, enabling the hadron correlation func-
tions to be observed at short temporal distances and
hence many energy levels to be extracted. Crucial to
our determination of the spectrum has been the use of
the variational method [12–14] with a large number of in-
terpolating operators at both the source and the sink; we
developed and used the “distillation” method, enabling
the necessary correlation functions to be computed in an
e�cient manner. A recent calculation of the Nucleon, �
and ⌦ excited-state spectrum demonstrated the e�cacy
of the method[15].

In this paper, we expand the above program of
computations considerably, extending to baryons the
spin-identification techniques developed for mesons in
Refs. [16, 17]. We develop a new basis of interpolat-
ing operators with good total angular momentum, J , in
the continuum, which are then subduced to the various
lattice irreducible representations (irreps). We find that
the subduced operators retain a memory of their contin-
uum antecedents to a remarkable degree. For example,
hadron correlation functions between operators subduced
from di↵erent continuum spins J are suppressed relative
to those subduced from the same J , illustrating an ap-
proximate realization of rotational symmetry at the scale
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both quenched QCD[8], and with two dynamical quark
flavors[9]. In parallel, we studied Clover fermions on
anisotropic lattices[10, 11], with a finer temporal than
spatial resolution, enabling the hadron correlation func-
tions to be observed at short temporal distances and
hence many energy levels to be extracted. Crucial to
our determination of the spectrum has been the use of
the variational method [12–14] with a large number of in-
terpolating operators at both the source and the sink; we
developed and used the “distillation” method, enabling
the necessary correlation functions to be computed in an
e�cient manner. A recent calculation of the Nucleon, �
and ⌦ excited-state spectrum demonstrated the e�cacy
of the method[15].

In this paper, we expand the above program of
computations considerably, extending to baryons the
spin-identification techniques developed for mesons in
Refs. [16, 17]. We develop a new basis of interpolat-
ing operators with good total angular momentum, J , in
the continuum, which are then subduced to the various
lattice irreducible representations (irreps). We find that
the subduced operators retain a memory of their contin-
uum antecedents to a remarkable degree. For example,
hadron correlation functions between operators subduced
from di↵erent continuum spins J are suppressed relative
to those subduced from the same J , illustrating an ap-
proximate realization of rotational symmetry at the scale
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We present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic
clover lattices. A method for operator construction is introduced that allows for the reliable iden-
tification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic
lattice. Using this method, we are able to determine a spectrum of single-particle states for spins
up to and including J = 7

2

, of both parities, the first time this has been achieved in a lattice cal-
culation. We find a spectrum of states identifiable as admixtures of SU(6) ⌦ O(3) representations
and a counting of levels that is consistent with the non-relativistic qqq constituent quark model.
This dense spectrum is incompatible with quark-diquark model solutions to the “missing resonance
problem” and shows no signs of parity doubling of states.

I. INTRODUCTION

Explaining the excitation spectrum of baryons is core
to our understanding of QCD in the low-energy regime,
and if we truly understand QCD in the strong-coupling
regime, we should be able to confront experimental spec-
troscopic data with first-principles calculations within
QCD. The experimental investigation of the excited
baryon spectrum has been a long-standing element of
the hadronic-physics program. An important goal has
been the search for so-called “missing resonances”, bary-
onic states predicted by the quark model based on three
constituent quarks but which have not yet been ob-
served experimentally; should such states not be found,
it may indicate that the baryon spectrum can be mod-
eled with fewer e↵ective degrees of freedom, such as in
quark-diquark models. In the past decade, there has
been an extensive program to collect data on electro-
magnetic production of one and two mesons at Je↵erson
Lab, MIT-Bates, LEGS, MAMI, ELSA, and GRAAL. To
analyse these data, and thereby refine our knowledge of
the baryon spectrum, a variety of physics analysis models
have been developed at Bonn, George Washington Uni-
versity, Je↵erson Laboratory and Mainz.

The experimental e↵orts outlined above should be
complemented by high-quality ab initio computations
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masses of the lowest-lying states, for both baryons and
mesons, has been a benchmark calculation of this dis-
cretized, finite-volume computational approach, where
the aim is well-understood control over the various sys-
tematic errors that enter into a calculation; for a recent
review, see [1]. However, there is now increasing e↵ort
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aimed at calculating the excited states of the theory, with
several groups presenting investigations of the low-lying
excited baryon spectrum, using a variety of discretiza-
tions, numbers of quark flavors, interpolating operators,
and fitting methodologies [2–5]. Some aspects of these
calculations remain unresolved and are the subject of in-
tense e↵ort, notably the ordering of the Roper resonance
in the low-lying Nucleon spectrum.

A basis of baryon operators for states at rest, re-
specting the (cubic) symmetry of the lattice, was de-
veloped in Refs. [6, 7], and subsequently used in cal-
culations of the excited state Nucleon spectrum in
both quenched QCD[8], and with two dynamical quark
flavors[9]. In parallel, we studied Clover fermions on
anisotropic lattices[10, 11], with a finer temporal than
spatial resolution, enabling the hadron correlation func-
tions to be observed at short temporal distances and
hence many energy levels to be extracted. Crucial to
our determination of the spectrum has been the use of
the variational method [12–14] with a large number of in-
terpolating operators at both the source and the sink; we
developed and used the “distillation” method, enabling
the necessary correlation functions to be computed in an
e�cient manner. A recent calculation of the Nucleon, �
and ⌦ excited-state spectrum demonstrated the e�cacy
of the method[15].

In this paper, we expand the above program of
computations considerably, extending to baryons the
spin-identification techniques developed for mesons in
Refs. [16, 17]. We develop a new basis of interpolat-
ing operators with good total angular momentum, J , in
the continuum, which are then subduced to the various
lattice irreducible representations (irreps). We find that
the subduced operators retain a memory of their contin-
uum antecedents to a remarkable degree. For example,
hadron correlation functions between operators subduced
from di↵erent continuum spins J are suppressed relative
to those subduced from the same J , illustrating an ap-
proximate realization of rotational symmetry at the scale
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LQCD (De Rújula, Georgi, Glashow, 1975)	

	

 the quark interaction contains	

	
a long range spin-independent confinement	


          a short range spin dependent term	


Spin-independence         SU(6) configurations	








Ex.	  Construct	  the	  baryon	  decuplet	  in	  the	  Y	  (	  Y=B+S)	  ,T_z	  plane	  	  
	  	  
	  
	  
	  
	  
	  



The	  advantage	  of	  this	  method	  is	  two-‐fold:	  first	  the	  pacern	  	  is	  general,	  
being	  valid	  for	  any	  SU(N);	  furthermore	  each	  Young	  tableaux	  with	  n	  boxes	  
defines	  an	  irreducible	  representa7on	  of	  the	  group	  Sn	  containing	  all	  the	  
permuta7ons	  of	  n	  objects	  and	  therefore	  it	  belongs	  to	  a	  definite	  
symmetry	  type.	  the	  labels	  A,M,S	  refer	  to	  an7symmetry,	  mixed	  symmetry	  
and	  symmetry	  for	  the	  exchange	  of	  the	  3	  quark	  coordinates.	  In	  the	  case	  of	  
SU(2)	  (spin),	  the	  an7symmetric	  3-‐quark	  state	  does	  not	  exist,	  because	  only	  
two	  different	  states	  are	  available	  for	  three	  par7cles.	  

Introduction to Nucleon Resonances 
1 1 1 1 1 3 ~.®g@~-=gegeg 

257 

Both the single quark and the three-quark states form a basis for some irreducible representation 
of the group SU(2). The decomposition scheme of such representations can be better described 
by means of the Young diagram technique, according to which the fundamental N-dimensional 
representation (in this case the 2-component quark spinor) is denoted by a box (n): 

A M M S (2) 

the corresponding dimensions are: 

The advantage of this method is two-fold: first the pattern given by (2) is general, being valid for 
any SU(N); furthermore each Young tableaux with n boxes defines an irreducible representation 
of the group S n containing all the permutations of n objects and therefore it belongs to a definite 
symmetry type. In (2) the labels A,M,S refer to antisymmetry, mixed symmetry and symmetry for the 
exchange of the 3 quark coordinates. In the case of SU(2) (spin), the antisymmetric 3-quark state 
does not exist, because only two different states are available for three particles. 

If we adopt the standard angular momentum notation I((S 1,s2) $12,$3)S>, the explicit form of the 
3q spin states is: 

I, 11 1 1 ~MA = I t (~ '~)  o, 

*MS (1 1(2"2") zl 1~2. [~[~] = 1 , - ,  > -- 
(3) 

~s ( 1 1  1)  3 = ( ~ ) 1 ,  ~ > -  

in (3) the suffixes indicate also the symmetry for the exchange of quarks in the pair with total spin 
$12=0 or 1. 

The SU(3) flavour states are constructed from the quark ones following to the general scheme (2), 
the corresponding dimensions and symmetry types being 

SU(3): 3 @ 3 @ 3  = 1 ~ 8 ~ 8 ~ 1 0  
A M M S (4) 
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Young	  diagram	  technique	  for	  SU(N)	  	  	  
the	  fundamental	  N-‐dimensional	  representa7on	  	  is	  denoted	  by	  a	  
box	  	  and	  the	  irr.rep.of	  three	  objects	  can	  be	  obtained	  as	  



Young	  diagram	  	  	  rules:	  

1°	  rule	  	  	  an7symetry	  for	  	  box	  in	  columns,	  symmetry	  for	  box	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  in	  rows	  
	  
2°rule	  	  	  	  	  the	  number	  of	  box	  in	  a	  column	  cannot	  exceed	  the	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  number	  of	  states	  (N)	  accessible	  to	  each	  par7cle	  
	  	  

3	  rule	  	  	  	  lower	  rows	  cannot	  have	  	  more	  box	  than	  the	  upper	  	  one	  

Not	  possible	  



DIMENSIONS	  for	  Young	  diagrams	  	  for	  SU(N).	  Ex.calculate	  
also	  for	  SU(3),SU(6)	  

	  Ex.calculate	  	  for	  SU(3)	  
SU(6)	  	  



SPIN	  STATES	  	  SU(2)	  
If	  	  we	  adopt	  the	  standard	  angular	  momentum	  nota7on	  I((s1,s2)S_12,S_3)S	  >,	  
the	  explicit	  form	  of	  the	  3q	  	  	  spinstates	  is:	  
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in (3) the suffixes indicate also the symmetry for the exchange of quarks in the pair with total spin 
$12=0 or 1. 

The SU(3) flavour states are constructed from the quark ones following to the general scheme (2), 
the corresponding dimensions and symmetry types being 

SU(3): 3 @ 3 @ 3  = 1 ~ 8 ~ 8 ~ 1 0  
A M M S (4) 

the	  suffixes	  indicate	  also	  the	  symmetry	  for	  the	  exchange	  of	  quarks	  in	  the	  
pair	  with	  total	  spin	  S12=0	  or	  1.	  
	  

The	  SU(3)	  	  irr.rep.	  are	  constructed	  following	  to	  same	  general	  scheme,	  	  the	  
corresponding	  dimensions	  and	  symmetry	  types	  being	  
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In	  the	  case	  of	  non-‐strange	  baryons,	  the	  resul7ng	  states	  coincide	  with	  the	  standard	  

isospin	  ones,	  detoned,	  similarly	  to	  the	  spin	  states	  by	  	  	  	  

The	  strongest	  component	  of	  the	  quark-‐quark	  interac7on	  is	  spin	  independent.	  In	  
this	  case	  the	  flavour	  and	  spin	  states	  are	  combined	  into	  SU(6)	  mul7plets	  with	  the	  
dimensions	  	  
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In the case of non-strange baryons, the resulting states coincide with the standard isospin ones, 
detoned, similarly to (3), by ZMA, X:MS ,Z,S, according to the coupling scheme. 

As we shall see in the next section, the strongest component of the quark-quark interaction is spin 
independent. In this case the flavour and spin states are combined into SU(6) multiplets with the 
dimensions (see eq. (2)): 

6 ® 6 ® 6  = 20 E) 70 ~ 70 E) 56 
A M M S 

Each SU(6) state can be analyzed with respect to its spin and flavour content. Keeping in mind the 
symmetry properties of the various states involved, one can easily obtain the following 
decomposition: 

2o= 41+ 2~. 

7o= 21 + 28.48+ 210 (5) 

56= 28 + 410 

in the r.h. sides the suffixes denote of course the multiplicity 2S+1 of the 3q spin states, while the 
underlined numbers are the dimensions of the flavour multiplets in (4). 

The colour part of the wave function (1) is quickly handled. Baryon states must be colour singlets 
and then (see eq. (4)) ~colour is antisymmetric. The overall antisymmetry of (1) being ensured by 
~coSour the rest must be completely symmetric for the exchange of quark coordinates. As a 
consequence, the SU(6) and space parts of (1) belong to the same symmetry type. 

It is convenient to introduce a shorthand notation for the SU(6) multiplets, taking into account also 
the space part: ~,  LP), where d is the dimension of the SU(6) representation and L, P are the total 
orbital angular momentum and parity, respectively. Each multiplet contains many states, which in 
general can be denoted as 

[ B 2S+Ixj > t 

B (=N orA) specifies the SU(3)flavou r octet or decuplet (the singlet being usually not considered); 
25+1Xj is the common spectroscopic notation where X = S, P, D .... stays for L and J for the total 

angular momentum (spin) of the state. Finally, t = A, M, S specifies the symmetry type for both the 
SU(6) and space parts of the wave function. 

Apart from the assumption of spin-independence of the qq interaction, the above classification is 
quite general and the energy of the states is still to be considered. To this end, one introduces 
usually a harmonic oscillator quark-quark interaction: this choice has the obvious advantages that 
it accounts very simply for the confinement of quarks and it allows an analytical treatment of the 
baryon states. 

Each	  SU(6)	  state	  can	  be	  analyzed	  with	  respect	  to	  its	  spin	  ,SU(2),and	  flavour	  SU(3)	  
content.	  Keeping	  in	  mind	  the	  symmetry	  proper7es	  of	  the	  various	  states	  involved,	  
one	  can	  easily	  obtain	  the	  following	  decomposi7on:	  
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it accounts very simply for the confinement of quarks and it allows an analytical treatment of the 
baryon states. 



Mul7plica7on	  table:	  

Each	  SU(6)	  state	  can	  be	  analyzed	  with	  respect	  to	  its	  spin	  ,SU(2),and	  flavour	  SU(3)	  
content.	  Keeping	  in	  mind	  the	  symmetry	  proper7es	  of	  the	  various	  states	  involved,	  
one	  can	  easily	  obtain	  the	  following	  decomposi7on:	  

258 M . M .  Giannini 
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SU(6) configurations for three quark states 

6 X 6 X 6 = 20 + 70 + 70 + 56 
                    A      M    M      S 

Notation 
(d, Lπ) 

d = dim of SU(6) irrep 
L = total orbital angular momentum 
π = parity 
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The general structure of the h.o. wave functions is 

. .~. (p2+ X2) 
~NLt I N PN (p '~') e Yip(f).p) Y, (~..~) (8) 

N is a normalization factor, PN a polynomial having degree N and the spherical harmonics have 

to be combined to a definite total orbital angular momentum L; t (=A,M,S) is the symmetry type. In 
Table 2 all the h.o. 3q-states up to the N=2 shell are reported. It is interesting to note that the first 
two levels have a definite permutation property and the first spatially antisymmetric state occurs in 
the N=2 shell. 

TABLE 2 - The harmonic oscillator wave functions for the 3-quark system 
[5,6] according to eq. (8). The presence of two items in the same line 
means that the correct symmetry property is obtained with a linear 
combination of the two wave functions. The quantity J2 in the 
normalization factor is given by 4a3/v~-~ and t(=A,M,S) denotes the type of 
permutation symmetry.The parity ]T is (-) N 

~nLt N v n Ip I~. L T] N/J2 PN 

~00S 0 0 0 0 0 0 + 1 1 

~'11M 1 0 0 1 0 1 ~ 2v"2~3 p 

• IlM 1 0 0 0 1 1 o¢ 2~ /~  ~. 

~20S 2 1 0 0 0 0 + 1/'V~- ~2(p2+~.2)-3 
~20M 2 0 1 0 0 0 + ~2/v/~- p2.~2 

~22S/22M 2 0 0 2 0 2 + 2o~2/vrl-5 p2 

1P'22S/22 M 2 0 0 0 2 2 + 20¢2/lv~ ~2 
~'20M 2 0 0 1 1 0 + 2(x2/3 p~. 
~21A 2 0 0 1 1 1 + 2(x2/3 p~. 
1p"22 M 2 0 0 1 1 2 + 2o~2/3 p~. 
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Table 6. Three-quark states with positive parity. For simplicity of notation, we have omitted the coupling to the total angular
momentum L of the second column

Resonance LP
S3 S T SU(6) configurations

P11 0+
S

1
2

1
2  00Y[0]00⌦S

0+
S

1
2

1
2  10Y[0]00⌦S

0+
S

1
2

1
2  20Y[0]00⌦S

0+
M

1
2

1
2  22

1p
2
[Y[2]00⌦MS + Y[2]11⌦MA]

2+
M

3
2

1
2  22

1p
2
[ 1p

2
(Y[2]20 � Y[2]02)�MS + Y[2]11�MA]�

S

P13 2+
M

1
2

1
2  22

1p
2
[ 1p

2
(Y[2]20 � Y[2]02)⌦MS + Y[2]11⌦MA]

2+
M

3
2

1
2  22

1p
2
[ 1p

2
(Y[2]20 � Y[2]02)�MS + Y[2]11�MA]�

S

0+
M

3
2

1
2  22

1p
2
[Y[2]00�MS + Y[2]11�MA]�

S

2+
S

1
2

1
2  22

1p
2
[Y[2]20 + Y[2]02]⌦S

F15 2+
M

1
2

1
2  22

1p
2
[ 1p

2
(Y[2]20 � Y[2]02)⌦MS + Y[2]11⌦MA]

2+
M

3
2

1
2  22

1p
2
[ 1p

2
(Y[2]20 � Y[2]02)�MS + Y[2]11�MA]�

S

2+
S

1
2

1
2  22

1p
2
[Y[2]20 + Y[2]02]⌦S

F17 2+
M

3
2

1
2  22

1p
2
[ 1p

2
(Y[2]20 � Y[2]02)�MS + Y[2]11�MA]�

S

P31 2+
S

3
2

3
2  22

1p
2
[(Y[2]20 + Y[2]02]�S�S

0+
M

1
2

3
2  22

1p
2
[Y[2]00�MS + Y[2]11�MA]�

S

P33 0+
S

3
2

3
2  00Y[0]00�S�S

0+
S

3
2

3
2  10Y[0]00�S�S

0+
S

3
2

3
2  20Y[0]00�S�S

2+
S

3
2

3
2  22

1p
2
[Y[2]20 + Y[2]02]�S�S

2+
M

1
2

3
2  22

1p
2
[ 1p

2
(Y[2]20 � Y[2]02)�MS + Y[2]11�MA]�

S

F35 2+
M

1
2

3
2  22

1p
2
[ 1p

2
(Y[2]20 � Y[2]02)�MS + Y[2]11�MA]�

S

2+
S

3
2

3
2  22

1p
2
[Y[2]20 + Y[2]02]�S�S

F37 2+
S

3
2

3
2  22

1p
2
[Y[2]20 + Y[2]02]�S�S

terest in this article. In these Tables, the second, third
and fourth columns show the angular momentum, LP

S3
,

the spin, S, and isospin, T . States are shown in the last
column. They are written in terms of the hyperradial wave
functions,  

!�

, of Table 2, of the hyperspherical harmon-
ics, (Y

[�]

)
S3 , of Table 1, of the spin states, �

MS

, �
MA

, �
S

,
defined as

�
MS

= |((1
2
,
1
2
)1,

1
2
)
1
2
>, (1)

�
MA

= |((1
2
,
1
2
)0,

1
2
)
1
2
>, (2)

�
S

= |((1
2
,
1
2
)1,

1
2
)
3
2
>, (3)

and of the isospin states �
MS

, �
MA

, �
S

, defined in a sim-
ilar way. In order to simplify the notation, the following
combinations of spin and isospin wave functions with def-
inite S

3

symmetry are used

⌦
S

=
1p
2
[�
MA

�
MA

+ �
MS

�
MS

], (4)

⌦
MS

=
1p
2
[�
MA

�
MA

� �
MS

�
MS

], (5)

⌦
MA

=
1p
2
[�
MA

�
MS

+ �
MS

�
MA

], (6)

⌦
A

=
1p
2
[�
MA

�
MS

� �
MS

�
MA

], (7)

Table 7. Three quark states with negative parity

Resonances LP
S3 S T States

S11 1�
M

1
2

1
2  11

1p
2
[Y[1]10⌦MA + Y[1]01⌦MS ]

1�
M

1
2

1
2  21

1p
2
[Y[1]10⌦MA + Y[1]01]⌦MS

1�
M

3
2

1
2  11

1p
2
[Y[1]10�MA + Y[1]01�MS ]�

S

1�
M

3
2

1
2  21

1p
2
[Y[1]10�MA + Y[1]01�MS ]�

S

D13 1�
M

1
2

1
2  11

1p
2
[Y[1]10⌦MA + Y[1]01⌦MS ]

1�
M

1
2

1
2  21

1p
2
[Y[1]10⌦MA + Y[1]01]⌦MS

1�
M

3
2

1
2  11

1p
2
[Y[1]10�MA + Y[1]01�MS ]�

S

1�
M

3
2

1
2  21

1p
2
[Y[1]10�MA + Y[1]01�MS ]�

S

D15 1�
M

3
2

1
2  11

1p
2
[Y[1]10�MA + Y[1]01�MS ]�

S

1�
M

3
2

1
2  21

1p
2
[Y[1]10�MA + Y[1]01�MS ]�

S

S31 1�
M

1
2

3
2  11

1p
2
[Y[1]10�MA + Y[1]01�MS ]�

S

1�
M

1
2

3
2  21

1p
2
[Y[1]10�MA + Y[1]01�MS ]�

S

S33 1�
M

1
2

3
2  11

1p
2
[Y[1]10�MA + Y[1]01�MS ]�

S

1�
M

1
2

3
2  21

1p
2
[Y[1]10�MA + Y[1]01�MS ]�

S

The coupling of the orbital, L, and spin, S, angular mo-
mentum to the total angular momentum J is not shown
in these Tables. The color part, a SU(3) singlet, is also
omitted for simplicity.
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Table 6. Three-quark states with positive parity. For simplicity of notation, we have omitted the coupling to the total angular
momentum L of the second column
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M

3
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3
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M

1
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The coupling of the orbital, L, and spin, S, angular mo-
mentum to the total angular momentum J is not shown
in these Tables. The color part, a SU(3) singlet, is also
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Table 6. Three-quark states with positive parity. For simplicity of notation, we have omitted the coupling to the total angular
momentum L of the second column
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1
2

1
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1
2

1
2  20Y[0]00⌦S

0+
M

1
2

1
2  22

1p
2
[Y[2]00⌦MS + Y[2]11⌦MA]

2+
M

3
2

1
2  22

1p
2
[ 1p

2
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S

P13 2+
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1
2

1
2  22

1p
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[ 1p

2
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2+
M

3
2

1
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1p
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[ 1p

2
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The coupling of the orbital, L, and spin, S, angular mo-
mentum to the total angular momentum J is not shown
in these Tables. The color part, a SU(3) singlet, is also
omitted for simplicity.
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In our calculations we have included only a diagonal breaking of the spin-flavor symmetry. This seems
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non-diagonal breakings. A study of the effects of SUf(3) flavor symmetry breaking due to different quark
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A Spin-flavor wave functions

Here we list the conventions used for the spin and flavor wave functions which are consistent with the

choice of Jacobi coordinates of Eq. (2.3). They coincide with the conventions of [27].

A.1 Spin wave functions

The spin wave functions |S, MS〉 are given by [27]:

|1/2, 1/2〉 : χρ = [| ↑↓↑ 〉 − | ↓↑↑ 〉]/
√

2 ,

: χλ = [2| ↑↑↓ 〉 − | ↑↓↑ 〉 − | ↓↑↑ 〉]/
√

6 ,

|3/2, 3/2〉 : χS = | ↑↑↑ 〉 . (A.1)

We only show the state with the largest component of the projection MS = S. The other states are

obtained by applying the lowering operator in spin space.

A.2 Flavor wave functions

For the flavor wave functions |(p, q), I, MI , Y 〉 we adopt the convention of [8] with (p, q) = (g1 − g2, g2).

(i) The octet baryons (p, q) = (1, 1):

|(1, 1), 1/2, 1/2, 1〉 : φρ(p) = [|udu〉 − |duu〉]/
√

2 ,

: φλ(p) = [2|uud〉 − |udu〉 − |duu〉]/
√

6 ,

|(1, 1), 1, 1, 0〉 : φρ(Σ
+) = [|suu〉 − |usu〉]/

√
2 ,

: φλ(Σ+) = [|suu〉 + |usu〉 − 2|uus〉]/
√

6 ,

|(1, 1), 0, 0, 0〉 : φρ(Λ) = [2|uds〉 − 2|dus〉 − |dsu〉 + |sdu〉 − |sud〉 + |usd〉]/
√

12 ,

: φλ(Λ) = [−|dsu〉 − |sdu〉 + |sud〉 + |usd〉]/2 ,

19
|(1, 1), 1/2, 1/2,−1〉 : φρ(Ξ

0) = [|sus〉 − |uss〉]/
√

2 ,

: φλ(Ξ0) = [2|ssu〉 − |sus〉 − |uss〉]/
√

6 . (A.2)

(ii) The decuplet baryons (p, q) = (3, 0):

|(3, 0), 3/2, 3/2, 1〉 : φS(∆++) = |uuu〉 ,

|(3, 0), 1, 1, 0〉 : φS(Σ+) = [|suu〉 + |usu〉 + |uus〉]/
√

3 ,

|(3, 0), 1/2, 1/2,−1〉 : φS(Ξ0) = [|ssu〉 + |sus〉 + |uss〉]/
√

3 ,

|(3, 0), 0, 0,−2〉 : φS(Ω−) = |sss〉 . (A.3)

(iii) The singlet baryons (p, q) = (0, 0):

|(0, 0), 0, 0, 0〉 : φA(Λ) = [|uds〉 − |dus〉 + |dsu〉 − |sdu〉 + |sud〉 − |usd〉]/
√

6 . (A.4)

We only show the highest charge state MI = I with Q = I + Y/2. The other charge states are obtained

by applying the lowering operator in isospin space.

B Baryon wave functions

The S3 invariant space-spin-flavor (Ψ = ψχφ) baryon wave functions are given by

28[56, LP ] : ψS(χρφρ + χλφλ)/
√

2 ,

28[70, LP ] : [ψρ(χρφλ + χλφρ) + ψλ(χρφρ − χλφλ)]/2 ,

48[70, LP ] : (ψρφρ + ψλφλ)χS/
√

2 ,

28[20, LP ] : ψA(χρφλ − χλφρ)/
√

2 ,

410[56, LP ] : ψSχSφS ,

210[70, LP ] : (ψρχρ + ψλχλ)φS/
√

2 ,

21[70, LP ] : (ψρχλ − ψλχρ)φA/
√

2 ,

41[20, LP ] : ψAχSφA . (B.1)

The quark orbital angular momentum L is coupled with the spin S to the total angular momentum J of

the baryon.
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We only show the highest charge state MI = I with Q = I + Y/2. The other charge states are obtained

by applying the lowering operator in isospin space.

B Baryon wave functions

The S3 invariant space-spin-flavor (Ψ = ψχφ) baryon wave functions are given by

28[56, LP ] : ψS(χρφρ + χλφλ)/
√

2 ,

28[70, LP ] : [ψρ(χρφλ + χλφρ) + ψλ(χρφρ − χλφλ)]/2 ,

48[70, LP ] : (ψρφρ + ψλφλ)χS/
√

2 ,

28[20, LP ] : ψA(χρφλ − χλφρ)/
√

2 ,

410[56, LP ] : ψSχSφS ,

210[70, LP ] : (ψρχρ + ψλχλ)φS/
√

2 ,

21[70, LP ] : (ψρχλ − ψλχρ)φA/
√

2 ,

41[20, LP ] : ψAχSφA . (B.1)

The quark orbital angular momentum L is coupled with the spin S to the total angular momentum J of

the baryon.
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Introduction to Nucleon Resonances 
3 - T H E  B A R Y O N  S P E C T R U M .  

With the classification introduced in the previous section the known resonances fit into a simple 
scheme, accounting for the observed succession of spin and isospin quantum numbers in 
correspondence with the average increase of the energy levels. 

A detailed description of the baryon spectrum needs a more specific dynamical model. Many 
models have been proposed in recent years: the non-relativistic CQM [12,13] using different qq 
interactions [14], the bag model in various formulations [15], the Skyrme model [16] and the 
collective approach [17]. 

Let us briefly recall the main features of the non-relativistic CQM. The Isgur-Karl model [12-13] is 
QCD motivated in the sense that the One-Gluon-Exchange (OGE) mechanism is assumed as a 
basis for the construction of the quark hamiltonian. The non-relativistic limit of the OGE interaction 
contains a long-range spin-independent part and a short-range spin-dependent term [18]. The 
hamiltonian (7) is generalized to the following one 

2 p 2 + p  k 
H = 3 m +  P2m +L(p_~)+Hhyp( p,- ~.~G~.) (14) 

The term L(p, ~.) provides confinement again through a h.o. potential, to which however an 
anharmonic term U is added 

L= E ( 1 K  ~ + U (rij)) -Vconf 
i<j 

TABLE 5 - The 3-quark SU(6) energy spectrum after the introduction of 
the 2-body potential U [12,13]. •n = 3m + (3 + N) he) are the h.o. levels, 
while am (m=0,2,4) are determined by the moments of the U potential: 

am = 3 (ed~)3 J" dp (e.p) m U(v~-p) exp(- ~2p2) 

through the quantities 

E 0 = E: 0 + a 0 ; Q =~eo - a 0 / 2  + a 2 / 3  ; A = -5 /4  a0+ 5/3 a 2 -1/3 a 4 

E(,5~,0 +) = E 0 

E(56',0 +) = E 0 + 2 ~ - A 

E ( 5 6 , 2  +) = E 0 + 2 EZ - 2~/5 

E(?,,.Q,1 +) = E 0 + 2 

E(.7.0.,I") = E o ÷ 

E(Z.0.,0 +) = E 0 + 2 Q - ~ /2  

E(7..Q,2 +) = E 0 + 2 £~ - A/5 
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264 M . M .  Giannini 
The potential U does not violate the SU(6) symmetry, but eliminates the degeneracy of the SU(6) 
multiplets in the various shells. The resulting energy pattern is richer than the h.o. one, with shifts 
depending only on the moments am of the potential (see Table 5). 

The last term in eq. (14) is called the hyperfine interaction, since it has the same form than the 
spin-dependent (Breit-Fermi) part of the electromagnetic interaction between charged particles: 

- 1 r 3 (s,. rij)(Sj" rij ) = . : 1 1  
Hhyp= 3m 2 ' . ~i ~jjJ' (15) 

t < J IJ IJ 

where % is the strong coupling constant and S i are the spins of the quarks. The spin-dependence 
violates SU(6) and the physical states are then superposition of SU(6) configurations. The effect 
of the various modification to the h.o. potential is shown pictorially in Fig. 4. The important 
consequence of Hl~y p, besides giving rise to a mixing of the SU(6) h.o. states, is to produce a N-A 
mass difference: 

2GeV I 

t 
l'SGeVi I~u~ 

1GeV 
i 
, T ' *  V h . o .  

SUI6) 
- -  I20,1 *) COH 

(?°'2+) L\  
(~,2") ,~ , \  
(7o.o') '~ ,  " '~~ 

 .~. % N1t6801 
' , , ~  

,s_6',0") .~',, \ \ \  
• ,, \ , , , - ,~\  

V" \~. { \ .~ .  ~), t~Al1212j ). Af  
- - . ( 5 6 , 0 " 3  f ' '  

"'~!~ N(9/)O} 

U )Hhyp ~ 0GE 

Fig. 4. The h.o. spectrum (left), the arrangement of the SU(6) states after 
the introduction of the U potential (middle) and some of the most relevant 
experimental levels (right). The lines show the mixing produced by the 
hyperfine part of the one-gluon-exchange interaction in order to built the 
physical states. 

The	  Isgur	  and	  Karl	  model	  
	  (how	  to	  correct	  the	  defect	  of	  	  to	  the	  H.O.	  model)	  
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Algebraic	  solu7on	  of	  the	  Coulomb	  problem	  

In	  general	  	  the	  eigenvalues	  of	  C_2(O(N))=ω	  (ω+N-‐2)	  



(iachello,	  Giannini,	  Santopinto)	  





The	  Models	  	  	  	  
(CQM)	  

	  
	  some	  other	  Cons7tuent	  Quark	  Model	  	  	  



different	  CQMs	  for	  bayons	  

Kin. Energy SU(6) inv SU(6) viol date

Isgur-Karl non rel h.o. + shift OGE 1978-9

Capstick-Isgur rel string + coul-like OGE 1986

U(7)  B.I.L. rel M^2 vibr+L Guersey-R 1994

Hyp.   O(6) non rel/rel hyp.coul+linear OGE 1995

Glozman Riska non rel/relPlessas h.o./linear GBE 1996

Bonn rel linear 3-body instanton 2001



 
 

Non strange spectrum	


CapsUck	  and	  Isgur,	  Phys.	  Rev.	  D34,	  2809.	   Bijker,	  Iachello,	  Leviatan,	  Ann.	  Phys.	  
236,	  69	  (1994)	  

.	  

Giannini,	  Santopinto,	  Vassallo,	  	  Eur.	  Phys.	  J	  .A12:447	  
	  

CapsUck	  &	  Isgur’s	  Model	   U(7)	  Algebraic	  Model	  

Hypercentral	  CQM	  
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LQCD (De Rújula, Georgi, Glashow, 1975)	

	

 the quark interaction contains	

	
a long range spin-independent confinement	


          a short range spin dependent term	


Spin-independence         SU(6) configurations	




SU(6) configurations for three quark states 

6 X 6 X 6 = 20 + 70 + 70 + 56 
                    A      M    M      S 

Notation 
(d, Lπ) 

d = dim of SU(6) irrep 
L = total orbital angular momentum 
π = parity 
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Hyperspherical	  harmonics	  

Hasenfratz	  et	  al.	  1980:	  	  	  	  	  	  	  
	  Σ V(ri,rj)	  	  	  is	  approximately	  hypercentral	  	  

One can introduce the hyperspherical coordinates, which are obtained by
substituting ⌅ = |�⌅| and ⇥ = |�⇥| with the hyperradius, x, and the hyperangle,
⇤, defined respectively by

x =
⇥

�⌅2 + �⇥2 , ⇤ = arctg(
⌅

⇥
). (2)

Using these coordinates, the kinetic term in the three-body Schrödinger equation
can be rewritten as [?]

� 1
2m

(�⌅ + �⇥) = � 1
2m

(
�2

�x2
+

5
x

�

�x
� L2(⇥⌅,⇥⇥, ⇤)

x2
) . (3)

where L2(⇥⌅,⇥⇥, ⇤) is the six-dimensional generalization of the squared angular
momentum operator. Its eigenfunctions are the well known hyperspherical har-
monics [?] Y[�]l⇥l�(⇥⌅,⇥⇥, ⇤) having eigenvalues �(� + 4), with � = 2n + l⌅ + l⇥
(n is a non negative integer); they can be expressed as products of standard
spherical harmonics and Jacobi polynomials.

In the hypercentral Constituent Quark Model (hCQM) [1], the quark inter-
action is assumed to depend on the hyperradius x only V = V3q(x). It has been
observed many years ago that a two-body quark-quark potential leads to matrix
elements in the baryon space quite similar to those of a hypercentral potential
[?]. On the other hand, a two body potential, treated in the hypercentral ap-
proximation [12], that is averaged over angles and hyperangle, is transformed
into a potential which depends on x only; in particular, a power-like two-body
potential

�
i<j (rij)n in the hypercentral approximation is given by a term pro-

portional to xn. The hypercentral approximation has been shown to be valid,
since it provides a good description of baryon dynamics, specially for the lower
states [12].

The hyperradius x is a function of the coordinates of all the three quarks
and then V3q(x) has also a three-body character. There are many reasons sup-
porting the idea of considering three-body interactions. First of all, three-body
mechanisms are certainly generated by the fundamental multi-gluon vertices
predicted by QCD, their explicit treatment is however not possible with the
present theoretical approaches and the presence of three-body mechanisms in
quark dynamics can be simply viewed as ”QCD-inspired”. Furthermore, flux
tube models, which have been proposed as a QCD-based description of quark in-
teractions [], lead to Y-shaped three-quark configurations, besides the standard
��like two-body ones. A three-body confinement potential has been shown to
arise also if the quark dynamics is treated within a bag model [?]. Finally, it
should be reminded that threee-body forces have been considered also in the
calculations by ref. [?] and in the relativized version of the Isgur-Karl model
[7].

For a hypercentral potential the three-quark wave function is factorized

⇧3q(�⌅,�⇥) = ⇧⇤�(x) Y[�]l⇥l�(⇥⌅,⇥⇥, ⇤) (4)
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��like two-body ones. A three-body confinement potential has been shown to
arise also if the quark dynamics is treated within a bag model [?]. Finally, it
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hyperangle	  



Hypercentral	  Model	  	  

V(x)	  =	  -‐τ/x	  +	  α	  x	  

Hypercentral	  approxima7on	  of	  

Genoa	  group,	  1995	  



Carlson	  et	  al,	  1983	  
Caps7ck-‐Isgur	  1986	  
hCQM	  1995	  



	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Two	  analy7cal	  solu7ons	  
	  

	  hyperCoulomb	  	  	  	  	  	  	  	  	  	  	  -‐	  τ/x	  
	  

	  h.	  o.	  	   	   	  Σi<j	  1/2	  k	  (ri	  -‐	  rj)2	  =	  3/2	  	  k	  x2	  
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•  H.O.	  
•  W.fs	  	  	  e-‐α2r2	  

•  F.F.	  	  	  e-‐α2r2/6	  

•  Transi7on	  form	  factor	  :	  

•  Polynomial	  ×e-‐α2r2/6	  

•  Hyp.	  
•  W.fs	  	  	  Polinomial	  e-‐br	  

•  F.F.	  	  	  :1/(1+Q2	  	  
/b^2)7/2	  

•  Transi7on	  f.f.:	  	  
	  	  	  Polynomial×	  
	  	  	  	  1	  /(1+Q2	  /b^2)(7+n)/2	  
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Quark-antiquark lattice potential	
 G.S. Bali Phys. Rep. 343, 1 (2001)	


V = - b/r + c r	




Introducing	  SU(6)	  viola7on	  

q	   q	  

g	  

One	  Gluon	  Exchange	  

VOGE	  =	  -‐a/r	  +	  Hyperfine	  interac7on	  



x =  	
  ρ2  +  λ2	


hyperradius	




Results  (predictions) 
with the Hypercentral Constituent 

Quark Model 

for 

q   Helicity amplitudes 

q  Elastic nucleon form factors 



The	  helicity	  amplitudes	  
	  



HELICITY	  	  AMPLITUDES	  
	  

Extracted	  from	  electroproduc7on	  of	  mesons	  

N N	  

γ	
 π	  
N*	  

A1/2	  A3/2	  S1/2	  	  



Defini7on	  
	  
	  A1/2	  =	  <	  N*	  Jz	  =	  1/2	  |	  	  HT

em	  |	  N	  Jz	  =	  -‐1/2	  >	              §	  
	  	  	  	  	  A3/2	  =	  <	  N*	  Jz	  =	  3/2	  |	  HT

em	  |	  N	  Jz	  =	  	  1/2	  >	               §	

	  	  	  	  	  	  S1/2	  =	  <	  N*	  Jz	  =	  1/2	  |	  HL

em	  |	  N	  Jz	  =	  	  1/2	  >	  	  
	

	   	   	  	  N,	  N*	  nucleon	  and	  resonance	  as	  3q	  states	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  HT
em	  Hl

em	  	  	  model	  transi7on	  operator	  
	  
§	  	  results	  for	  the	  negaUve	  parity	  resonances:	  	  	  	  
	  	  	  	  	  	  M.	  Aiello,	  M.G.,	  E.	  Santopinto	  J.	  Phys.	  G24,	  753	  (1998)	  
	  
SystemaUc	  predicUons	  for	  transverse	  and	  longitudinal	  amplitudes	  
	  	  	  	  E.	  Santopinto,	  M.G.,	  submiked	  to	  PR	  C	  



Definition	

	

	
A1/2 = < N* Jz = 1/2 |  HT

em | N Jz = -1/2 >             §	

     A3/2 = < N* Jz = 3/2 | HT

em | N Jz =  1/2 >              §	

      S1/2 = < N* Jz = 1/2 | HL

em | N Jz =  1/2 > 	

	

	
 	
 	
 N, N* nucleon and resonance as 3q states	


              HT
em Hl

em   model transition operator	

	

§  results for the negative parity resonances:   	

      M. Aiello, M.G., E. Santopinto J. Phys. G24, 753 (1998)	

	

Systematic predictions for transverse and longitudinal amplitudes	

    E. Santopinto et al. , Phys. Rev. C86, 065202 (2012)	

	


Proton and neutron electro-excitation to 14 resonances	
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N(1520) 3/2- transition amplitudes	


E. Santopinto, M. Giannini.	

Phys. Rev. C86, 	

065202 (2012)	
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Figure 15: (Color on line) The P11(1440) proton transverse (a) and longitudinal
(b) helicity amplitudes predicted by the hCQM (full curves), in comparison with
the data of refs. [134], [131] and the Maid2007 analysis [121] of the data by
refs. [135],[132], [133] and [136]. The PDG point [63] is also shown. The figure
is taken from ref. [46] (Copyright (2012) by the American Physical Society).

expect that their internal structures have strong similarities and that a good
description of the N�� transition from factors is possible only with a relativistic
approach. Such feature is further supported by the fact that the transitions to
the higher resonances are only slightly a↵ected by relativistic e↵ects [30].

The Roper excitation is reported in Fig. 15. Because of the 1

x term in the
hypercentral potential of Eq. (82), the Roper resonance can be included in the
first resonance region, at variance with h.o. models, which predict it to be a 2 h̄!
state. There are problems in the low Q2 region, but for the rest the agreement
is interesting, specially if one remembers that the curves are predictions and the
Roper has been often been considered a crucial state, non easily included into a
constituent quark model description. In particular, the longitudinal excitation
is quite di↵erent from zero [105], in agreement with the hCQM and at variance
with the hybrid qqq-gluon model [104]. In the present model, the Roper is a
hyperradial excitation of the nucleon.

We consider now the excitations to some negative resonances [45, 46], namely
the D13(1520) and the S11(1525) ones, reported in Figs. 16 and 17, respectively.

The agreement in the case of the S11 is remarkable, specially if one considers
that the hCQM curve for the transverse transition has been published three
years in advance [45] with respect to the recent TJNAF data [131], [139], [141],
[142].

It is interesting to discuss the influence of the hyperfine mixing on the ex-
citation of the resonances. Usually there is only a small di↵erence between the
values calculated with or without hyperfine interaction. In some cases, however
the excitation strength vanishes in the SU(6) limit, as already mentioned in
Table 6, the non vanishing result is then entirely due to the hyperfine mixing
of states. In the case of the S11(1650) resonance, the resulting transverse and
longitudinal excitations have a relevant strength.

The three helicity amplitudes of the D13(1700) resonance are again non zero
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FIG. 5. (Color online) The S11(1525) proton transverse (a) and
longitudinal (b) helicity amplitudes predicted by the hCQM (full
curve), in comparison with the data of Ref. [67] (open diamonds),
[49] (full diamonds), [68] (crosses), [69] (open squares), [70] (full
squares), the MAID2007 analysis [50] (full triangles) of the data by
Ref. [51], and the compilation of the Bonn-Mainz-DESY data of
Refs. [71–74] (stars), presented in Ref. [70]. The PDG point [38]
(pentagon) is also shown.

B. The transition form factors

Taking into account the Q2 behavior of the transition
matrix elements, one can calculate the hCQM helicity
amplitudes [35].

In order to compare results with the experimental data,
the calculation should be performed in the rest frame of the
resonance (see, e.g., Ref. [48]). The nucleon and resonance
wave functions are calculated in their respective rest frames
and, before evaluating the matrix elements given in Eqs. (12),
one should boost the nucleon to the resonance c.m.s. In our
nonrelativistic approach such boost is trivial but not correct,
because of the large nucleon recoil. In order to minimize the
discrepancy between the nonrelativistic and the relativistic
boost when comparing results with the experimental data, we
use the Breit frame, as in Refs. [4,35]. Therefore we use the
following kinematic relation:

!k2 = Q2 + (W 2 − M2)2

2(M2 + W 2) + Q2
, (16)

where M is the nucleon mass, W is the mass of the resonance,
k0 and !k are the energy and the momentum of the virtual
photon, respectively, and Q2 = !k2 − k2

0. For consistency, in
the calculations we have used the values of W given by the
model and not the phenomenological ones.
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FIG. 6. (Color online) The proton helicity amplitudes predicted
by the hCQM for the excitation of S31(1620) (a) and S11(1650) (b),
respectively, in comparison with the data of Ref. [49] (A1/2 open
diamonds, S1/2 full diamonds), [75] (A1/2 open diamonds, S1/2 full
diamonds), the compilation reported in Ref. [65] and the MAID2007

analysis [50] (A1/2 up triangles, S1/2 down triangles) of the data in
Refs. [51,52], and the compilation of the Bonn-Mainz-DESY data of
Refs. [71–74] (crosses) presented in Ref. [70]. The PDG points [38]
(pentagons) are also shown.

The matrix elements of the e.m. transition operator between
any two 3q states are expressed in terms of integrals involving
the hyper-radial wave functions and are calculated numer-
ically. The computer code has been tested by comparison
with the analytical results obtained with the h.o. model of
Refs. [13,14] and with the analytical model of Ref. [45].

C. The excitation to the ! resonance

The N − ! helicity amplitudes are shown in Fig. 2. The
transverse excitation to the ! resonance has a lack of strength
at low Q2, a feature in common with all CQM calculations.
The medium-high-Q2 behavior is decreasing too slowly with
respect to data, similar to what happens for the nucleon
elastic form factors [20,23]. In this case, the nonrelativistic
calculations are improved by taking into account relativistic
effects. Since the ! resonance and the nucleon are in the
ground state SU(6) configuration, we expect that their internal
structures have strong similarities and that a good description
of the N − ! transition from factors is possible only with a
relativistic approach. Such a feature is further supported by
the fact that the transitions to the higher resonances are only
slightly affected by relativistic effects [20].
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•  The	  hCQM	  seems	  to	  provide	  realis7c	  three-‐quark	  wave	  func7ons	  

•  The	  main	  reason	  is	  the	  presence	  of	  the	  hypercoulomb	  term	  
	  

Solvable	  model	  
	  
V(x)	  =	  -‐τ/x	  +	  α	  x	  	  	  	  	  	  linear	  term	  treated	  as	  a	  perturba7on	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  wf	  mainly	  concentrated	  in	  the	  low	  x	  region	  
	  
Ø  energy	  levels	  expressed	  analy7cally	  
Ø  unperturbed	  wf	  given	  by	  the	  1/x	  term	  
Ø major	  contribu7on	  to	  the	  helicity	  amplitudes	  	  	  

E.	  Santopinto,	  F.	  Iachello,	  M.Giannini,	  Eur.	  Phys.	  J.	  A	  1,	  307	  (1998)	  	  	  

Good	  results	  due	  to	  semplicity	  



Blue	  curves	  hCQM	  Green	  curves	  H.O.	  

m	  =	  3/2	  

m	  =	  1/2	  

rp	  	  0.5	  fm	  	  

rp	  	  0.86	  fm	  	  



The	  nucleon	  elas7c	  	  
form	  factors	  	  

	  



- elastic scattering of polarized      	

	
electrons on polarized protons	


-  measurement of polarizations   	

	
asymmetry gives directly the 	
ratio  

Gp
E/Gp

M	


-  discrepancy with Rosenbluth data (?)	


-  linear and strong decrease	


-  pointing towards a zero (!)	

	

- new data (jan 2010) seem to confirm 	


	
 	
the behaviour	






With	  a	  calculated	  radius	  of	  about	  0.5	  fm	  
the	  e.m.	  form	  factors	  predicted	  by	  the	  hCQM	  

are	  not	  good!	  

BUT	  

rela7vity	  is	  needed	  



RELATIVITY	  

Various	  levels	  

• 	   	  rela7vis7c	  kine7c	  energy	  

• 	   	  Lorentz	  boosts	  

• 	   	  Rela7vis7c	  dynamics	  

• 	   	  quark-‐an7quark	  pair	  effects	  (meson	  cloud)	  

• 	   	  rela7vis7c	  equa7ons	  (BS,	  DS)	  



Relativistic corrections to form factors	


•  Breit frame	

•  Lorentz boosts applied to the initial and final state	

•  Expansion of current matrix elements up to first     	

	
order in quark momentum	


•  Results	

Arel (Q2) = F  An.rel(Q2

eff)	

F = kin factor 	
 	
 Q2

eff = Q2 (MN/EN)2	

	


	

	
 	
 	
 	
 	
De Sanctis et al. EPJ 1998	




Full	  curves:	  	  	  	  	  	  	  hCQM	  with	  rela7vis7c	  correc7ons	  
Dashed	  curves:	  hCQM	  in	  different	  frames	  



calculated	




Construction of a fully relativistic theory	

Relativistic Dynamics	


Three forms (Dirac):	

	
Light (LF), Instant (IF), Point (PF)	


Composition of angular momentum states as in the 
non relativistic case 	


Point form: 	  

Moving three-quark states are obtained through 	

(interaction free) Lorentz boosts   (velocity states)	




Construction of a fully relativistic theory	

Relativistic Dynamics	


Relativistic Hamiltonian Dynamics	

                   for a fixed number of particles    (Dirac)	

	

Construction of a representation of the Poincaré generators	

     	
Pµ (tetramomentum), Jk (angular momenta), Ki (boosts)	

 	
obeying the Poincaré group commutation relations	

    in particular             	

                                           [Pk , Ki ] = i δkj H	


Three forms:	

	
Light (LF), Instant (IF), Point (PF)	


Differ in the number and type of (interaction) free generators	


Moving three-quark states are obtained through 	

(interaction free) Lorentz boosts   (velocity states)	




Point form:         Pµ interaction dependent	

                            Jk  and Ki      free	


Composition of angular momentum states as in the 
non relativistic case 	


M = M0 + MI	
Mass operator	


M0 = Σi	
 pi
2 + m2

	
   Σi pi = 0	


Pi undergo the same Wigner rotation -> M0 is invariant	

Similar reasoning for the hyperradius	  

The eigenstates of the relativistic hCQM are interpreted as	

eigenstates of the mass operator M	


Moving three-quark states are obtained through 	

(interaction free) Lorentz boosts   (velocity states)	




GE
p	


GE
n	
 GM

n	


GM
p	


Calculated values!	

• Boosts to initial and final states	

• Expansion of current to any order	


• Conserved current	






Ricco	  et	  al.,	  PR	  D67,	  094004	  (2003)	  

Ra7o	  between	  	  
proton	  Nachtmann	  moments	  &	  

CQ	  distribu7on	  

n	  =	  2	  

(approximate)	  scaling	  func7on	  	  	  	  	  	  	  	  	  	  	  	  square	  of	  CQ	  	  ff	  

Inelas7c	  proton	  scacering	  	  	  	  	  as	  elas7c	  scacering	  on	  CQ	  

Bloom-‐Gilman	  duality	  

F(Q2)	  =	  1/(1+	  1/6	  rCQ
2	  Q2)	   rCQ	  ≅	  0.2	  fm	  

Further	  support	  2	  



With	  quark	  form	  factors	  	  

Genoa	  group,	  Phys.	  Rev.	  C76,	  062201	  (2007)	  
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Y.B. Dong, M.Giannini., E. Santopinto,	

A.  Vassallo, 	

Few-Body Syst. 55	  (2014)	  873-‐876	  	


Relativistic hCQM	

In Point Form	


	


0 1 2 3 4 5

Q
2
(GeV

2
)

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

A
p

1
/2

(1
0

-3
G

eV
 -

1
/2

)

∆(1232) (a)

0 1 2 3 4 5

Q
2
(GeV

2
)

-300

-250

-200

-150

-100

-50

0

A
p

3
/2

(1
0

-3
G

eV
 -

1
/2

)

∆(1232) (b)



	  please	  note	  

•  the	  medium	  Q2	  behaviour	  is	  fairly	  well	  reproduced	  
•  there	  is	  lack	  of	  strength	  at	  low	  Q2	  (outer	  region)	  in	  the	  e.m.	  

transi7ons	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

•  emerging	  picture:	  	  
	  	  	  	  	  	  	  quark	  core	  	  	  	  	  	  	  	  plus	  	  	  (meson	  or	  sea-‐quark)	  	  cloud	  

Quark core	
Meson	  cloud	  



Conclusions First Part 	


§  CQM provide a good systematic frame for baryon studies	


§  fair description of e.m. properties (specially N-N* transitions)	


§  possibility of understanding missing mechanisms	


§ quark antiquark pairs effects 	

              unquenching: important break through	


	



