Current Experiments

Matthew Shepherd
Indiana University

IU Summer SchootWorkshop on Reaction Theory June 8, 2015

Outline

- Current challenges (with a spectroscopy bias)
- Some results that showcase current experiments

Reaction Products (?)

M. R. Shepherd

Meson Spectrum from Lattice QCD

Dudek, Edwards, Guo, and Thomas, PRD 88, 094505 (2013)

Precision Experiment

Challenges of Precision Analysis

Theme

- advances in theory continue to sharpen and frame questions about QCD that can be addressed by experiment
- advances in experiment and technology have positioned us to address questions using data with unprecedented precision
- goal of this school: foster and share advances in phenomenology that help connect the two points above

A Selection of Recent Results

that showcase a variety of experiments and emphasize the need for understanding reaction theory

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons

BaBar at PEP-II SLAC (Menlo Park, CA) Belle at KEK (Tsukuba, Japan) BESIII at BEPCII (Beijing, China)

Charmonium Landscape

- Key players:
- Y(4260): ?!?
- $J / \Psi: S_{q}=I L=0, J^{P C}=I^{-}$
- $h_{c}: S_{q}=0 L=1, J^{P C}=1^{+}$
- Key transitions:
- $Y \rightarrow \pi \pi J / \Psi$
- $Y \rightarrow \pi \pi h_{c}$
- Study of $Y(4260)$ led to discovery of charged $Z(3900)^{ \pm}$ and $Z(4020)^{ \pm}$structures

Quark Model Prediction:
Barnes et al., PRD 72, 054026 (2005)
(approximate - not all XYZ candidates shown!)

The $Y(4260)$

- I^{--}state produced in $\mathrm{e}^{+} \mathrm{e}^{-}$

- mass greater than $2 M(D)$ so we expect OZl favored decay:

CLEO Collaboration, PRD 80, 07200 I (2009)
$\frac{\mathcal{B}(Y(4260) \rightarrow D \bar{D})}{\mathcal{B}(Y(4260) \rightarrow \pi \pi J / \psi)}<4$
compare with ≈ 500 for $\psi(3770)$
M. R. Shepherd

IU Summer Workshop on Reaction Theory

Charmonium from Lattice QCD

L. Liu et al. [Hadron Spectrum Collab.], JHEP07 I26 (2012)

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \Psi$ at $E_{c m}=4260 \mathrm{MeV}$

- J / Ψ is cleanly identified in dilepton decay modes

- Structure in $\pi^{+} J / \Psi$ mass that does not arise from $\pi^{+} \pi-$ interactions
 DEPARTMENT OF PHYSICS

BESIII Collaboration, PRL I IO, 25200I (2013)

$Z(3900)^{ \pm} \rightarrow \pi^{ \pm} J / \Psi$

- Narrow $(\approx 50 \mathrm{MeV})$ and charged
- Not conventional charmonium: tetraquark?
- Evidence of neutral partner [T. Xiao et al., PLB 727, 366 (2013)]

What is $Z(3900)$?

How is it connected to $Y(4260)$?

What is a Resonance?

$\mathcal{M} \propto \frac{1}{M^{2}-s-i \sqrt{s} \Gamma}$
pole: $\sqrt{s}=M-i \Gamma / 2$
Expt.: s $=[M(\pi \pi)]^{2}$ (real)

Notes from the Editors: Highlights of the Year

Published December 30, 2013 | Physics 6, 139 (2013) | DOI: 10.1103/Physics.6.139

Physics looks back at the standout stories of 2013.
As 2013 draws to a close, we look back on the research covered in Physics that really made waves in and beyond the physics community. In thinking about which stories to highlight, we considered a combination of factors: popularity on the website, a clear element of surprise or discovery, or signs that the work could lead to better technology. On behalf of the Physics staff, we wish everyone an excellent New Year.

- Matteo Rini and Jessica Thomas

Four-Quark Matter

Images from popular Physics stories in 2013.

Quarks come in twos and threes-or so nearly every experiment has told us. This summer, the BESIII Collaboration in China and the Belle Collaboration in Japan reported they had sorted through the debris of high-energy electron-positron collisions and seen a mysterious particle that appeared to contain four quarks. Though other explanations for the nature of the particle, dubbed $Z_{c}(3900)$, are possible, the "tetraquark" interpretation may be gaining traction: BESIII has since seen a series of other particles that appear to contain four quarks.

Strangers from Beyond our Solar System

Detector experiments hunting for rare events can go years and never see anything out of the ordinary. So it was cause for excitement when IceCube, a giant neutrino telescope at the South Pole, reported the detection of two neutrinos with energies of around 1000 tera-electron-volts (TeV), roughly a billion times more energetic than those arriving from the Sun. Scientists at IceCube have since further analyzed their data and reported 26 more neutrinos with energies above 30 TeV . Researchers will need to

$Y(4260)$ hybrid test?

- Lattice QCD predicts the hybrid I^{--}state to have spin $S=0$

Using LQCD Dudek et al. predict [PRD 79, 094504 (2009)]

$$
Y_{\text {hybrid }} \rightarrow \gamma \eta_{c}
$$

rate is comparable or larger than

$$
Y_{\text {hybrid }} \rightarrow \gamma \chi_{c 0}
$$

Potential "hybrid test" for $Y(4260)$, but no experimental sensitivity...yet
Two decays that we can attempt to compare instead:

$$
Y(4260) \rightarrow \pi \pi h_{c}
$$

??

$Y(4260) \rightarrow \pi \pi J / \psi$

??

$Z(4020)^{ \pm} \rightarrow \pi^{ \pm} h_{c}$

- No $Y(4260)$-like peaking structure in $\pi^{+} \pi^{-} h_{c}$ cross section, which is comparable to peak in $\sigma\left(\pi^{+} \pi^{-} J / \Psi\right)$
- Very narrow charged $\pi^{ \pm} h_{c}$ structure near DD* threshold
- Not conventional charmonium

What about b quarks?

- Same story, heavier characters
- $Y(4260) \rightarrow Y$ or $Y(10860)$
- $J / \psi \rightarrow Y$
- $h_{c} \rightarrow h_{b}$
- at 10890 MeV : peak in $\pi \pi$ transitions to $\mathrm{Y}(\mathrm{nS})$ states
- Study πY and πh_{b} structure in transitions

Belle Collaboration, arXiv: 1501.01137

M.R. Shepherd

Observation of $Z_{b}(10610)^{ \pm}$and $Z_{b}(10650)^{ \pm}$

- Belle observes two charged states in the bottomonium spectrum
- couple to $\pi^{ \pm} h_{b}$ and $\pi^{ \pm} \curlyvee$
- consistent masses and widths in five different decay modes
- masses at or just above $B B^{*}$ and $B * B *$ thresholds
- decays to $B^{(*)} \overline{B^{*}}$: [Belle Collaboration arXiv: I 209.6450]

Decays of B Mesons

LHCb at the LHC BaBar at PEP-II SLAC (Menlo Park, CA) Belle at KEK (Tsukuba, Japan)

Charmonium in B Decay

- Hadronic decays of the B meson $(M(B)=5.27 \mathrm{GeV})$ can be used to study the charmonium spectrum
- useful tool at hadron colliders
- Recent hot topics:
- charged states: $Z(4430)$ and $Z(4200)$ in $\pi^{ \pm} \Psi\left({ }^{(}\right)$
- narrow neutral state: $X(4140)$ in $\Phi \mathrm{J} / \Psi$

$Z(4430)^{ \pm} \rightarrow \Psi^{\prime} \pi^{ \pm}$

- Examine $\Psi^{\prime} \pi^{ \pm}$produced in $B \rightarrow \Psi^{\prime} K \pi^{ \pm}$
- need to understand $K \pi$ structure
- $Z(4430)$ reported initially by Belle [PRL 100, I4200I (2008)], but not confirmed by BaBar [PRD 79, II200I (2009)]
- Z(4430) recently confirmed with I0x more data at LHCb
- \quad established $J^{p}=I^{+}$
- not S-wave $D^{*}(2007) D_{1}(2420)$ or $D^{*}(2007) D_{2}^{*}(2460)$
- Broad structure: $\Gamma_{\text {tot }} \approx 200 \mathrm{MeV}$
- LHCb: second structure around 4200 at 6σ; resonant nature inclusive

M. R. Shepherd IU Summer Workshop on Reaction Theory

$D \rightarrow$ R \rightarrow +//は

- Belle reports evidence for $Z(4430) \rightarrow \pi^{ \pm} / / \Psi$
- about I0x smaller than

$$
Z(4430) \rightarrow \pi^{ \pm} \Psi^{\prime}
$$

- Belle: $Z(4200)^{ \pm} \rightarrow \pi^{ \pm} / \psi$ at 6.2σ
- broad: $\Gamma_{\text {tot }} \approx 400 \mathrm{MeV}$
- $\rho^{p}=1^{+}$favored
- compatible with "structure" in LHCb analysis of $\Pi^{ \pm} \Psi '$
- No evidence for the $Z(3900)$ that is correlated with $Y(4260)$ decay
- production mechanism dependence?
- $Z(3900)$ is fundamentally different from $Z(4200)$ and $Z(4430)$?

Comments/Questions

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons
- Similar physics in both bottom and charm systems
- Experimentally significant narrow peaks in the mass spectrum
- resonances?
- Decays of B Mesons
- Additional charged states observed in B decay
- significantly broader
- one appears to have phase motion of a resonance

π Beam Data

COMPASS at CERN

Meson Spectrum from Lattice QCD

Dudek, Edwards, Guo, and Thomas, PRD 88, 094505 (2013)

Hybrid Mesons

color singlet quark anti-quark

$J=L+S \quad P=(-I)^{L+I} \quad C=(-I)^{L+S}$

Allowed JPC: $0^{-+}, 0^{++}, 1^{--}, 1^{+-}, 2^{++}, \ldots$ Forbidden $\mathrm{JPC}^{P C} \mathrm{O}^{--}, 0^{+-}, \mathrm{I}^{-+}, 2^{+-}, \ldots$
"constituent gluon"

$$
\text { mass } \approx 1.0-1.5 \mathrm{GeV}
$$

Lightest Hybrids

$$
S_{q \bar{q}}=1 \quad S_{q \bar{q}}=0
$$

[^0]
$\pi^{-} p \rightarrow \eta^{\prime} \pi^{-} p$

- Data collected from COMPASS using a 190 GeV pion beam
- $\eta^{\prime} \pi^{\prime}$ in a P-wave: L=I
- parity:-
- G:-
- isospin: I
- JPC of neutral isovector is I^{-+} (exotic!)

$\pi^{-} p \rightarrow \eta^{\prime} \pi^{-} p$

arXiv: I I 08.6/9I

M. R. Shepherd

Џ

π beam data from COMPASS

$\pi \pi^{-\pi} \pi^{+}$from $190 \mathrm{GeV} \pi$ on Pb

COMPASS Collab., PRL I04, 241803 (20I0)
$\pi^{-} \pi^{-} \pi^{+}$from $190 \mathrm{GeV} \pi$ on p

F. Krinner, POS (Bormio 2014), 03 I
M. R. Shepherd

The biggest is not the most important

Meson Spectrum from Lattice QCD

Dudek, Edwards, Guo, and Thomas, PRD 88, 094505 (2013)

Two sides of the same coin?

F. Krinner, POS (Bormio 2014), 03I

See also: COMPASS Collab., arXiv: 1501.05732

TT DEPARTMENT OF PHYSICS

indiana university
INDIANA UNIVERSITY
College of Art
Bloomington

Basdevant and Berger,
PRL I/4,19200| (2015)

M. R. Shepherd

IU Summer Workshop on
Reaction Theory June 8, 2015

Comments

- Excellent data in hand with amazing statistical precision
- Modeling of the reaction in analysis seems to be the dominant systematic error when interpreting data
- The ability to make major discoveries depends on the ability to quantify and limit this systematic uncertainty

Current and Future Opportunities

hadron probes

12 GeV Upgrade to JLab

- Upgrade maximum electron energy from 6 GeV to 12 GeV with addition of cryomodules
- New Hall D and upgrades to existing Hall
- Project completion: Spring 2017
- Accelerator upgrade is complete
- Hall D facility and associated experimental equipment are complete
add an arc
add Hall D and GlueX

GlueX in Hall D

- high intensity, linearly-polarized photoproduction experiment: 9 GeV photons
- core program: light meson spectroscopy access to everything up to around 3 GeV
- unique and complementary to hadron beam data, e.g., COMPASS

Hall D/GlueX Polarized Photon Beam

Conclusions

- Exciting developments in experimental studies of spectroscopy in the last ten years
- understanding underlying reaction dynamics is critical
- data will keep coming: new experiments studying different reactions are starting now
- Advances in technology and sociology
- statistically precise data for many related reactions
- high-performance analysis machinery
- new (old) ideas about theory and experiment collaboration
- Ability to draw firm conclusions from the data depends on having a good understanding of underlying reaction dynamics

[^0]: $J^{P C}: \quad 0^{-+}, 1^{-+}, 2^{-+}$

