Excerpts from Ph231 Particle Physics Phenomenology Notes
This course was taught ~1983 at Caltech by Geoffrey Fox.
The full notes and lots of problem sets are available

Part VIl Times Gone By: The S Matrix Era

See pection IVH later in excerpt for Kinematics and Mandelstam variables

See pection VI.H E350}Jand yVI.I E110 and E35( in excerpt for discussion of experiments
Note even in early 1980’s, | viewed S matrix theory as past!

K: Introduction|
e Why in 1960-1970 did we do S Matrix theory and not QFT

B: Analyticity and Mandelstam variables s t 4

e See bart IVE| of notes

e Analyticity structure for spinless = p scattering

[C: Generalized Unitarity|
e Discontinuities and cuts of various types
e Watson's theorem

P: Analyticity in Quantum Field Theory; Dispersion Relationg
e Crossing
Dispersion Relations
t=0 dispersion relations for elastic scattering involves total cross section
Measure real part by coulomb interference
Subtractions
Froissart bound
Resonances in dispersion relations
=t p fixed t dispersion relations
pn — pn fixed s dispersion relations and pion pole

Determination of Singularities of Analytic Functions|represented in integral
orm

Chapter 2 of ELOP

Analysis of pinches causing singularities
Two cases considered

Quark Propagator

Box diagram

F: The Mandelstam Representation and his lteratior]
e Potential theory; representation of amplitude as double integral over double
spectral function plus poles
e Relativistic generalization with 3 spectral functions and poles




Why you can (in principle) calculate amplitude from unitarity and analyticity in
potential theory and why it breaks down due to multichannel effects in relativistic
problem

[G. Regge Theory

Derivation of basic pole expansion at large z

Remarks on potential theory where poles go to -1 and large z limit irrelevant
Why more important in QFT as captures effect of crossed reactions

Simple examples referencing Fox&Quigg and dominant g-gbar Regge poles
Signature and why it is important in QFT and not in potential theory

Ladder diagrams and Regge Poles

Glueballs and Pomeron

Relation of Regge and high p-transverse limits

Analysis of Feynman graphs and how they generate poles from ladder graphs
Box diagrams and the absorption model generating cuts. Analysis of reliability of
this

Triple Regge Theory

See experiment E350 described in

H Duality, Finite Energy Sum Rules, the Veneziano Model

Derivation of FESR from Dispersion relations and Regge theory
n* 10 — n* n0 to illustrate bootstrap

Duality. Resonances include Regge

Veneziano model

Exchange degeneracy

2-component duality

| Low Transverse Momentum Physicq (see Pictu

re Book
See experiment E110 and E260 described in
Quasi 2 body
Diffraction -- elastic excitation (beam, target, both), Deck effect, Pomeron Triple
Regge
Multi particle: pion multiplicity, low pT, multiperipheral, quark cascades,
independent pion spray, relation to QCD, Mueller



VIII. The S-Matrix Bra: Analycictey, Unttarity, Duality, Regge Theory,

the Bootstrap.
VIIL.A. Incroduceton

We now discuss a set of topics that vere the forefront of theoretical

high energy physics 10 years ago. They share property of being true in nearly

411 quantun field theortes (scmetines only proved true in perturbation theory).
In those far off days 1t did not seem likely that one could ever solve a quantum
£014 theory ( or even get physica out of £r). Thus the popular spproach vas
€0 abstract from QFT general properties and study thase instead. These ideas
culmtnated in the bootatrap principle vhich aupposed that all of hadron dynasics
could be deduced from these general properties plus some assumptions vhich
corresponded physically to the lack of elementary particles. (At that time
quarks were not popular and all the knovn hadrons shoved, 3s now, every evidence
of betng cosponite.)

The discovery of asymptotic freedom has shova that it is in fact possible

fully ve clata) the predictions of a QFT, L.e. Q0D

€0 calculate (suce

further this succass strongly suggests that there are slesentary particles (quarks
and gluons). Thus both the ortginal sotivation and one of basic assumptions

of the bootatrap have besn cast iato doubt. To make matters vorse, we were

never able  to do atgnificant calculations in the bootatrap spprosch. Hovever
16 13 St1LL true that the general techniques developed in these years are very

useful - siaply because they are correct properties of QCD. Some references

?. Collins, "An Introduction to Regge Theory and High Enersy Physics

R. J. Eden, "High Energy Collistons of Elementary Particles.
R. J. Bden, P. V. Landshoff, D. I. Olive, J. C. Polkinghorne, "The

Analyetc S-Matrix,” (ELOP).



T shall also use an old set of notes of mine - called "Picture Book of

High Energy Scattering," of P for short.

VIILB. Analyetetey

We have already introduced this in IV.F and again ve shall take two

body + tvo body scattering. The scattering amplitude A(s,t,u) is an

oatytsc unceton of 4, € nd ui 8 8 £ 0w o L The e function of

thess tavartants describes 3 disciace processes
iebecrd o chamel e
a+T+5+d uchannel aQ
a+dsc+b t channel
S -y

The variable tn the this colum is c.3. enersy’ for the three proce

This is 11lustrated on p. 9 of PB for the case a = 7' b =p and ¢ = 7" d = p.

Note the physical regions for the three proces

are dtscince aress fn

u space and this relatton between the three leads to mo direct physical®

relations between scattering amplitudes because one must use analytic contin-

uation to relate the amplitudes. The simplest vay of doing this s through
dtsperaton relations. These are not described fn Perkins but they are done
in Machevs and Valker (chapter 5). We will go throush this for {llustrated
case of 7p scactertng but T will ignore spin of parcicles, L.e. procons.

This does not in fact affect the argument in any

enttal vay.

We need to discuss the singularities of A(s,t) vhere ve drop argument u

= 1s procon mass, uis ¥ mass.



The analytte function (note analytic does mot imply regular everyvhe:

from tuo bastc mechanisms.

As,t) has stngularies
(1) A(s,€) has poles corresponding to scable (ve svitch off electromagnetic
and veak interactions for conventence) single particle diagrans. In ='p + 1'p

there 1s only one such case. Namely

.
L]
w -, Jooi ~ Sani

° ]

Notice this is a u chammel diagram. The contribution of this disgram to

A0 18

A5 you know from Feyumen rules ¢ can be related to squsre of ¥ nucleon
coupling constant g7/4r ~ 14.5 (This 1s g for 1°P7 coupling.) Notice this is
much larger than 438 coupling at Q7 = 1 Gev? (vhere g%/4r ~1). Probably it
should be compared with qig coupling at Q% = (300 Hew)? but unfortunately

there 1s no vay of estimating this

(2) A(s,t) has cuts starting at all thresholds for physical particle proces:

*p he

cut at

For tnstance v'p + ¥

s = (a+w?, corresponding to




se @’

corresponding to
pondtng e
a
4 3 ¢
5= (my -[)Z . corresponding to
-

mw’»
3+

Ve drav all (clearly there are an infintty of theal) cuts from starting

position to + =. Then they overlap and we need only worry about cut with

lowest threshold

Ras gt ca-.{.u S glama
(e mgy
(me3py

Note that the pole (1) can be regarded as a spectal case (vith but one inter-

mediate particle) of the cut (11). Namely general statesent on singularity
structure of A is that: Singularities correspond to the existence of incer-
mediate states containing real pareicles. If it is a one particle intersediate

state, then one has a pole but 1f two or more parcicles, one gets a cut.

e

4



s we will see later unitarity can be used to relate size of singularity

("size" 1s restdue for pole, discontinuity for cuc) in ab + cd to product of

asplitudes forab + o and o+ de. This gives cut corresponding co intersediate

- one sust sun over all intermedtate stat & total dfscon-

cuntuty over cut. For a pole ve already see this with residue being proportional

€0 product of coupling constants specifying amplitudes

- —>—<' :

The above remarks are the basis of the "physical” basts of the analytictty of
amplitudes. Namely all singularities are consequences of intersediate states
iterated by unttarity. Actually this is not alvays true but it is believed to
be valid fn cases of nterest.

Unttarity relates the taaginary part of the amplitude A (for initial state

4 goes to final state £) to a sun over intermediate states n, L.

st a1 (s matrix)
se1+1a (A 15 T matrtx)
L 2TmAGen = TAG + @) A e w

where we used time reversal invariance vhich says A is @ symetric matrix.

Now fn (1), we see that In A changes at each threshold because a new state

1s added to the sus on left hand side. Thus it is cbvious that singulariti

(cuts) are assoctated with thresholds. The above argument does not of course



shou that the threshold induced singularities are the only singularities on
the physical sheet.

We should ai

o dicusss resonances at this potnt. We have learned that
these can be considered as particles vith mass m - 1f/2 and so the s channel
a,

This 15 a pole at 5= a’ - ify ®»

Now because a resonance decays it is alvays

ove some threshold and so
in cut reglon. We can reach (2) fn two ways. One by starting just above cut
(at A above) and preceding down to B'. Alternately we can round singularity

and arrive at

B and B have same s value but amplitude differs. In fact A

1s stagluar at B' (i.e. has resonance pole) but not B. B is on "second sheet”

gotcen by going through cut. B is on "physical sheet.” This is a general
result; the only physical sheet singularities are (1) poles below threshold and
(11) cuta. There are no other stray poles or cuts.

The lack of singularity of (1) at B follows (in simplest case) because



should (spproxtaately) be replaced by Typ(e)/p(ag) where s

/e - (a +)%. Comparing B and B, p(s) reverses sign and so nature avoids a
+wk

stngularity at B. Note that p(s) in (2) now doss give it & cut at s =
Further for s real and <(a + %, p(s) 1s purely iaaginary and the fora (2) becomes
purely real. This fa a general result called "Hersitean analyticity” (only true

1f tine reversal is a valid symetry and for same phase conventions that give (1))

- nasely
AGst) = r(s) @

where * s complex conjugation.

above s real and not in region of cut, A is single valued and so

Taking

(&) tapit On the cut ve constder s, = Res + Lc and
8y = Res - ic, where ¢ s an arbicrary small positive real mumber (A = above,

B = below cut)

Comept

are distinct and (4)

L.

TaAGs,) = ~Ta(sy) 6}

We can {llustrace thus for some stmple mathematical functions obeying (4)



@ Ava-sfarnioe a8 real
carish-@rn?
Moy = a- 184 - @+ w7

This example is Lmportant because the cut corresponding to @ 2 parcicle

threshold 1s indeed of square root type. This means that A is double valued

or that 1f you go through the cut twice you end up at the same place.

Lo Aap = A = Aoy

In the above picture the solid line is the physical sheet; the dotted line is

the unphysical sheet.
2
@ A=a-8logl(an’ sl a8 real

) = a8 logls -~ (n+ W)+ 128 + 2mm8

2rts.

2
) = o - 8 logls = (m+ ) - 158

Here n s an integer telling you how many tines you have circled cut. n = 0

4s physical sheet and in above figure s, has n = & - 1(1 = 1,2,3). For the

logarithaic singularicy one never gets back to the physical sheet by circling

8= (a+3?) as n Just de-tncremencs by 1 each time. This function has an



infinice nusber of unphysical sheets. In nature, a three particle threshold
(vhich after decosposition of two of the particles into total J states clearly
corresponds to an infinite nusber of tuo particle thresholds) has an fafiaite

nusber of unphysical shee

VIILC. Generalized Unicaricy

For any =

ctton the physical amplitude A

©) 1s gotten by evaluating

the

octated analyeic function at s + ic(s real, ¢ positive of course!)
shove all threshold cuts. This follows from the ic prescription used to

iaterpret (regularize) the Feynman diagram propagators 1/(p% - u’ + 1c) .

Combiatng (1) and (4) we

e that the discontinulty of A(L + ) acros

the cut, 8 2 (@ + 17 1s Just
20T AL > IAN(E + w) ®

Actually ve can now state undtarity in a litele sore precise fashion; namely

the discontinulty across the cut in A(L + £) corre

onding to a particular

intersediate state o (e.. K'Z* or 7'xp) is Just (6) without the sum over n.

Natve unitarity just gives us the total discontinuity over all cuts.

L
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Thts fa {1lustrated sbove for the case of tvo thresholds. (s = (= +1)? and
=], Thave separaced the threshold cuts by a small amount fe in complex
4 plane - normally they are dram on top of each other. Then

Als)) = Alsy) 1s given by normal untcarity

A

) - Als,) is given by elastic term in unitaricy relation

A(s;) - A(s;) 1s given by term in unitaricy relation corresponding
to tntersediate state n.

o mulciparticle

This so called generalized unttarity relation also applt

asplitudes. Consider the reaction
atbel4243

a0d let p, (1= 0,5,1,2,3) be the pareicle somenta (37 = o). This ssplicude s
sin an analyeic funceion of the various ovariants which taclude 5y, 5, 5y,

LRI 2
and agy Doy, + oy % 0y @y +nt 42+ nd and ay = (o, + 2Pl e phystical

ssplitude 1s ss usual jotten by evaluating s, wich +ic inaginary pare. The

function has threshold cuts at

.(-.tn")z or (my +m, +

sy = (a4
Accordtng to generalized unitarity the discontinuity across the 5, cut
is proportional to
Alab + 142+ ) x AN12 + 12) &)

which 1s represented schematically belov.



-n-

Ve can use this o derive "Vatson's theorem” - a result that is normally
gotten from "final atate nteraction” theory. We will first derive the theores
for the stapler case of YN = N. This asplicude has YN and TN thresholds; hou-
ever, the former can be neglected as long aa ve work to lovest order fn . The

dtscontinutty across the TN cut is given by VIILB.(1)
In AGYN + 1) = ACN = 7) ARCEN > ) @

vith & normalization such that AGrN + %) = ¢** stng. The solucion of (2) s
that AN + 1) has saze phase (c'®) as the strong nteraction emplitude ACTN + 7).
This 1s the content of Watson's theorem vhich (after modification for violation of

tine reversal tavariance) applies o K + 2r and other hadronic weak dod (1

K > 27, Vatson's theoren says this veak interaction smplitude has the same
Phase an 15+ 0 at an o valos = a2l. A strong fateraction smplitude Like
AT + 7H) satisfies a non-linear unitarity relation

Tn AGrS + 7) = [AGN + ) |2 [€)

(exact below v threshold).

with solutton

AN > ) = o stn 6 @
for arbitary 6. Watson's theoren is the solution of the linesr unitarity

relation (2). This linear relation occurs in any "small” amplitude whose



-

square can be neglected. However we see that the purely strong nteraction

Process ab > 1+2+3

tisfies the linear relation (2) for the "part" of
unicarity corres o dtscontinuity across &, = (3, + 3,)° cur. Ve
y ponding to discontinuity 12 = (@ +ap? cur. v

deduce that ab + 1+ 2+ 3 has "phase” ¢'®12 (&), phase of 1+2+1+2)

£rom s, threshold. This fs a not very useful result unless ve know that
other sources of phases ( 8y, 8,3 oF 5,3 cuts) are either negligible or perhaps
vary alovly with s, so that e'*12 does correctly give the s, variation of

the phase of a b+ 1+ 2+ 3. We see that the generalized unitarity relation

enabled us to interpret final state interaction theory in a case vhere there

veral particles interacting with each other.
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VIIL.D. Analyefeity {n Quantus Field Theory; Dispersion Relations

The discusston so far has been applicable to both non-relativistic (potential

scattering) and relativistic (fleld theory) scattering. Hovever ve have omitted

an taportant feature of the relativistic case coaing from the extstence of 3
channels described by the same amplitude. (In the mon-relativistic case, only

one channel 1s described by our amplitude.) Namely unitarity does still give

a1l the singularities but one must add those coming from unttarity fn any of
the 3 channels.
Let us take as an example A(s,t) for 1'p + 77 evaluated at £=0 and con-
stdered as a function of the complex variable 5.
Put £(s) = ACs,£=0) @

in the non-relativistic case, £(s) vould Just have a cut for s = (a + 1)’

e/ SVh W S

[

Physical Ragiom
nrpaute

walmepyt




-

but in the field theory case ve also have poles and cuté from the u and €

channels. As ¢ is fixed =0, we can only get the u chamnel contribution.
Thts gtves a cut for

va@ewiors s(a-w
and & pole (the neveron) at

wee? ors-al i+l

A :‘:t"\ N

(mepl P (mapr?

Hernitean analyticity still implies that £(s) is real in the cut free
region AC and that the discontinuity of £ across either cut 1s 21 x its

taaginary part. For s z (a + )7 this discontinuity can be calculated from

+*p + x'p untarity and for s = (=

w? trom

'+ +'p usttarity. Note that
the physical amplicude is s + ic (above cut) for v'p + 1'p, 8 = (a + w) and
o= 2a? + 207 - u - ge (below cur), for wp + ¥ p, ux (m+ W Ve call
the two cuts the left (s < (a

W% and etght (s = (2 + WP hand cuts. The
presence of the lefe hand cut {s characteristic of feld theory.

Now we can derive dispersion relacions as an elesentary application of
Cauchy's theoren.



Conster
- ] FraCy @

? but such that all

¢ 1o a contour includins
Then ve

ransversed anti-clocksl
um of residues at poles

o 1s some fixed poiat T

where
cts ©

£ £ be outside it-
can use Cauchy's theorea to eveluste 1 20 x
€}

stagularities o

et

ay - nanely ve press bite

Ly
However ve can also eva
CE along real axis and

tuace £ 1n & different Vi

ke the aces OB, FO'R semt-circles €

of ¢ lke DA,
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We have also split off part of integral as a little circle around the

pole s = sy Now
@ i circle will give zero as long as £(s') ta (2) tends to zero

fast caough ac =. Ve need
ooty bx 218+ pertoeter of

[
s ft] =0 @




-

(1) The pole contribution gives

o
T T
clockvise concour sbout s'eg, ot
EER TV et
£ mcrmtou -
(119 e cut contetbucson gives
[ 3 (£6" + 100 - £60" = 1)
Loy
"
—
o Gt e s - e - e [0}
But chi Te diaconcinutty across cut which fo Just 26 Tn £(a").
i equattng () to (5) plus (6) gives
e -
se. e £7)
»

2 e um (st -8, dut = ds
A L U

© this 4s just conventional as £(u' + Lc) = £(s' - 1c),

ete.
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S0 f 1s expressed as:
(1) Sum over poles whose residues are just (Feynman Diagram) coupling constants.
(41) Tntegral over left and right-hand cuts. The right-hand cut corresponds
€0 s channel discontinuity; the left-hand cut to u channel.

The dispersion relation can be derived for arbitrary € values. Hovever
there 1s a special simplification for t=0. Thus the unitarity relation’ reads

for elastic scatcertng 142+ 1+ 2

2 maaz| A 12> = § |<12] A [n>]? ®

Now €0 1s precisely the case when initial and final state are identical.

e above relation read

Inagtasry pace of forvard scattering asplitude is proporeional to total
cross saction (vhich 1o cloarly Fl<12ltluo|?). This i famous opcical theoren.
:

‘Proportional to" because (8) leaves out sundry phase space factors and
in ay normal coaventions
Ta AG12 1

5 60) = 206 B3, (L + 2 > anythtag) (9)

where p_, 1s cas momentum 1 1+ 241+ 2.

A8 both s and u channel are elastic scattering, I can replace Ia A(s,t=0) =

a £(s) in (7) by the total cross section. Thas (given I can find residue at pole)
have in (7) a formula for £(s) for arbicrary s in terms of experimentally

measured cross sections - in our case o, (1'p) for right-hand cut and

) on left-hand cut. This relation can be checked experimentally

by taking s €o be on the cut. Then £(s) is the measured amplitude for say,
%+ 1%, The "tmagtnary part of the dispersion relation" says nothing but
Mote that (8) is unitarity for A(s,t), L.e. states [125,|n> n (8) are eige

states of the ndividual momenta for |1> and [2> . In VIILC (1) + (4), ve are
using total sngular mosentun eigenstates vhich diagonalize the unttarity relation.




-

but real s

e s non-trivial

e f() = g4 2 [ du g gt
pole

u

these tvo terns are clearly real

1a £s)

e a

P stands for princtpal value - 1t 1s described in Mathevs and Walker.
Thus ve can predict real part in teras of total sections. The real part
can be measured expertmental in two vays:

(1) Measure In £(s) = A(s,t=0) from cotal s'p cros

ectson.
Measure [Ref|? + |1n £|? by extrapolating to t=0 the measured
actal cross

*p elastic
asete

ceton do/de. By subtraction we find modulus but not sign

Of Ref. Hovever the teal probles with this sethod 1s that Ref/In s typically
0.1+0.2. t.e. |Ref|? tern-is .01 to .04 of do/dt and errors in extrapolation
or normalization are very important n this method.

(2) Coulosb Interference. This is a much better method. To the basic strong
interaction smplitude A(s,t),ve must add electromagnetic corrections. Normally

these are of 0(a) and irrelevant. Hovever there is one place where they are

huge. This is emall € vhere Coulosh scactering
LAd nt

¥
+ ¢

amplitude dominates due to pole at t=0. This is comparsble to nuclear

n
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for-t~.005. (See Fig. 2(¢) (b) of Physics Leteers 598, 08 (75).) Tnis
amplitude 1s real. Thus seasured of do/de very near €0 is proportional to
12 A1%+ [ag + real?

h

e
For -t~ .005 ve can assuse that Re A and In A = the nuclear terms (which

le ~ (300 eW)? are constant. Thus magnitude and ¢ dependence of

section do/dt can give Re A (sign and magnitude).

— Pure Codlondr €Y
Ragiom wlew \Suderes
\&— Toern 2RAcRaf 1o povtont

T Nudier amplituda

~ exp (80

g

~.005 -t
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Volure 598, sumber 3
F ormalizaton fctor,

arato of es o magiary nuclea amplitade,
b aciar sope,
Qcharge of the incident partice,
# momentum transfer in GeV?,

o total cros secion in mb,
€ {In{(b/2 + 5.6)) +0.577)/137 Coulomb phase
it taken from e 4].

Pavsics LeTERs

10Novemer 1575

cin b derved using Moler’s thory (5. In the it

dorman one can deriv approximte expession:
S-S0, =120 007,
= 1= 206X 1074 @115 [1 - 025 xp (G112,

1t [5). To account fo the experimei! resolusion
e, we have foded » Gaussian distrbution,
ally deermined widih, ovr he
cighied by ouraccepiance. AU

14 GeV, this efect increses &/ by
17%,but s alreacy negligible st 6 mrad. In doing our

e theo-

i’

ortion e I
ahouid cxtesevents wou

hes e uid
s coon e doeoron. T s twor

i exprimct
R

@K messrenents. + swt il

sgnificant dependence of our reslt with the Z ct.
“The folded theoretical vluesar then conpared o

(]
tion of . Due 1o lmited satsticsfor tre 104 GeV/e.

sysematc erors quoted in able 2
It

K Covlomb dats,

clded,

Tabie2

ebuion o 104 3nd 14 GeVie for K"p 0 Kp
Fork'y

).
3 diffeent 1 slope than the imaginry: howescr,this

ence:
6 varision o a.

Notice that

nfig

ference effect,
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t1on

For the case discussed above (£(s) in (10) is A(s,t=0) for elastic
attertng) the condition (4), £(s) +0 as s + =, is not sacisfied. Tn
5O

fact we will later find that ACs,t) ~ s

+ e at fixed t; for the
case of fnterest a(c) 1a the "Pomeranchuk Regge Trajectory” (or Pomeron)
and a(0) = 1. The behavior A(s,t=0) ~ s corresponds from (9) to constant

total cross

ctions asympotically. Experimentally there sppears to be a

gradual rise of o, ) vith energy but this is only logarichmic (one can show

that o ., can rise at most like log’s - the Frofssarc bound). As (4) 1s not

tisfied, the fntegrals in (10) do not converge and one must slightly extend

the foraalisn. Ve use a subtracted dispersion relation vhich means using for

£) ta @)

o =~ Als, =0
R e e} an

where the choice s, = uy s natural, and clearly now £(s) + 0 as s + =. This

gives us a result like (10) except that ve have not only the dynamtical pole

(vith restdue tn £(s) of C'/(s bue also

pote ™ %0 (Upote ™ Up) E 5 % 801
Poles at s = s and u = uy. The residues of these arcificial poles

unknovn; the result is a two parameter formula for Ref as a function of a.

One can use Ref at low energles to find these two parameters and use (10)

©o predict Ref at higher energles. This procedure is particularly trans
1 T choose 85 = (a + w7, uy = (a+u)?. Then the subtraction constanta

residues of artifictal poles) are Just threshold

attering amplitudes.

One can aluays choose to use more subtractions than are neces

o to

ensure convergence of integrals. For instance if I take

o) - Al a»
)2 - up?
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then T will find a four parameter formula for Re A. (The unknown parameters

WALl be the value and derivative of A at s = s and u = ug). Te integral

analogous o (10) will tavolve

J Als?,ex0) as
q 20
G - 96" - s ! - ug)

a3

+© and s more convergent than

and the focegrand behaves 1ike 1/s'* as
the 1/s'% artsing in the integral 1f ve had used (11). The extra convergence
in (13) may be important because although Ta A can be related to total cross
section measurements these are naturally oaly known up to some Finite energy

and one sust extrapolate them to infinite energy in order to evaluste the

tntegrals to fnfinite o' and u' in (10). Naturally the more convergent ints

grals follotng froa (12) will be less sensitive to the extrapolation to

infinity than those using (11). Thus ve have a choice of svopping extra
unknown (usually low energy) subtraction constants for unknown high eneray
behavior. In A {s conventionally extrapolated to infinity using forns suggested
by Regae theory. (See our later discussion.)

nances tn Disperston Relati

One seeatagly distrubing feature of (10) is that we have an explictc pole
term for nucleon pole (or any bound state below threshold) but no mention of
any resonances. How is this consistent with the obvious symetry between
the nucleon and 4°(1234)7 The answer is that the latter contributes through
the dtaperston tntegeal

N o

In fact ustng the for

£ = as)

c
7 7
) + 1y 8, P /()
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(cf (2) 1n Section VIIL.B) for In £(u') one can show that the result of

dtspersion tategral (14) is approximately

6)

2
= >>Tym,) - fn exact anology to the nuclear pole tera. The

result (16) 16 no accident but can be derived. Thus the nucleon pole term

at large v (u

cones from the clock-vise integral around the pole location.

=0 =
o e et e o s st b gt g <

I can exhibit this explicity by moving cut up into

e ~>§ () e

complex plane. Then moving contour C through pole T pick up a pole contri-
bution that is exactly (16) (for T << my). I still have a remaning integral
but this can be moved a long vay from the b pole and so there is no reason for

the & €0 have any effect on it and indeed (16) is contribution of 4.

1y Stngulartes

One can write dispersion re: Consider the reaction

tions in € at fixed

9 + pn and & fixed at some reasonable value (say not too near threshold and
80t too high an energy). Then ve have a right-hand cut starting at t = 47
(v 18 plon mass, note ¢ channel is p + pa but lovest threshold is 21 and not

), & pole at t = 17 and & left-hand cut at u = 47 or ¢ = G’ - & - 4y
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@ nucleon mass)

(3

wzo tz0 L
1 - '\f;:.A Ragim -71 Ezlpt

wept T pRe bpt

(s fixed,0) =

o O e an
X

w

For small € ~0 (1n physical regton) we see that the first term dominates -

ll(n2 = ©>> 1/(t' -t) - especially as in integral Im £(t') vanis!

el
and 50 mean ¢ in integral fa substantially lar

com Lacge uneid £~ shen o xesontnce sshances Lnceand an discussed

c chan 67 (ncegrand will mot

1n last section - cf. Eq. (16)). Thus dispersion relations justify the use of

Born tera -

ven 1n a strong interaction problem vhen all terms are comparable -

1n a certan kinematic re

on. The plon pole tn (17) 1s called a mearby

singularity. The v is the best example of this because of its small m

- the

most sophisticated example being PCAC (partially conserved axial current) theory.



vILE. of of Analytic Functions Represented

Ve follow the treatmeat 1 chapter 2 of ELOP. We consider
b

P e @

b-:

- log @

We see from (2) that £(z) 1s singular for z = a and z = b and cut fromz = a
and 2 =b. The diacontinuity across the cut s 2vi. Let us see vhy this 1o

cvvious from (1.
) px  —

[ ey
Q’E -7 ‘.\L”L‘B. i/——)-\
9 e G e
O Yy

Figures (a) to (e) show various configurations in the complex w plane. In

4,

(a) e shov z < a,b vhen £(z) 1o cle

£ly vell defined. Ve nov analyeically
continue z to the real axis between w = & and b. The integral is not singular
@

and (4) show that £(z) 1s in fact cut for a =z < b because one must distort

because ve can distort the v contour dovn into coaplex v plane. Figure

urs in different vays depending vhether z approaches the real axis from above

or below. In (4) ve see that f(Rez + 1c) - f(Rez - ic) 1s just a contour integral



around v = 2 of 1/w - z; this gives a 2¢i residue in agreement with

evaluation below (2). Finally in Fig. (e) ve show that the incegral is
siagular for z = a(or b, mot showm) because at these end points of the
integration one canmot of course distort the w contour. The pofnts z = @
and b are typical of a type of singularity called an end point singularity.

The second fundasencal type of singularity is illustrated by

)
PR "B >
R .
o
1 a1 - 2)
h i

This is again cut betveen z = 0 and 1 and this is only stagularity
on physical sheet. The analysis of this cut is very similar to that of the

Sntegral (1) with z = 0 and 1 betng end potnt singularicic

e

above the point z being continued through the cut onto an unphysical

sheet. The pole 1/(v - 2) "pushes” the contour ahead of it. This maintains

well defined integral except z = a when you see contour is trapped betueen the
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oving pole 1/(v - 2) and the fixed pole 1/(v - 2). This 1s called a piuch
stagularity. The nature of singularity can again be discovered by splitting

contour C as sketched below

The singularity 1a contatned in circular integral around v = a and has value

214/(a - 1) 1n agressent with evalustion from (4) [the log multiplytng

/(2 = & 18 0 on phystcal sheet and 2rai, o fategral oo wphysical sheets].
As deacribed in ELOP, cne can use this to discuss singularities of Feynman

integrale. If one uses the Teynmun parameteric forn (vith fategrals da,

05a, €1, T, = 1) one gets both end potat (a, = 0) and piach singularities.
1

In mosentun space one can only get pinch singularities as the end potnts are at

tnftatey.

Consider a stmple tntegral
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@B -ot-

——
‘- I L/

515,
Uheze 5,(4,) axe sucfaces and v, axe complex variables

set a pinch singularicy 1f

s =5, =0

®

®

Now clearly ve may

@

but this 1s not suffictent because the existence of several integration

vartable

stagularities. In fact near (7) we have

s

5,
(:“Ah_‘ e L)

with o = v
o o
and 5,00 = 5,00 =0 .

Now change vartables from v, €0 a set that includes

PR
,"'.

-z
nt 5
[N

¢ 3 4 Jacobtan ve find
. I 34y dg, .-
0

allovs the contour additional freedon to escape the coslescing

®

a0



But now 1t 1s clear that I is not stngular at all because each fncegral
46, tncludes but one singularity and is not pinched at all. The sbove

argusent fatls 1f € and s, are the sane and so ve deduce that ve need

a8 vell as (7)

a5, 3,
1. -2 an
1

Now ve need one other condition to ensure that the coslescing singularities

actually crap the contour, 1.e.

rather than approaching from some side, 1i.e.

ZLL e ety

s, e,
This final condition states that 31 and 3.2 have opposice sign.
0

oy

Ve sumarize the conditions (7) and (11) as

5y =5, 0 a2
3, 3
1 2
a0 ays a, posteive
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Applying (12) to (5) we find that the propagator is singular for

2.2

el 13
2.2

¢-0f g am)

a k4 ayk - p) =0 ey

The last equation (13¢) s

s p and k are parallel (as & vectors), p = vk,

¥ real.

Putting this fn (1%) gives
2
@ - D? = (afm)

vel4a/e

s, ao -

which 1s the "noraal" unitarity threshold we stated earlier. The chotce

2 B -
7, corresponds to a,/a; < 0, L.e. the non

2
“i-afa, - (e - ngular
Y fog o7 = (o ®

situation vith both singularities the asme side of the contour. Y = 1+ /a.

2
= (a, +8)% 15 a true pinch.
» = (g +3)% 15 a erue pinch

If ve now look at a box dia

Sy

w

S
Tt
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We find a pinch from 5, = 5, = 0 at 8 = (a, +=,)% and & piach from

2
S;=8,=0at £ = (a +ap?. Ve can also get more complicated pinch

singularities tnvolving more than two ,. The condition for any of the

3
stngularities can be sumarized by the Landau Rul

g8y =08, = a8y mays,

Lot as

Eoy =L, (o positive io normally pinch requirenent)

where say a # 0, a, # 0, a3 = a, = 0 gives 8= (a,+n,)" singularicy mentioned

sbove. 1f o =0 1t is equivalent (stngularity vise) to contracting corresponding

propagator to a potat, i.e. a = @, = 0 contracts box diagram to propagator.

1f o), @, oy and o are all non-zero, then one finds the "Landau Singularitie
Biven in VIIL.F (D = 0 1n Eq. (12)). 1If three are non-zero and one zero one
fiads the singularities of the triangle graph discussed at length in ELOP but

ot present on physical sheet of box diagras.
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VIILF The Mandelstan Representation and His Iteration

We now come to some precty theory due to Mandelstam which vas the

cornerstone of the attempts to build a dynamical theory out of snalyticity
ceering bu

and unitarity. We will explain how this works for potential s
failed tn practice vhen applied o quantum field theory. In writing dis-
persion relations, we will temporarily ignore possible subtracting and take
potential scattering to begin with. Then VITL.D (7) with £(s) = AGs, ) for
any fixed ¢ becones

=L @

Moo =3[ 5 et
|

- 16,0} 1s an analytic funceion of

© = & AGs" + 16,0 - AG

o 12 MGt +
€ s e can e = dtspoaion selaion fn ¢ at Fixed . Lt (0,21
"
e, (" + 100 - K" - 1)
. . :
‘ R 0 - A e -

A e 10 e - 1) @

P
o

where o is called the double spectrum funceion. We will soon see that p is

only non-zero 1n a somewhat saaller region than the naive estimate above.

are lowest thresholds in s and ¢ channels

Leostaa, a6yt

respectively). If ve have poles fn s and ¢ chamels at s = s and € = €,

respectively then one must add to (3)
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/(3 = 9) + g/t - ©) @

ubtlety: namely the s channel pole appears directly in s dispersion

relation (1) but vhere does € channel pole fit fn? It clearly must be of the
forn (4) because of the symetry of (3) n s++t. However g /(ty = €) will not

©) because it has zero s discon-

occur fn t channel dispersion relation for In A
tinuicy. Noting thac as a function of 5, g./(ty - ©) is a constant we see that

Lt appears in the formalism as a subtraction constant in s dispersion relacion.

(3) + (&) 15 the Mandelstan representation for nonrelativistic scattering.

For f1eld theory ve must replace (3) by

el ot da'dc’
NOEIGEDN

5y (8" 08") dado’
oEDICEr
D, (8 u1) detdu’
oW e

Rt
with o' + &' 4 u' = T a’ as usual.
Let us now return to (3) and show how to calculate o(s,t). This iavolves

quite a bit of algebra which we will not do n detatl. Take the simple elastic

scattering cas

with all particles of mass m. Let g be c.n. sosentun. Then

untcarity takes the form
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IR BN

)

. [
B B L L A R U
s 10 af

oy + 0y - v - v )

1 1s tnittal scate, £ final state and n {ntersediate state. 1,2,3,4 are in
X2 plane and each scattering 1s specified (in c.n. system) by polar angle

Ou 8¢ wnd 8, 2, = cosd, ete. It is

sy enough to calculate the
Phase space ncegrals 1n (5) (as long as one works in c.n. systent) ustng
spherical polar angless |, 8, to specify direction of n wre an fnicial state
£ along the 2 directton.

ay denotes & (A + 160 ) = A~ 1ea0) where 3 = 1 €2 1

equivalent vartable to t vhich is used here because 1t makes unitarity easier.

N
SACI) 1

Aen i sz M f 5 sz

af
®

o
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Now ve transforn vartables from 4, natural from phase space €0 7.

This needs the Jacobien

Waggtyy) 9Dy 1z iz )
L owrw et a— @
i R
wien
DGa,8,m) = o? + 87 4 v - 1 - 208y ®

Thus ve finally reach the useful form of wnitarity

A s ) = [y, e, O
X 10 " s | e 2R
At an : ez Maef oz )

For some purposes it 1s conveaient to write this as integrals wre ¢

mot z and this is trivial as dz = 62/111, The next step is to write

dtspersion relations in €, , ¢, for the amplitudes ACL + ) A%(a+ B).

This exhibies expliciely the z,, and z, dependence as 1/(zy, - 2,) etc. and

the fntegrals dz,, dz , can be done analytically. The result is

ag

IO A

e,
Nz

fa "1+ e /20MG - £

A n s ez

e

2
=14

a2
e Ee * D
L L S A P
o2, ) e gD
1610 0] infar T e
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Note in the above 2, 21, are both > 1 while the phystcal costne

2,

24 < 1. Then automatically 0/2(z iz’ 2" ) > 0. The equation for

Dlzggrzjys ) = O Tegarded a function of z, for fixed 2.z, 1s & quad-
ratic for z,g vith two solutions, 2., = 2, and 2,7 (vith naturally 2,3 > 2,
now finally achieve our goal and take the t ., = t (or = z,,) discontin-
right hand side

¥e can
ulty on both sides of (10); a tricky analysis shovs that the

is singular for £, > 2,3 and ve get

[ dty, der, 00)

Aoty At an
shere
2 2 e, e - ey,
2
- et el
2 2
. (E(eeg e ) - tey e /q7) az).
7ad )~ e
where ssymptottc (as 3 + =) form
Byt = 1VE = feg, - U - e e
Ve + o = Ry UR + Vi + ) an

Given that 8(D) in (11) corresponds to t(z,) being larger than bigger of tuo

e that for all q ve sust have:

solutions of D = 0, ve

P o v )
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Now let us apply the above forsalism to the box disgrasm

1 - 3
¢ “
Unteariey gives the correct value of 5, for this diagran s one wses he
Sorn term g/t - ©) €0 caleulate A, on right hand side.
! 5
)
2 é
Thta corm clearty corzesponds to
TR a»
vien i oy a»

b 1s non-zero for the reglon D = 0. The boundary D = O clearly satisfies

qve

/-2

coe as g0
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e WL

e

an

vhere the second term only contributes for € 3 & tg. We can now use (17),
as an Laprovenent over (15), in (1) o calculate o, to higher order in g,.
Mandelstan's important observation was that this is not just a (divergent)
strong inceraction percurbacion theory. Rather we see that the second tern
1n (17) (cthe 0(g2) term 1n A) only contributes to o fn (1) for /& 2 /g + /Aty
fie. €2 36 Thus the foraula (16), and hence (17), is exace for 27

Y



-a-

Use of (17) tn (1) gives a b, exact for /F =4/, Clearly the nethod can
be Sterated fn s well defined and exact fashion to give o, for all ¢ and
€0 all orders ta g, In potencial theory, the aput g,/(t, - £) Borm term
corresponds co spectfication of potencial. (This s correct for a Tukava
potential - naturally you can {nput other potencials - they can alvays be

deconposed as a sun (in

gral) over Yukava forms). Normally one is interested

1n bound states of theory. These do not appear directly because they corre-

spond €0 forms

A0 = 5,/ - ®) as

for such an s-vay

potential and such a forn has zero ¢ channel discontinutty,

f.e. VIl not contrubute to A, vhich is deteratned directly by o, froa (17).

¥e will later find that for large ¢, A, behaves like (") where a(s) 1s a

Regge trajectory with
a(sg) = 0 as)

correaponding to the bound state (18).
The picture below shovs how s, can be found by extrapolation (or use of

& dispersion relation n s for as) - itself an analytic function vith a cuc

for s > 4sD)of value found by £it of t dependence of p(s,t) for s > a

— eqon whaer
high & PPN

4
dare (O]
3 aea ques «
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This will become clearer when we do Regge theory later.
Chew (and Mandelstam) hoped that this technique would be used for
quantus field theory. There are two extra difficulties compared to
potential scactering case.
(1) There are 3 double spectral functions and left hand cuts in the dispersion
relattons.
(2) The above assuses single channel two body unitarity. In quantus field
theory, one has an infinity of 2 and >2 body channels.
The difficulty (2) 1s the essential problem. The high multiplicity tnter-
mediate states are critical and there is no practical method to include them. Chew

tried to parameterize them but this did not work. Thus foundered this (and

statlar) attespts to calculate strong interactions from analyticicy and

unttaricy alone.



VIILG. Regge Theory

This vas ortgtaally fntroduced in potential scattering by Re

a very nice book by V. de Alfaro and T. Regse, "Potential Scactering” - Norch

Holland, 1965). However, the extension to relativistic QFF s quite stratght-
forvard. Ve consider the crossed process a + 3+ c + b (Lie., fp + v'1”

i our standard example) vhere ¢ s the energy variable; s and u are somentun

transfers. We write down a partial vave expansion

A0 (e0) = 2R, (o
i

© chanmel process [A®)(c,0) 1s analyctc conttnuatton of A (s,00].

The partial wave amplitudes are a function of t; the s and u

1s contatned 1n cosd . Let us take equal mass scattering; the complication

of unequal mas

1s taportant in detatl but untsportant in general concept.

Tn this case, cosd, can be stmply written:

cos, =1+,
2

Here the t channel cas mosentum p is Just 1/2/k-éa’ i the equal mass

Now this series converges for -1 % cosd, = 1 but it 1s easy to show

that 1c diverges as soon as cos

, Bets much bigger than 1. Ve wish to an-
alytically continue this outside ¢ channel physical region where ic is de-

fined and converge:

Suppose a,(t) can be continued to cosplex L. Then we can write




.

, takes care of residue
of pole tn stast

s 1s obvious from Cauchy's theorem.
Now ve move C to run parallel to {saginary axis and move it as far to
the left as possible.

Rage M&.ACJ_ Le

The circle at infinity vani:

48 1t 1s demped by 1/stamt which behaves
ke

xp(-7iat]. Now this vill be legicinate as long as a,(£)P, (-co

haves well enough at =. Ve will return to this point later.
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The integral along C is useful in the limic cosd, = z_ +=. Thus

Ret and hence

~at - move €, to the let ecrea
Py(oz) ~ zf a8z > = As Tmove G to the left, T d

A% (c,5) gets a better and better bound as z, + =. I can move the contour

€0 the left until I hit a stngularicy of a, () [P,(-cos8) 1s an enttre

function of 1 while additional poles of sinvi are, in fact, uninteresting -

they are canceled]. The s

lest stogularity - which 1s all that occurs
in potential scattertng - 1s a pole. The posteion & = a(t) of pole tn a,(t)

Will, fn general, be a function of t. The contribution of a pole = which

1s called a Regge pole after T. Regge who found them - i

L (©) = 8(0)/[-a(®)] @

() and from Cauchy's theores this gives the scattering amplitude

A e = a2, @
Sbceactia his ot tar frm ,(6) e can concln comout farher
to the left. The contribution of this rematning contour 1s €z, ™% (e larg~

st real part on contour) +=. Thus the Regge pole tern domtnates

(

1 one may expect

) Several Regse poles. In this case, the pole which is furthest to the

right, f.e., has the largest real part, will doainate as z, ~=. The con-

(

ertbutton of other Regge poles 1s and describes

411 significant, of course

approach to asymptotic liaic given by leading trajectory.

b)  Poles and cuts. There are no cuts in potential scattering (except for

some pathological potentials). But in relacivistic theories there are cuts.




.

This is the main problem with Regge theory. A pole is characterized by two

usbe

~-a,B(t) for each t. A cut 1s parameterized by a function for each

© - the cut dtscontinutcy.

@) Note that one belte

that - as long as suftable technical precautions

are taken - the contour can be taken to Rel = —=. Thus amplitude can be

expressed as a sum of Re

Pole and cut contributions. Note this sun is

correctly tnterpreted

i asymptotic sertes as z_ + =, L.

not converge at fixed z, as nusber terms included inc

s 2, + = for a fixed nusber of cerms.
Regge poles have one other aspect that is very tmportant. Namely when

€ 18 such chat a()

an totes

£, then the pole in a,(c) cofneides with a

phystcal valve of &

The contour C 4s "pinched” (in langusge of VIIL.E) and as there we

4 singularity fn the analyctc funceton AC) (e

) represented by integral
(2). [Note that a Regge pole 1s alvays a stngularity in the ¢ plane but

1

A (¢,5) 15 normally nonsingular as it is just a residue of this pol

We can see what is going on by taking lisic a(c) + integer in (4).
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We only have to be careful in sinra(t) term. Suppose

a(®) = ale) + (-t )a’ )

1s a Taylor expansion near t. Then stava(t,) = 0 1f a(c ) 1s an integer

and
stona(e) = stora(e,) + Teomma(e ) (e-t,)
ace)

[ ®

Teretore A (e,0) = ~@a(orn) E g, @

e, Pate %

f.e., this is Just a contribution of a pole in £ (not  this timel). The

pole has

sptn ac)

2 4

e poles correspond to real live particles at ¢ values where a(t) takes

incegral are tllustrated 1n Fig. 7 of the picture book

lues. Rege

and o Fig. VIIIG.1.
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Fig. VITIG.1: The o and A, Trajectories
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Note that for reasons ve will soon describe in QFT, only states differ-

have identical incer-

ing by 2 4n £ le on the same trajectory. Such state
nal quantua nusbers - including the same paricy - Just the spin changes by 2.

We give some examples belov:

3=1 3

B B T=1 o -
1-0 G B
-1 e

The resarkable feature of all Regge trajectories found so far {s that
they are all approximately straight lines in the J - a° plane with a univer-
sal slope a' ~ 0.9 Gev™?

asa tate

The scratghe lines link

sptns 0 - 2 - 4 -6,

weesizos -
[
« smemmoun.

In potential scattering Regge trajectories do not look like this and
tend asymptotically to -1 as € + + or - =, (This follows at once because Sorn

tern doatnates in the limc ¢ =

)



-50-

D
PRyt —
{ Polo s

—
>
t

tdue {n a sensible theory!

The ghost marked above vill have zero rs

One potac T should remtnd you of is that for ¢ > threshold (ta’ in equal
mass case), the ponts €, (vhere poles are) are at cosplex values ¢, = (a-if/2)%.

Correspondingly 4f a(t,) = 2, say, then o 1s real when t_ 1s complex but

a(real argument) is, in fact, cosplex. Thus plots we have made are Rea for
Teal values of t,. There is also an Isa for real t. As T << m, Ima << 1

and the imaginary parc does mot make any essential difference.

Now e turn to the other aspect of Regge poles. Namely they control
behavior as z_ =+ = at fixed t. In potencial scattering this has no physical

tnterpretation, but in QFT the analytic continuation principle (crossing)

leads to a beauriful tnterpretation {llustrated below
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TELE g
;

/St s,
o
P 3
5 S-danad
© Plygficad

region.

The classical (potential theory) Regge liait concerns th

havior under
the contimation ron(@ to@above. (B)1s alvays unphysical but 1€ ve con-

ttaue ta ¢ fron® trom@ve find the Liait s + = for the s-chamnel proce
Putciag P, (z,) ~ 8" cines a function of ¢ as s+ = dn (4), we find the

bastc predtecons

A0 - pa® ®
2a(0)-2

®
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where F and G are functions of t which can be related to "kinemscic" factors

and the restdue B(c) of the Regge pole defined fn (4). Regge theory is
dtacussed tn Figures 12 and 13 of the Picture Book.

We test this theory as shown in Fig. 13(b) of the picture book. We
use a log log plot of s do/dt versus 3. The result should be a straight
Ine - and the slope &s Just 2a(t). The cricical test is that vhen ve find
an a(e) for ¢ < 0 by studying do/de that is consiscent for that found for
€50 from the pareicles. Amaringly this fs true as {llustrated n Fig.
VITIG.1 and surveyed in decail by Fox and Quigs, Annual Review of Nuclear
Science 23, 219 (1973). Ve now consider the possible Regge trajectortes
uhere e vill see thac the interesting trajectories are those froa L= 0

and 1 g states. The higher L quark states are just Regge recurrences of

these. Let us {llustrace this
For qq spin S = 0, we have (L is conventional q3 relative orbital an-
gular sosentum)

L=0 J=0 5, n Ktrajectortes - naturaily we have SU(3) nonets

of trajectortes,
but L =2 J=2 states have not been seen et experimencally. ALl

trajectories 5o far seen have a slope a’ ~ 0.9 Gev?,

4o e prsdict tha the & = 2 parene of  has & m
2o G/~ 2.2 oo,

unknown. Note that

L=1 J=1 35, etc. Agatn recurrences a

* and B are "exchange degenerate”: namely tn potenial
theory vith an exchange force (see later) 7 and B

2

ot be on che same cragecsory. o} - ol to con large

for this Liatc to be a good approxisation experimen-

tally for canoncal 0.9 Gev™> slope.



53

Now ve turn to quark spin S = 1 sta

For general L ve get J = L -
i 23-2
L, 141, Note that Regge poles are in J not L, and do/de ~ 8’7, not

o2, Ths

trajectories vith highest J domtnate as s - =, the series
3= L+ 1 il be most mportant. These are (see table on p. 49)

S=1 L0 J=1 onone
with recurrence

3=3 g nonet

and s-1 Je2 Ay £ none
vieh recurrence
S=1 L=3 Je4 AL hoone
The less taportanc trajectories from the sertes J =L, J = L - 1 are
S=1 L1 J=0 6none ‘ no recurrences

S=1 L1 J=1 A none | known

se1 Le2 .'-1' pavn new

3 =2 crajectortes

L = 0 does not contribute to this series.

It appears that not many mesons on each Regge trajectory are known.

Hovever, the situation is much better for the baryons (s

e Fig. 7 of pleture
book) for experimental reasons ve discussed in V.B.5.

Note that not all the Regge trajectories (e.g., S = 1, L= 1, J = 2) have

the (natvely) expected spin 0 mes!

. These catssions predicted by the quark
model are confirmed experimentally. [The pole given by (7) is "killed" by
an explicte factor a(t) tn 8().]

Regge trajectories are assoctated with a given set of conserved quantus

numbers. One discovers hat Regge trajectorles contribute to a particular

reaction by just asking 1f the assoctated particle poles contribute.
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The importance of the reaction of T p + 1°n is that only p exchange
contributes and so one has a clean test of (9). Most other reactions which

have measure

have coneributions from

veral exchanges

For instance,
P > pp allovs

by £y Ay T my AL B L. exchas

ALL these trajectortes have a(0) < 0.5 (look at masses and spins).

20-2

do/de ~ 6% falls at e

€ as fast as 1/s. This is n complete
contradiction with pp + pp experimencal data vhere do/dt ~ constant vith
incressing s at fixed t. This fmplies existance of a singularity with a = 1.
This 1s called the Pomeron or Pomeronchuk trajectory (picture books - Figs.
21+ 23). 1t has no known pareicle assoctated with fr. It fs also know

11 - not 0.9 but

expertaentally that the slope a3(0) of the Fomeron is
Perhaps 0.2 and possibly even zero. It is also possible that Pomeron is
0t a pole 1n © plane but a cut going from —= o 1. The Pomeron trajectory

dontnates all el

t1c or diffractive (no quancum number exchang

) process:

Tts quantum nusbers are the same as those of "vacuua"
3 3
D7 P =+ [che product (-1)7 x partey ts the only mean-

tngful partey for a Regge trajectory]

=0 c=4  etc.

Let us comment at this stage that (7) is true for Feynman dlagr
ceras tovolving a single particle exchange
-

ISR
$
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where we use the usual Feynman Rules for a spin 1 particle interacting with

a spin 0 and 1/2 pareicl

This theory has o = 1 and predicts do/de ~

constant {ndependent of s in complete contradiction vith experiment

In Regge theory, the contributions of all the particles on the trajectory
244 up to give the observed a(t) where for the crossed physical region

a(e) 15 L

than the sptn of any individual

wrticle on trajectory a, + a't
[clearly there 1s a lot of cancellation]. A fixed sptn independent of ¢

1s charactertstic of an elementary particle. The hadrons a

not elementary

80 our "effective" field theory of 5, ¥ and nucleons gave the vrong

ansver. There

e elementary spin 1 particles in QCD - the gluons - but these

can't contribuce to xp + x°n because of the ne

7 flavor exchange.
Hovever, 1t 1s reasonable to

soctate the Poseron (at least at large t)

with sultiple (2 2 to get color correct) gluon exchange.

® P .
S+ § §
st - ke

P

13



This interpretation suggests that "glueballs” (bound states iavolving gluons

but no quarks) are the particles to be expected on the Pomeron trajectory.

Stgnature

Let us now discuss why Regge trajectorts

only give rise to particles

separated by 2 and not 1 in the angular momentum plane. In potential scat-

tering (without an exchange pocential) they are separaced by 1. The reason

fs rather technical.

Ve wish to define a,(c) for complex 1 so that it conve:

and 0 that ve can, in fact, unfold the contour 1o (2). Nows

a0 - —/ A e, Oy ®. a0
Ve write s fixed ¢ diapersion relation {n s,u ot equivalencly coss = 2(*)
(©) "
- fo] A o
O £ kO ®y 21T B o LRCIIEY , o ®

an

where 2, and 2, are > 1.

Clem 2 1 lowest S bresotd
w_ t dhomnad s 2
Tooew g, efigna L

wo vegiom Seo

Now you can look up

+1 a2, (x‘”)

0,®" - l/ a2
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3] 00, ® am

11 AP 2O, 0 e am

Note that (10) 1s only equivalent to (13) for integer £. They corr

spond to different continuations of 4, to complex L. There is clearly an

ambiguity 1n this continvation of the form

g+, + b@stnrt e
where b(1) 1s regular for integral 1.

Now (13a) 1s splendid as
172

Q@ expl- 141/ 10g 242101/ 21) as

but (13b) s awtul

Q2 = (0, Gpn

et as)

Note 1n potenttal scattering only the right hand cut contribution (12)

extar

nd (135) is absent. We solve the problem given by (13b) by defining

20 = 1] A0 "0,60Na®" £ 1T 4 (6,10 "0,6Oha @'

an



-sel

Now both a} are alays convergent as £ = = and

ot as)

+ PR g
or 2a, = ajas0" + aja-(0h. a9

Resse poles occur in s} or s vich sepsrace poles in each. They obviousiy

only give physical particles (i.e., those occurring in a,) for 8% = 2, 4

we mentioned before. The above factors give rise to characteristic

ane ™ @0

factor in Regge pole contribution. Here  is signature of trajectory,

© =+ Poveron contributes to ap

= - o conertbut

The exchange degeneracy Liate Lo che lefe hand cuc &, = O vhere af = 5]

1

and + and - signature trajectories are degenerate. It seems to be a good

spproxtmation for the o - A, - § - &, and SU, related G crajectortes. In
w0 1 2 3

potential scatcering (ithout an exchange force), there 1s no lefc hand cuc

and 5o trajectortes cr

te particles for A3 = 1 and not AJ = 2 necessary

when A, # 0.

Regge Poles in Field Theory
Regge poles are generated by suming ladder diagrams as is illustrated

below for 77 scattering
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which have exactly the same structure as potential scattering - especially
4f one uses a Yukava potential which has the same (1/(t-u%)) form as a single

particle Born tera in a fleld theory.

FOCPE

Poreahad S (c-m.l"\,‘\A

(Turn this through 90° to get comparison with QFT ladder sbove.)
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Note that one finds Regge poles by summing ladders in limit

fixed external masses

k-0
@@

¥(
\){v\ TN

fixed ¢

i
\P

QLD Aaddes"
The typical logarithnic behavior of QCD at high Q° also comes from

ladder dtagrass (pictured above) where
s 0? e

external ma

fixea e -
+ = such that l/Q2 fixed.

The theory applicable to the high 01 or Regge limits is essentially

the same with angular momentum & in the Regge case being replaced with a
moment (or Mellin transfor) index n in QCD. Mathematically the difference

- 2 1s generally nonzero [p, marked in
e t = (p-p))” 1s generally [p, marked &

fa that in the Regge c:

dtagrans above] and lictle group of p, - p, is SU(2) with & labeling its
£20) and 1itele group s full homogenous

acacions. Tn QOD, p, = b, ¢

repre:
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Lorents group vith representations labeled by n. The QCD limie curns into

the Regge limte vhen 8/Q” + = ot xg; + 0

e

(@)
-

3

of proton)

P

Tn fle1d theory, one has many more complicated diagrams than those used
in the ladde:

This aight affect structure in the i

Lue., 1€ will change T

Sdues/positions of poles and cuts but the ¢ plane still retains its value
because angular mosentun 1s a conserved quantus nusber.

Let us consider how poles are built up taking spin O internal and ex-
ternal particles. We could get this in vs scactering by replactng sptn 15
by spta 0" ¢ resonance; ve will go through analysis for potential theory

s>




P an
Ve

~Bag o at fixed s,
5 fixed 5. @

), e see a(e) = -1 from ehts

Compartng this to the Regge form,
8o and o ve

dtagran. Tn potential theory the Born ters doainates

£1nd that all trajectories in potential theory » -1 (or lover 2, =3... fn

We can use the Nandelstan Lteration discussed in VIIL.F

& plane)

to shou how things go in higher orders. From VIIL.F (16), we see that as

€, the double spectral function

b(s,8) > )/t as £+ = @
where the function
s = =% @
16055

h(s) 1s 0(1/s) as & = =
Using a fixed ¢ dispersion relacion on (23) ve see that A 1s also

01/ a8 ¢ = . Ceasty the fnceton S s (-chamnel) dtsconcinuiey

1/t and 50

At ~ e/t @5
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as ¢+ o Iterating this, ve find that the n-th Born tera has the behavior

© ™ gl .
at g

as) = -1+ gk(s) @n

and k(s) ~ 1/s

+=. The behavior (26) is the "leading log" approxisa-

tlon famtliar from QCD. Nonleading log terms such a

a1 a1

[C O MO )

111 lead to a pover series expansion for a(s)

a(s) = -1 + gk(s) + ‘2 (29)

and corrections to the residue
B =g 0 + a0

The "Leading log” approxtmation Ls good 1f the coupling constant § (o
rather "effective coupling” gk(s)) Ls small but givt ~ 1. The corresponding
approxtaation in high G CD Ls reasonable (as g is fndeed small) but ic Ls
not very reliable in our Regse pole application as Q* is small and the QCD

coupling constant 1s large.
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(29) and (30) show the structure already described for potential scat-
tering vith a(s) + -1 in the reglon where the "effective coupling cons
Bk(s) 19 small (whatever size of g).

In QCD we expect the coupling constant to be small vhen both  and ¢
are large; equivalently this is the fixed angle (or fixed t/s) limte as

8+ o As above ve expect the Born term to be doatnant there and a to tend
€ an tnceger (half tnteger for baryon exchange).

In QCD the Born cerms
are alvays box dis

rans and not single

cotored)

reicle exchange.

or

Now s another application of VIIL.F, we consider the result of combin-
tag tvo general amplitudes

where for dublous reasons, we have svopped

s and ¢ cospa

4 to our discussion above,
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©
where A (5,6) ~ g, () © . Using VIIL.F (6) with dz ~ de/ds, ve see that

(e 4y (e )1
PR an

where €, ¢, are ntegrated over the alloved kinemstic replon - as gives {n

VIILF (9). For € =0, ¢, = t, runs from 0 to == for ¢ # 0 the reglon is

mich more complicated. Ve now apply (31) to the 1-1 scattering box diagran
above. We see that each a, = 1/2 and so the resultant box has a = 1/2 +

1/2 - 1= 0, f.e., because the exchanged quarks have spin 1/2 ve have pro-
soted the usual listt @ = 040 - 1 = -1 (ef. (29)) to 0. In elastic pro-

cesses one can have diagrams like

vith lisit a = 1+1-1=1.
So the QCD weak coupling lait corresponds to @ = 0 or 1 and not the

-1 seen in potential scattering. Experimentally there is evidence for

a(large ©) ~ 1 fron elastic pp scattering at the ISR. However, the a3 a = 0

s has not been tested

value expected in quantua nusber exchange proce:

sections have not measured vell as they are much smaller

because the cro

than those in elastic scatterin




-66-

Regge Cuts

Sumatng ladders gives Regge poles, 1

el

and generally no cucs - hich is stmple analytic structure in L plane found

1n potential scattertng.

Unfortunately, 1t vas soon realized that one could combine Regge poles

——

o

Putcing the incersediate particles "on shell”, i.e,

2 parde
L) R,

. Spa® .
1 R
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One can use (31) to find behavior of "Regge" box diagram

a, (6 Ma, (6L
R A e

Now tn (31) a, vere tatege:

and then the resultant behavior of A is
SE111 proportional to an iateger pover of 5. However, 1f we put Regge poles

L1t

4(€) 1n (32), we get a completely different behavior, e.
(e = a'egay

and v take € = 0, then the region of incegration in (32) 1s Just 02 € =

£y 2 ~= and so (32) can be written as

So1*%027
A= fwsta an

See., b, han & cut 1o 4 plane scretehng from —= to oy, + %y -
For arbitrary ¢, the kinsmatic region for the ¢, 1s ore complicated
but clearly one w11 setll find cucs.
1€ o, and a, axe 53 Resse poles chen at least for € = O, the tip of

cut L= oy +ay, - 118 lover than pole as o

ot % 1/2.

Unfortunately, taking for exasple v p + 1°n, one can form box dis

tavolving one exchanged leg as the Pomeron
"= wo

K3 w

wo

[ n
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Taking (approxtnately valid) Maic a(c) = 1 we see that the tip of cut in

above box goes prectsely up to

e 7 3@ + 1= 10 ey

Le., cut ts This 1s the curse of

yapcotically as imporcant as the pole

Regge theory.  One can never escape the cuts (above ve took € = 0, for € < 0
the situation is worse - the cut 1s above pole). Unfortunately, the discon-
Einutey (£(2) tn (33)) across cucs camnot either be calculaced [the Regge
box dtagran 1s only typical and noc the only vay of gecting cuts] or param-
eterized and discovered from realistic experiments. Some reactions (such
s 77p + 1°0) have (empirically) a small cut discontinuity and one can see

the siaple Regge pole concribucion. However, there are no general rules

for calculating the sizes of the discontinuity - the "approximation” (model)

of using the Regge boxes (vith intermediate parcicles on shell) to calculace

the cuts 4s called the absorption model. Hovever, this model is almost

certatnly unjustified. For instance, Mandelstam shoved that whereas the

dtagran (shere R, , are sisple ladders)

1.2
Regge cut when ¢ and £ are placed on shell,

1t doss ot vhen 1 18 calculated a8 & fu1l [ %

Feynman diagran wich o,f as propagator:

Unfortunately, Mandelotam found a set of more

complicated diagrams for which the cut is not canceled! The box with

on shell gives the correct cut position but the wrong discontinulty.
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Triple Regge Theor

This is an extension of Regge theory to inclusive reactions
b+ ex. as)

£or pp + pX in Fig. 29 of the picture book. hen

It 1s 11lustra
cribed by

€ n (p,p)? 15 small and s = (p,op)? 48 large (35) 1

an exchange of a Regge pole R.
Clearly the fully inclusive (35) is gotten when the dashed box in the

ection. 1If you are worried that

f1gure above 1s given by Rb total cros

sections mean anything, Just go to poles on R trajec-

Reggeon particle cros

ctions there - and analytically continue in

tory - detne particle cross
Reggeon sptn 1.

The Rb total cross section (proportional to maginary part of forvard
Pole R exchange

Rb elastic scattering amplitude) 1s itself given by Res
is large. So triple Regge

uhen e <.n. enersy sqared s fox che R proce

theory given diagrans like



€ Triple Regge
Vertex

hich desceive (55) when < 4s smatt and 5, = axe L.

The theory predicts

a'=2a(0)
4 (o0
o =y 6

(' 1s ntercept at momentun transfer 0 or Reggeon R', a(t) is trajectory

of R) or for a' = 1 (the Pomeron) one finds the energy independent inclusive

ceton

4o, 12800
P . an

This cheory vas successfully tested in our experinent described {n
secton VI.G.
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VIILH. Duality, Finite Energy Sum Rules, The Venesisno Model

Fince Energy Sun Rules (abbreviated FESR) are a combination of Regss
theory and dispersion relation ideas (see Masataks, Fukugita and Igi, Physics

Repores 31C, 237 (1977)). Consider the relation VIILD (7) using £

© and A our amplitude). Let us assume that

Wa(s, 00, v = (5-0)/2 (¥ an tntes

cer than 57 as s + =, In the Regge pole language this

£(s) vantshes £,

and 1/

means that Ma_, (€) < -1. Then for large s we can replace 1/

by Just 1/-

Vot - tie + 1] dsttat(en) - L [ au'tat ) m
=t

with (a formal) error of order 1/

But by assusption there 1s no 1/s tera in £(s). Thus the coefficient

of 1/s must vantsh:

@

4l aetar(en) - L[ awrtar) -
, oy

ton (SCR) and 1s the forerumner

(2) 1s called a superconvergs

of FESRs. W vill evaluace che SCE by
(5= chamnt)

= Rasonancas —y
I

YoV (k-dnannd)
Rna
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using resonances at low values of s and the Regge pole expansion for large

Ustng a Regse pole contribution for v > v, 1

Am B etra) | gy @

Ve £ind that 1 as* avyv Mg (ore®

Nt

- - S o @

We now calculate the Regge pole contribution for the left hand cut

(u channel) contribution v <

ls

°
ad

w“ 8

R

In the Analytic Continvation from P to Q, we get v = [v]e'” and so the ampli-

cude

A (evatuated for -jv] ae @) = LUBE) (eirepgy, 5}
Nou g0 from  to R ustng hermicesn analyelctcy

A = At



A (evaluated ac || at ® = LLBE (rgtieg o ()

e, A (evaluated ac B) = A (evaluated at P)
Lo, Tah, - ImA. ®

Thus the total Regge pole contribution to (2) is

o
e g sor @

7 et -]

and (2) becomes

atom) e
eedy atu) = 180 (-0 g

a0

This is the basic FESR. It relates the integral over the low energy
(resonince) amplitude to the Regge contribution. Now we have only derived
4t on the

umption that @ < -1 for this was the condition for the SCR (2)
to be true. Now vheress SCR was nonsense for @ > -1 the above relation is

at least well defined for a > -3

1t may, of cour

. be dncorrece! In

hadron scattering amplitude

1¢ s, however, correct even 1f a > -1. (It
18 not correct for Compton scattering YN » YN though.]

A staple vay to s

that 1c may be true 1s to u

analyicity tn the
£xed vartable t. Maybe a(t;) > 1. However, suppose chere extsts a €,
wieh a(t,) < -1 Then for € = ¢, the FESR (10) Ls exact; now snalycically
continue from € = €, to € = £, Both sides of the FESK are analycic in €
and ve dertve the FESR for all €.
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Bven 1f a(c) 1s never < 1, in real life ve only need to find one par:

eter (e.g., the strong nteraction coupling constant) which we can continue

snalyeteally wnetl a(e) < 1.
A more straightforvard method is to consider the [V'f(s)ds over the

contour below

:

This is part of the problem sets. Ve should also, of course, say that in

FESR (10) ve sum over all trajectories on the right hand side.

It 1s fnstructive to consider the FESR for 1'% + x°" at fixed t ~ 0,

The only Regge trajectory is the

oyt

e




-
and the FESR relates this co the faaginary part of the lov enersy 8 and u
chasnel sap1cude
.- -
ul n°® \J no

—
$3 “a ot mo

W

1€ we are brave, ve can apply the FESR with a value of v_ corresponding

€ an s value betveen the p and f resonances. Then the s and u channel low

energy amplitudes only get contributions from o and ¢ and the former domi-
nates (due to (2141) factor in partial vave expansion A = Z(2141)a,P, (cos8,)).
One can also enhance the o over the ¢ contribution by taking ¢ > 0 when

cose, > 1 and P, (cosd,) = coss, for p is eahanced over B (cost,) = 1 for c.

Thus the FESR iapl:

function (s channel p amplitude) ~ function (¢ chamnel p amplitude). (1)

It 1s clearly an approximate relation but as described by Collins (p. 217),
2

i€ gives ressonable results. Thus taking t = m’, the FESR (10) give

an

a3, et reasonabie to cake o = 1 6o o
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125 oo for ¢ = o
s (12) predes

o~ 1.5/1.25% ~ 1 cev™? a3
1 1004 agcaunenc wich the empicical deterainations of o' (either from slope

in o-g plot or 77p + 1°n scatcering data - see slope fn Fig. VIILG.1. We

have comented that all (known) Regse poles have a slope ~ 0.9 GeV).

A relatton like (11) is an example of a "bootscrap" relation which
was popularized by Chew at Berkeley but is now considered less important
than & few yesrs ago. Thus a t channel exchange can be ltkened unto a

force {cf. electromagnetic force between e and p 1s ¢ channel exchange

e e while s channel diagram 1s a bound state (cre-
) aced by a force), e.g.,
y ), e -
the & 1s a bound scate L
3 4 Y
of 7 and N. Thus (11) N
N

relates " as bound

state” to " as forcs

This is the bootstrap principle. There is no dif-
ference betveen the forces and the bound states.
ALL the hadrons are forces that create themselves as bound states.

Further they are bound states of themselves, e.g.,



-

2 bound state of =

N bound state of 5.

s M g

Whereas one

pect of this principle is still belleved - "namely none
of the observed hadrons are more fundsmental than any other” (Nuclest
democracy) 1t 1s, of course, now considered most fruitful to regard hadrons

a8 bound s

tes of quarks and gluons. Hadrons can be regarded as bound
states of each ocher but L¢ 1s not a dynamical picture wich great predictive
pover.

Now ve will discuss an interesting principle called duality. We con-
sider the FESR (10) 1n another qualitative way (introduced by Dolen, Horn

and Schaid while at Caltech). For convenience take a reaction like ='r° +

%% or #7p + #°n vhere the & and u channels are identical (they cancel for

one chotce of (-1)" and add for the other). The FESK resds (on including

particle poles in s channel contribution

delta function in the integral)
s
2 Inf(s')ds' : s channel contribution
lovest pole
or threshold
et
e ¢

- ; w811 t channel contribution. (14)
poles
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The above relation 1s exact for all v, as long as T sum over all the
Poles (and cuts) fn t-channel contribution. 1f v is large, the "leading”

Pole(s) (L.e., ones with largest o) will dominate

2

WMy Mot

2
. S0t ay > a, for v ol
After the above rigorous remarks, ve apply (14) for modest (or indeed rather

sma11) v , but still put only the leading poles in the t-chanmel contribution.

Then (14) 1s only approxtmate but ve will treat it as an equalicy!

Tm§(S) exbraplabon o
/ wSymetelic Ragge Foom
4

The qualitative message of (14 L
1 18£(s")48" ~ use s-channel resonance contribution
= ] Taf(s")ds" - use leadtng t-channel Regge pole contribucton.  (15)

Now let's consider (approxtmate) equality (15) as Ivary v_. Take the

dtfference betveen the relation (15) for tvo different v_ values
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8,0me) Nt ot
2 (Ve P |
s = v Sl — o

G o
o

This is the origin of duslity. The integral over resonance contribu-

tlons 1s fdentical to integral over Regge pole terms. The resonance contri-

button vartes rapidly over an energy scale of order .1 GeV (resonance width)
and ghis vartation 1 not reproduced by Regge tern. Rather the Regge term

averages the resonance concribution.

Exbrogolatn & s

ke
g oA fﬁt‘ﬂw
~——

S mane s

K

eraging 1s content of duality. One particular consequence is

that asplitude 1s not given by adding Regge pole and resonance contribution

rather the resonance terms a

already included in the Regge terns. This

you may constder

another example of the bootstrap principle.

The Veneztano model 1s a very inter

ting example of duality. Ve will
write 1¢ 1n a for appropriate for the reaction s*x” + *s” (Colltns, p. 222-

29).
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. QeI Uma(e)
A0 = GG -a() an
where a, =g, +a's

and slopes o are identical. The necessity for the slopes to be equal fs ot
temediately obvious. In order to get definite signacure it can be shown

to be necessary (1.e., st and ut Veneriano forms will only give signacure

to a t-channel pole 4f slopes equal fn s and u-chammel). The ntercepts
a0 8, need not be equal.

The amplitude (17) has several interesting properties:

(4) Regge Asympeocic Behavior

Consider ¢ fixed and s = =. From Abramovitz and Stegun, we find

Fazth) = /37 ¢ (a) 72,

. FQma(e) L (et ®
Thu T(-a(s)-a(0)) Cate)y
atse e = st

. )
a,6) + FAIEE s e e e
o A * Tat)stma(O b .
£d Regge behavior vith a pareicular form rcBios for
This ts the scandard Regge behavior with a particular fors Bt
the pole restdue in the angular momentua plane. We can see from this the

Note how the explicte factor 1/7(a(®)) kills

€ stnra(e) =

expected pol
all the (unphystcal) poles for a(t) % 0.
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(1) Paretcle Pol.

The gama function has poles vhen its argument is zero or a negative

Thus ve see that the amplitude A(s,t) given in (17) has no cuts

in complex s,¢ plane but just a succession of poles. These occur when

~a(e) = n=0,1,2
L., a® =140

m=0,1,2

Note there are no poles in u fa (17). This 1s appropriate for ¥'x™ =

%7+ 7% but u channel 1a #*r* + *

#*%" where & and t channe:

which has no known poles (from q3 bound states).



This is a reasonable place to discuss exchange degeneracy. (EXD) showed

4n VIILG that 1n a relativistic theory, Regge poles only gave rise to par-

ticles vith J values that differ by 2. + signature poles gave even J poless
- stgnature poles gave odd J poles. For s'x” + 1*x” we have (in s or €
channel) the - signature o and + signature £ as dominant poles. These dom-
tnate both asympeotic behavior and low lytng resonance structure of *'1 +
757, Our Veneztano model has given us but a single trajectory with parti-

Cles at every J value. It has given rise to both the o and f trajectories

but they are exactly exchange degenerace, L.e.,

3,0 2 a,® as

and restdues are also equal. In fact, (19) is not bad expertmentally. The

reason for the exchange degeneracy 1s the lack of u channel resonances.

Thus (considertng ¢ channel Regge trajectories), the necessity o introduce
stgnature vas the extatence of a lefe hand cut for AC) (¢,6). The cuts tn

the Veneziano model are represented by an (infinite) sum of delta function

at a(s or ©) = tnceger. The poles from a(s) = fnty

er give a right hand
cut to A®)(c,5) but chere are no u chamnel poles to give a left hand cut.

To the extent that the cuts in A are dominated by 4, 449 resonances we see

that this resulc is sore general than the Veneziano model (17)
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Agatn exchange degeneracy is more general than the reaction 17~ + 1757}

«ls)az

sencially one finds 1t whenever one of thre

chanels related by crossing

has noresonsnces; this corresponds to

s when the channel has quantus

oumbers forbidden by quark sodel for mesons or baryons. Examples are:

ettt 1-2
Kttt s=1 1-32
K- S = 1 baryon.

By looking at enough channels one can show that
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Ay P are exchange degenerates
K120 Xa%0 are exchange degenerates
oo ¢ are exchange degenerates

and &

tlar analysts can be done for the trajectories corresponding o
other G quantus nusbers. Exchange degeneracy relates the 43 crajectories
stareng ac L = 0 and 1 wich other quantum nusbers (spin § and flavor) iden-
ctcal.

@10) Daugheers

Let us recurn to the Veneziano fora (17). The residus of the pole a
a(e) = 1 4 proportdonal to

LA | () as T() = (2-D)F(e-]
Q) - ) a8 1) = G-DRED. o0

Tt 10 Tineee 40 ¢ and can be expressed a0 & sum of
¥ and sty (o = 1a/2el)

wich coeffictents that depend on value of 5 (= particle mass squared n')

where al; Thus pole at a(s) = 1 does not give just J = 1 bue a mixture

of 3= 0and 1.
Actually this s quite inceresting because there is a spin 0 particle

that 1s

(albett broad and of uncertain mass) - the ¢ = at about the o ma

a candidate for this prediction from the Veneztano forn. (In particle ta

but 4t 4s coneistent with o mass given its

bles, ¢ 1s given a large ma

large wideh.)
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The Regge trajectory structure of Veneziano sodel 1s

1

Leadtng Trajectory

One can show that all theories must have daughters that satisfy

a, (@ =a -0

+ tateger
#8704 8=0 tncercept

tntercept of leading

of n trajectory .
davghter

@

The fact that daughters are parallel to the leading trajectory for all s
15 @ spectal feature of the Veneziano form.

In the quark model, daughters
radtal excitations.

If one inspects the Veneziano form, one can s
necessary.

"why" daughters are
At a(s) = N (any integer) one needs the sus over resonances to

be large for small t but saall for small u (as there are no u channel poles
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€0 exchange). A single resonance of definite J is symetric on coss + -cosd
(€ ++ u) and 5o can never give this behavior.

() Dualtey

The Veneztano fornula s "dual.” Namely the same formula exhibits the

4 FESRs, one cannot

s and ¢ channel poles. As mencioned when ve discus:

stsply channel resonances to t channel Regge exchange. Although this

had been realized before, the Veneriano formula gives an explicit {llustra-

tlon of the general ideas.

) Unteariey

The formula has a serious probles; nasely a i purely real and all poles

This 1s tapossible as the cross section vould be infintc

are on real axts.

It can only be an approxisation to the real world. One must add imaginary

parts to the trajectory function to give resonances a width (see discussion
before VIIL.G (eq. 8). Unforcunately there 1s no simple vay to give als or t)

an tmaginary part that preserves nice features of Veneriano fors. For fn-

stance, the restdue at a(s) = 1 vas -a(t). If a(t) had an imaginary part

a function of ¢ at t = ta’

(this corresponds o a singularity in a(c) .
the restdue could never be just linear in t and so a(s) = 1 "particle” would
have an infinite nusber of spins.

The fact that the structure in the Veneziano fornula is qualitatively
akin to nature, suggests that a "narrow resonsnce” spproximation (Isa(t) % 0)

may be reasonable as an initial picture of the strong interactions (at low

(RN
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Tuo Component Duslity

We have seen a picture of the strong interactions where s and ¢ channel

Regge poles are dual to each other. In the v'r” + x'r~ example, this plcture
led to a purely real amplicude for 1’3"+ x'r". This corre
lack of resonances in this chamnel. For v's’ + r'x’ a real amplitu

onded to the

15

Hovever, we know one Regge pole -

in fact, a good picture at lov energls

the Pomeron - that
et

) tas @ purely taaptnary spitinde fcoatder o sy - 11,

) Contributes equally to x'x' + x'x" and x'r” + #"rT. It certataly
ton'e much smailer dn forser case.

) Has, 50 far, no known pareicles on .

Ie would be reasonsble co suppose chat the Pomeron 1s ot in the above
plecure. This leads co the two component duality pleture.

The G, 430 states forn Regge trajectordes that ave dual to each ocher.
Namely one can write down & FESR (10) with only 4 (5, A, ) Regge poles

on the right hand side and only the sase resonances on the lefc hand side.
Note these resonances get more and more dense as ¢ + = and 80 even though
cross-sections are getting smooth as 8 + =, this does noc mean there are
5o resonances. It means that there are so many resonances that they blur

ceton.

together to give a smooth cro
The Pomeron can be used on the right hand side of a FESR but then on

everything except the qd, 4qq resonances,

the left hand s1de one includ
A.e., one ncludes "background.” So tvo component duslity fa
Reggeons ++ resonsnce
Pomeron <+ background.

(One often terns all poles with normal slope (a'~0.9) Reggeons to distinguish



8-

then from the Pomeron - although the lacter is, of course, a Regge singula

46y - 1¢ may not be a pole.)
Theoret1cians working on the "dual resonance model” (a field theory
where the Veneztano model 1s a Born cers and one has "ordinary" Feynman rules
with, for instance, Reggeons replacing particles) hope that the Pomeron and
‘background” will emerge as unitarity corrections (Regge box diagrams) to

the Venezdano model.

VIILI. Low p, Physics
Let me give you a very quick idea of the typical high energy inceraction.
This 1s touched on in picture book, page 2.
At lov energies (py & 5 GeV/c), the cross section is dominated by

2 body or quast 2 body final states (quasi means one or more of the "bodies

15 a resonance), e.5.,
o
2% actually, of course, a '3
"o+ 0% f1nal state, etc.
' - 0%t

These two body processes are controlled by Regge poles and cuts. Thus

. except those with Pomeron exchange,

all the 2 body proces

5 gy ncren
fal1 with enersy 1tke s°7 vith Regge trajectory o € 1/2 (= 3,(0), o, (@),
etc.), fie., ac least as fast as 1/s. Thus as o, is approximately constant,
ve see ehat 2 body non-Pomeron exchange reactions comprise a smaller and

smaller part of the total cross section. We can divide (the nonvanishing

asysptotic) cross section into two pleces

) Diffraction: These are two body and low multiplicity final st

about 202 of the

Boverned by Pomeron exchange. This coaponent compri:

total cross-section. There are several parts:
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w* =

ection (L.e., ~ 102 of

re 1s about half the diffractive cro

This

cotal cross section).
40) Diffraction of Excitation Target (p in exasple)

W

14 N

onsnce which must have the same internal quantum
The sptn J ean

Here ' 1s a nucleon r
n strangeness, etc.).

numbers as the proton (e.g., is
atffer but there 1s some prejudice (not strongly supported experimentally

or theoretically) that 0’ - parity) should be the same for p and N
O s seen exprtacacatiy 5 = ¥}z Chaper” zesonsnce), Nigzy @ = 1)
106 gy 0 = 3/2%. The croms sction to prodce » given X" 1a = 5% of
he elaseic cros seceien 1.

440) Diffraction Excitation of Beam (r* fn example)

e
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Here the meson resonances =" = Ay and A, have been seen. Note that
low mass diffractive excitation is confused by the so called Deck effect.

This involves elastic scattering of a virtusl plon, e..,

ad nt

Thts produces a sass spectrum pesked nest threshold; this "inenacic”
Lump contuses tnterpretacion of the K (+ 1'5%) and Nl (= pi® in exemple)
exctcation.

Note that the observation of the diffraceive production of the Ay (vich
-1)’F = + vhereas pion 1s (-I)JP = =) shows that the Pomeron can changs
the value of (-1)%P.

tv) Double Difs

- e
PomBron  This s rather small both
5 expertmentally and cheorets-
4 N canly - one can esetmate 1

ustng factorization which

umes - probably incorrectly - that the Pomeron

1a a siople pole. Factorization give

o(double diffraction) = o (sing:

atfraction, 11), 111) above)

+ o (elastic)



o1
v) High Mass Diffraction Excitation
The final cl

of atffraction Ls:

Sumned over all particles; the dashed box s Pomeron proton total cros

section. This is quite big and is described by triple Regge formalism which
we discussed {n VIII.G. v) becomes 11) as the mass of the "any" decreases

€ the resonance regor

There 1s also an analogous seson excitation.
b) The rest of the cross section (non-Poseron

The rematnder (v 80%) of the cross

ceton constats of multiparticle

The majority of produced particles are pion

Two key feature

s
22 ¢ exp(cb p, tn GaV) or <p> ~ .3 Gat. @
&

The mean p, reflects the size of hadrons. p, 1is conju

e to transverse
size of proton. p, = .3 GeV corresponds to size b~ .2/.3 ferai.

1) The mean multiplicity of produced plons is logarithatcally tncr

ing vith energy. Roughly

<a1p> ~ 3 logs + constans @



-92-

The logarichaic increase corresponds to a nonzero liat of Ed’o/dp as p,

+ 0. This gives a cloud of ='s with small somentus in

n c.

(Feynman first understood this). To explore this, let us introduce a new

vartable called raptdity

(2a)

- log((&4p,)/m,). @
Rapidicy has a useful feature that under a boost © in % directions when
(&) + )
®py) + ) ®
ve get a staple particle tndependent translation:
yevto o)

s that dtffer by z boosts (e.g., c.m. compared to lab) rapid-

ities differ by a constant that is the same for all pareicles. We will use

rapldity defined in c.m. system when y_ _ = O is middle value corresponding

€0 p, = 0. The allowed range in y is

Logaram) = Iy, o | )

or droppng const
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Now ve can write

4
-t )
dyd(p2)

a /e - dy

and a0 = dp o = pudpids = rae]) ®
2

1 E32 Ccomsant = Wexp ). ©

Thea total multtpliciey” s

log/s
L1 ayaeh —2 = & (fahexp(-6p) 1108 5,
losla Ty

4¢ has & logarithaic s dependence as claimed earlier.

# Mot —2 14 un nclustve cross sections 1 gets an eatey for auch
T
Jarticie ia sach event so that ane has the sum rule

<> = JayaD) a0

ot avaD) |

1) One can understand the data on n particle production n terms

ection to

of an uncorrelated production model. Suppose that the cros

15 (the Potsson dtstribution)

Produce n particles, o,
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o, = Ak Gog )" an
coupling. cwnu-nx/ from integration over n rapidities (vith limited
tdenttcal/  p,, one has a one dimensional phase space for

each produced particle). One gets such a cros

section elther from "Multiperipheral odel" e.g.,

(see book by Horn and Zachart

It
[
il
[

the Lnks are independent.
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Suming o, given by (11), one finds a total cro
o e ae PloE s an

ot

and g0 a constant total cross-section splies y = A. The mean sultiplictty

<a> 1s given by

Py
&

= Alog 5. an

Thus ve get the expected logarithatc multiplicity and the coefficient
Of og s 1s just the probability A to spit off another particle, e.g., in

multiperipheral example:

)3
—

X r

Note for fixed n, o tends to 0 ltke s so that the constant total cross
section 1s achieved by low multiplicities decreasing and higher multiplic-

ittes dncreasing vith

From (11), ve fiad

4o
e Y SV
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This independent eatssion model 1s quite realistic as long as one in-

cludes production of full range of particles, L.e., T, 6, &, ..., including

resonances {reader: think of simple test that distinguishes resonance from

stagle 7 production - notiag there are so many resonances/cosbinatorial
effects that resonances cannot easily be seen in mass spectrum}.

1v) Relation to quarks and gluons (QCD)

There 1s no known (to be correct) way of describing lov p, scattering

in QCD. Rather one must vait until one gets to high p, vhen one can apply

perturbative cechniques

de |\ exeC-600)
()
LOVEN
ol Lehavioux

~igv fu

Note that a natve QCD escisate of cross section is do/d(p]) ~ 1/p{ (at

fixed %, = 29,//3)
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Thia cones because - apart from log s in coupling constant - there

fo dimenaional parameters in CD. Thus as o has dimensions 1/p, we get
Predictions. Experimencally the cross-section falls much faster than this -
Part of the effect can be understood from log Q/A% dependence. The rest

is rather complicated but we believe we understand Lt. At much higher p,'s
(~ 50 GeV a8 1n colliding beams) we do expect to £ind 1/p} behavior.

In (19) T comented that one needs to use independent production of

resonances - not just individual particles - to describe lov p, multtparticle
production. It 1s ateractive to consider that one is simply productng in-

5 which sometimes give single 's, somettmes pairs of T

dependent qq clust

ece.
v) scaltng
To a reasonable approximation the invariant cross section is energy

independen at large s, i.e., pucting

15 energy independent for fixed p, and x,. This was

first understood by Feynman. This energy dependence can be understood fn

Regge theory (ustag ap gy on(0) = 1) vstag a forsalism due to Mueller.
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I will now describe hov one puts all the elements together in real experi-
ments. I will naturally describe the apparati vith which I have been associated -
1 know more about them.

T will describe first a very simple (by HEP standards) experiment - although

a8 the thests by Rosemary Kemnett shows - a proper analysis of the data vas a

major effore. Perhaps because of the simplicity and elegance of the experiment

and assoctated theory, the experiment vas very succesful. The expertment was

the 350 proposal at Fermilab - the third experiment at Ferntlab with the photon
detector which 1s the heart of the experiment. This detector was designed and
built by Alvin Tollestrup (originally at Caltech, but now at Fermilab vhere he

1a playing a major role n the design and building of superconducting magnets)
and Bob Walker.

The expertment 1s to study *'s produced fa 1p collisions. The simplest

reaction 1s
*p > 2% &%)
- "
3 or
3

which vas studied in one of the tuo earlier experiments at Ferailab.
E350 measured vhat 1s called an inclustve cross-section

*p > 2% @
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“rlasap e

where X includes all possible accompanying

L 4+ O %% ete.); given & ¥

101

T+ by its kinematic

araseters in the final state. Feynman introduced the term inclusive - in his
terataology (1) 1s called exclustve because all particles besides those lated
[the *° and n {n (1)] are excluded from the final state. Feynman vas the firss

urenents were amensble to

Physicist (I think) to poiat out that iaclusive me:

quantitative analys:

Pictorally (2) can be pictured

..-\/,l

= “‘5“‘3

section.

Where the botcon part of the diagram s (virtual) o proton total cros
s ve will study later, Mueller (a theoretician - ow at Colusbia) introduced
the so-called triple Regge theory to describe the above picture quantitatively.
ection

We may remark here that in a stmple quark plcture the T p total cros
attering off a proton

ections of q or § in ¥

can be vieved as sua of cros:
target (the "additive quark model"). This picture 1s supported by approxtmate
ratto .

e PP
— @

EsncoRe
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The above represents a typical * p collision - note that the quark picture

below (1) s

spectal case of chis. Its Justificacion must rest in (experi
sent) resule chan
(@on @) ~1/6 0, (9 ~ 4ub @

For such a small qq, 3q cros:

section the chance of two or more quarks in

say the proton both betng tavolved in the colltsion is small. Using the formalism

developed by myself and Wolfram ("Parton Shovers” - CALT-68-755) 1t should be
possible to make this intultive picture more precise - this would be very impor-

Eant and T leave 1t to any reader vanting a quick Ph.D.

This physical picture also suggests that, as the heavier quarks (s,c...)

are sasller than u, d (size ~ 1/mass) they will have smaller cros

ecttons.

Thus

g K9) < 0, (P ete. ®

This picture {mmediately suggests

Oeoe PP = o (P ®

80 and 7 have sase quark structure. This prediction is consistent with



experinental measurements - (2) 1s not terribly sensitive to (6) as (6) is

for "real” ='s and p's while (2) is only kinematically possible for off shell
5'a. The best tests of (6) come from photon processes vhere by vector doatnance

G4op(1P) can be related to the sum of o (,u,6.0),

ke ¥

. oun of diagrams

ete.
P

Such experiments (e.. comparison of Yp = 0p and Yp + op vhich can be re

o compartaen of 3p and 4 elasele scacceriag) contien cha ch ¢ i Sadend
mater cham tha o, 0o 1y ia the oiscaen s secene messuremnce of

5o (et + ) vhich come o smdler (by & facto of o) chan the ecimace
(@13 0y (o) from he addicive cuark model. The experiset schod saed 13
totrece - 16 st v vizsaal ' (but as o oo anell - thes are very Ltke

Perhaps the anslysis is incorrect - it is important to understand

Process by which 13" total cross section s measure
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Before describing the experiment, let us describe the kinematics of

the general fnclustve reaction

> ex )

We can treat this as 2 + 2 scattering where the fact that ve make no requirement

on X means that ve must add the mass my Co the liat of independent variables
for 242 8

ttering. We resesber that there vere two independent variables
usually taken as 8 and €. [s = (5, + p)%, € = (3, = 771

The crtple (o.e.ad) are o possible choice but astend of o one avally
uses the Longttudinal somentus fraction

2 5™
e (82)
I3

where p, 1s z component of momentum [{nttial particles a, b are along z direc-

Clon] for che fiaal paeicle <. Ta place of ¢ o can also choose K - the

square of transverse (1. 2

+ 5|3 somentum of parcicle c. k, s naturaily

the same 1 both lab and c.m. system. There are in fact many differeat definttions

of an "s" variable sitlar to (8a). Feynman first iatroduced x - which is often

called "Feynman” x to distingutsh it from "Bjorke:

x which 1s used fn electro-
Production and neutrino scattering. Related variables to (8a) are




e

The reader can show that (8b) - (8d) are essentially the same as (8a)

in the liate

X5 Large (3.3)

& sma.

Note that X5 has the kineastic range

=1 @

P

The expertnent vas designed to study (2), 7P + 1°K, fn the kinesatic
regton.

Prap = 100 and 200 GeV/c, 8 = 2Py,

=200 and 400 Gev?.

x 2.7 «10)

PEPYE X a0y
[Remeaber that ¢ 50 kineaatically as discussed for 2+2 scattering.]

The apparatus s shown in figure VL.G.1 and e vill nov discuss the

varous parts of it.

(8) The detection of the final =° is done with a lead scintillator sandwich
(shown 1o circular inset in VI.G.1) of a type described in VL.F. This sandvich
measures the energy and position of the two photons produced in 3° decay.

The posieion Le found by using a 70 x 70 hodoscope of sciacillator (see VI.D.)
s 1llustrated n VI.G.2, the matching asbifulties inherent in a hodoscope
(1.e. the "ghost” photons mentioned tn VI.D.) are not so severe as in a simple
hodoscope because one measures mot Just "yes/no" but also the energy deposited.
(b) One trouble with inclusive reactions is that thers are a multitude of

other particles produced in the event to confuse the issue. The sweeping
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magaet 1n VI.GL ensures that all (untnter

tiag) charged particles in the
events mtss the photon detector. As shown in VI.G.2, sometines more than

one #° can sometines hit the detector. Note that 1f n **'s a:

produced
in an event, these contribute n times to the inclusive cross-section (at
the kinesatic paraseters of the individual °'s). In particular

o e

where ve integrate over the cosplete kinematic range of xj, t. <a,0> 1is

the mean multtplicity of produced ="

(¢) Ve need to know the direction of the bean in order to calculate the p,

(or t) of final +°

leas element carget sedtan bean
Line

Notice that the beam particles are focussed at the target. One neces:

oy

resson for this is that the size of the target transverse to beam line is small
compared to the size of ransmitted beas. The focussing - depicted by a lens
above - 1s perforned by a pair of quadrupoles. A single quadrupole focusses

1n one view but defocusses 1n the other (ther

"vievs" are just tvo projections
transverse to sotion of beas). The theory of beams is quite fun; it 1s Just
Like geometric optics (for thin besss) vith magnetic dipoles to bend bean
(equivalent to prisas) and quadrupoles to focus them (equivalent to lens).

The size of a bean 1s deternined by
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(1 Tatttal sngular accepance and carget size.

() Momentum spread withtn bess (a single dipole will obviously bend particles
of ditfereat nonenta by difereac amouncs).

(3) Colltaators and other phystcal obscructions restriceing size of besm
along its path.

(9 Ac lov enersy, multiple scaccertng is taporcant (remember Op, ~ const ..
Baic.scac. ~ P
Let s descrive che Nz beam line (See Arc Ogava, LBL-8305 Ph.D. thests

1978 for further detatls and Fig. VI.G.3). This is one of the siaplest beass

possible; the besa used i the next experisent to be described fnvolved 4 not

2 foet bue the 1d

are the same.

The quadrupole pair Q1, Q2 focusses the meson target at FL

— extrema cays

Fa

The angular acceptance (49) Ls deternined by angle subtended by Q1,2 ac target;
naturally the larger this angle the larger is the nusber of particles one can
transmit down the besm line. In betveen Q1,2 and FL there is a bending magnet;
the current in sagaet deteraines the mesn scaentus transmitted; the geomecry

deteratas

the somentus spread 4p/p. For this besn sp/p = 12 (p range s

199 yyyn €0 101 p, ). For some experizents one needs a smaller bp/p
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this can be achieved by closing the horozoatal collimator C5. The bean is
bent in the horizontal direction and as the target is very small (compared

€o the dimeter 3" of bean pipe) the dispersion at Fl s solely due to

momentun spread. Note that the beam is very small in vertical projection at

FL because this Just reflects target size. Note the field lems at Q3 which
focusses in the X (where bean 1s lar

due to momentun dispersion) and
defocusses in the y view. One usually chooses vertical and horizontal foci

to be in same position although this 1s not mathematically neces

cy. e
Path from F1 to F2 4s essentially the faverse to that of target to FL. The
bend B2 1a arranged to exactly cancel momentun dispersion introduced by B1
50 that vhatever 8p/p, the image at F2 is small. Thereby ve can use a target
of reasonsbly small transverse directions! At 200 GeV somentua the size st
21 3 m x 3 m n transverse directions.

The theory of beams can be neatly set up in a matrix formalis

Tis s
described n chapter 9 of Ritson's book and better 1n the "Transport” (a

computer program used to design beams) manual. Ve at first denote a typical

bean ray by a 2-dimenstonal vector (ve have set up a co-ordinate system with

2 along the bean and x and y as the

rofections perpindicular to i)

- an
ax/a]

Let Yo, be value of this vector at z = % 1, then L€ ¥y ; are comected by
a fleld fre

regton

EESA an

where M 15 a 2 x 2 matrix

a8



Now to discuss magnetic fields, ve remeaber from Jackson that a charged
particle travels in a circle of radius p in a uniforn magnetic fleld B.

To the dlagran belov, B 1s perpendicular to the pay

;‘ i
| 6%

Vﬁata

The radius of curvature o is given by
b = p/.038 as
(5 1a meters, B 1n kilogauss, p in GeV).

Now as can eastly be verified, for small angle deviations 8, one c:

approxtmate
the circular path by a sharp bend of the same angle © at the midpotnt M of the
untforn field reglon. Cle

1y for saall 8

00 =L s



and (15) becones

0 = .03 BL an
Here p8 can be usefully viewed as & transverse mosentum (perpendicular to
original direction of motion) imparced by magnet to parcicle. (Remesber total
=momentus of particle s unchanged by passing through fleld.)

A thin lens 1s a quadrupole fleld vhere

By = ax

)
Bt wy

Ustag (17) on x view, we

e that it leads to s

flection that is proportional

€o distance from axts. For small L, (18) can be represented by 2 x 2 matrix

e
we ()

where £ = p/(.03 gL).

B

Jens leaves x unchanged but changes dx/dz by -x/f. Clearly f i focal
length of lens. In the y view ve find the same form for M with the opposite

siga for £, L.e. this is a defocussing lens. It is clear that a

togle quadru-
Pole vill alvays focus in one projection and defocus in the other. Hovever,

a patr of quadrupoles of opposite sign sepa

ed by a drift space can be

arranged to focus in both vievs. The reader can study this by looking at the

1 o 1 10
(20)
BV o 1 ve, 1

This {llustrates the convenience of the matrix formulation: namely the total

product

of successive elements 1s just gotten by calculating the 2 x 2 matrix product
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of the individual components.

When one considers a dipole or bend magnet one must extend formalism

by using a 3 component macrix with 8p/p added to x and dx/dz in bas
a.
Note that the matrices (14) and (19) satisfy
det =1
This fs no accident but rather Liuwille's theorea that voluse in phase

©.8. suppose =y bean s specified by the ellipsold

where 1f diagonal,  would have canonical for
et o
B
o

an

a»

an

The area of phase space represented by (22) is proportional to (1/det Y/

(e 1s xab)

If ¥ 1s transforned by M

Weny 26

Then ¥ sattafies
W Wty

and as long as det M = 1, the a

of phase space is indeed preserved .
(@ An tmporcant aspect of ne

@

rly all high energy charged particle beans

are Cherenkov counters. These ensble one to tag the type (flavor) of the

inctdent particle as ¥, K or proton. At low energies one uses the fact
f1xed momentun the effect of an electrostatic field 1o « 1/8 = c/vand
bends particles of different flavors by different smounts. Thereby one

prepare a bean containing one flavor; this 1s call

separated beas.

that for

e



-

16 most useful for the "uncomon” particles like K' or § which are small

percentage (1/2 to 57) of a beam. Unfortunately, at high enersy § is s0
near 1 that this method does not vork. So one must be content with tagging
on an event by event basts the flavor of a particle. One might think that

this was as g0od but Lt often is not. Thus

7

eypical apparatus can only
take a certain maxtmum intensity (10° + 107 particles/second for large

apercure o

tems). Note this is deternined not by events of interest (for

which one destgns

trigger to reduce sample to write on tape of 10 + 100
events/second) but by uninteresting events - the particles of which produce
stgnals 1n our detectors whose effect must be cleared out before ve can
record an event of interest. Thus it is harder to study K*, p with prectsion
at Fermilab because one's effective maxiua facident flux is reduced by the
bean fraction ratio of 1/2 + 5%.

The general theory of a Cherenkov counter is described on pages 638-641 of

Jackson's electricity and magnecisn book but one does not need to understand

L to unde

this decatled theory to be stand 1ts use in high energy physics

(a sumary for this purpose may be found in sentor thesis BL1l Danchi urote
for me two years ago).
A particle traveling through a mediun of refractive index n emits light

at angle 8 deterntned by

coss = 1/8n . (26)

The requirement cosd =1 (1) implies

8> 1/ @n

Ta our case, 8 = p/E = p/Ya + 57 = (1 + 5262 and for p>>a, this
becones

- 1- et



1€ 0= 14 6n s very near 1, (27) becones the condition

2>

@8
77

Thus light 1s emteted 1f the

reicle momentus 1s greater than some threshold
Value p,, that 1s linearly porportional to m. In our beas, we have a fixed

mosentus p. Ve tell the particle types 7, K or p from their different

For instance, suppose ve use a C counter with &n such that

Pl > P > B0

Pactida>

Pmr

(PHT=phototube)

The 1ight 1s emttced n the above counter Lf the beam particle Ls a 7 but not
4 1€ 1s a Kor a p. The refractive indices near 1 ( én << 1) are obtained

by 111ing counter with heliun and reducing pressure appropriately. One could
tell 1n principle all 3 bean types with a second councer whose threshold 1s set
betveen that for K's and protons.

Then a ¥ gives a ignal in counter 1 and £2; a K gives a aignal fn

counter #2 only; 4 p gives a signal in meither counter.
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AC high energy this ds not adequate as even for long counters oaly & few

Photons are eafteed. Thus counter #1 will fail to fire on x's quite often

(a typical ineffictency is 5+20%ac 200 GeV). Thereby a v would look ltke a K

5t020% of the time; unfortunately as we said there are typically <5% kaons in

the bean and 5o the "K sample” defined by the above criterion would in fact

have more x's than K's {n £el One can remedy this either by using several

counters ((51)7 1s quice saall) or by using the additional information con

tatned in angle of Cerenkov radiation. The type of counter described above is
called a "threshold counter.” The new type of Cherenkov counter is called a
"DISK" counter. A typical geometry is shown belou (there are many variations

on this).

disk 2
”

The annular disk (for normal cylindrical geometry) selects light eaitced
a particular angle 8. (26) gives the dependence of © on 8 and hence particle
Eype. Unltke the previous (crude) threshold counter, the disk couater depends

on the initial particle beam being (approximately) parallel. This is easy

enoush to arrange using suitsble bean elements, e.g. in VI.G.3 ve could puc

Q4,5 30 that F1 vas at their focus and a parallel bean would then pass through

the domstreas C counter. One would of course need an extra quadrupole doublet

€o focus this parallel beam onto the target.
A typical use of a disk counter would be to run above K threshold so that

K's and 's give light. Then one chooses the disk size to select K but not ¥
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light. This gives a positive K signature vhich is unaffected by v ineffictency.

(e) Ve finally return to the experiment. The beam direction oo an event by

nt basis 1s measured by the four sets of scintillation counter (tvo in each

view) marked UX, UY, DX, DY 1n Fis

VI.G.1. Each set has six fingers looked at
by an individusl photon multiplier cube (PMT). One uses them as a straightfor-
ward hodoscope systea described in VLD (p. 9). As there is only one particle

1n bean one has no difficulty with ghost particles. The dowmstreas counters are

very saall (1/16% tach) and so one gets the intercept at target with an accuracy
(standard deviation) of 1/(16 x 2/3) tach.

Essentially the only other part of the apparatus are further scintillation
counters. M1, 2, 3 make certain that the beam is indeed heading tovards the
target and that there 1s only 1 particle in beam. The counters AD, 1, 2, 3 &

are used as yes/no devices to signify events with mo chary

particles at all
in final state. Examples are .
*p %
*p e e%% ete
As described in Rosemary Keanett's thests there is a rather pretty theory to
apply to such final states. As ve only use AD - 4 to tell O from >0 particles,

we have no problems vith Landau tails and we can see a clean signal of the all

nestral final state. (There is some problem with & rays produced by ¥~ beam

traverstag tar

€ and striking AD - 4. These make a true all neutral final

state look like one with charged particles in 1t.)
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VLI, Ferstlab ELIO and 260
VI.I.1 The Expertment
The new feature of this experiment shovn in Fig. VI.H.1 is the detection

of charged particles in the final state. It is not practical to use scintil-

Lation hodoscopes to detect particles over large angular regions and so ve

cannot use same method described for beam particle in E3S0. We detect charged

reicles by fonization mot in scintillation counters but in vire chambers

For infornation on chambers, see the article by Charpak in Physics Today (Oct.,

1976) and book by Rice-Evans (Spark, Streamer, Proportional and Drift Chasbers)
in the Lauritsen Dovas Library.

s 1 the bean dtscussion of VLG, ve set up axes vith x hordzontal, y
vertical and z along the intetal bean direction. Ve measure direction and total
momentun of charged particles in the final state. The direction comes from

The acmentus comes from

observing intersection tn at least 2 wire chambers
bend in a magnetic fleld. For the vertical f1eld used in the experiment, the

, Produced by magnet a
m

@

Typical values would be B ~ 20 kg (2 tesla), & = 1+ 3 meters so that (2) is

aboue
8, ~1/p, radtans »

Note this s a small change in angle for high energy particles with p, taking

up to 200 GeV 1n our experiment. So one needs to measure directions

valu
well. One has chambers separated by 13 5 meters and measures intersection to
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s fraction of a 1

. Thus an error in 88 of 107* 1s not hard to obtatn’.

(3) then tmplies that

e /p} ~ 207 @
This implies that fractional error in momentum measurement &p /p_ is

4

approxtmately 107 p, f.e., linear tn p .

At 200 GeV ve get a 21 measurement

for our noatnal 10™¢ error. There are other concributions to 8p : in particular

Bultiple scattering discussed in VLE. ds important at lov energy.
There are 3 bastc types of wire chambers:
spark chasbers
proporcional chasbers (PHC)
drtee chasbers.

T will not discuss spark chasbers. They

enttally obsolete. They

are cheaper than proportional or drift chasbers. Their main disadvantage is

that (1) they are "

lead” for ~ 10 milliseconds after recording an fateraction;
(44) they cannot resolve close together tracks (although their resolution on
a stngle track 1s as good as a FUC.)

VI.I.2 Proportional Chasbers (PHC)

advens =/

- Catlacde
Chowgad poride

We show above a view looking straight dovn on chamber. Thin parallel wires

“For contiguration on handout, Sp, /9 ~7 %10 is 1s dontnated by short
Teverate (separation 1 meker,t 2 T 1/3 m) tn tront of mapn
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The chasber 1s

forn the anodes and the valls of the chamber the cathod

£411ed with The electrons drift to the nearest anode for low fields,

there 1s a fulse on each wire approximately equal to the fonization produced
by incident particle. As the field incresses the drifting electrons are
accelerated and vhen they reach high enough enersy, secondary fontzation is
on vire by a large factor (~ 10°) allowing

produced. This can asplify puls
dts detection with simple electronies. Note that the field (= 1/r, r distance

near anodes and the avalanche of secondary

fron an anode center) is larg
fontzation is located Very near wire. The chasbers are called "proportional”

411 approxtmately proportional to intetal

because size of pulse on anode 1s
iontzation. Vhen fleld gets too big the output pulse saturates at a value
tadependent of tnput fonization; this is regime used in a geiger counter.
The matn expense in & FHC 1s the electronics which cost about $10 per
wire. Systeas with up to 10°
1/2 mm but 2 m gives a resolution o = 2/2/3 ~ 0.6 m. As mentioned

wires are not uncommon. The wire spacing can be

s small

one uses.measuresents from several chambers to reduce this error.

VLI3 Drife Chasb

This type of chamber is similar to a PVC except that one arranges wire

further apart and has an electric f1eld

i
v
fr—ry
~sea
That 1s essentially constant except in imediate vicinity of anode wire. This
he tze of

1s done by suttable placing of cathode and field shaping vires.
arrival of an electron at anode fa then directly proportional to the distance
froa 1c that electron (ionization) vas produced. So with the sophisticated

electronica one records not only existence of a pulse but also its time to
arrival. As the drife tine s 0(20) nanoseconds per m, 4 time resolution

of 2 nanoseconds gives an accuracy of .1 m. This is betcer than a FNC.



e

Deife chasbers are cheaper than PiCa for large drift spaces and lar

chasbers. They have the disadvantage of a coaparitively long dead time
because one has to allow 200 nanoseconds/ca for electrons to drift. A normal
PUC vith 2 m vire spacing can recover in about 50 namoseconds. Hovever

drife chasbers are supertor to spark chasbers for dead time.

VLI.4 Rest of £260

There are other components {n Pig. VLH.1. In particula

(1) Cherenkov counters to tell type (x, K, ) of final charged particles (not
Just of bean particle as in VI.G.). These are of "threshold” type. One

cannot easily use a disc counter because the light rays produced by &

radiation are not parallel or even diverging from a point (due to magnet

bend); thus there 1s no simple optics to select a particular & angle of

emtsston. "Disk” like counters are being designed that would work in
situations ltke this. They essentlally detect (x,y) co-ordinates of all

14gh incident on an area and so see the "ctrcle" assoctated with the

particle. I don't think any devices of this type work yet.

(2) Calortmeters. Ve have already discussed these in VL.B. and VL.F.
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Lo Plaszay = ez
®
2

A = -liy

for quarks and antiquarks. For bosons, parity of particle and anciparcicle

15 equal. Also the parity of pareicles in the same multiplet is equal, e

» and o have the same parity as do v* and =°.

Also note that some parity assignments are arbitrary. For instance, there

18 alvays an even nusber of feratons in a reaction. Thus 1f I multiply the

pariey of all fermtons by -1, 1t cannot affect anything (as all that appears
1o product of parities and so this product alvays contains an even nusber of

even nUmbET)  Such arbitrarin

terntons, t.e., (-1) 18 present with other

quancum ousbers. Ic is called a superselection rule.
Examples
W =% (or gt

Each particle 1n the candidas

decay has ny = -1 and sptn 0. Thus (7)

+ reaction 1s forbldden.

Btves = MLt
To apply (8), we find 2, = 0 by sptn addition and thus (8) reads -1 =

(-1).(-1).(41) agatn forbidding reaction.

@ %=t
Agatn all n = -1 but now o has spin 1. In (7), all A ave stdll zero but
Y

“n

the day and M =B .
The reaction is alloved in accord vith expertsent. In the orbital angular

Lot

womentum foraaliem 1, = +1 and (8) is s




Here 3, =3, = 0

-1

AR Ny = 4L,
The A decay s forbidden and the A, alloved.

() Detersination of Parity of the Pion (p.83 Perking)

In analyzing the constratats on the tvo body proce

s b+ cd, we

Sasert a cosplete set of states of arbitrary cotal spin J, and parity n .
s 'y
Tab e = ] TGbe T )
5,
A a0
= I T anT@ o cd).
o,

Ve will later see how to do this in detail for the helicity formall

Now ve consider a particular exasple 77d + o in the orbital angular somentus

analysis. Here ve choose angular somenta £, 1, and total spin Iy, J 4

independencly for intetal and-final stat

L3y, and gy T, and 1y are
cosbined to give the same total

4n J, and che same paricy n . Parity con-

rvation vill taply the comstraint

Fea
"y T T, D an

We observe x4 + nn at lov energles. One ads

of the angular mosentun

fornalisa 1s that typically an asplitude of orbital angular momentus & behaves
D
ea

ke p,% p5%. Here by, by 1s (center of mass) somentum derived in IV.3.

Thus lov energy proce

re domtnancly s vaves (t = 0). There is no simple

wvay to express this constraint in terms of helicity amplitudes
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We first analyze the 17d systea. The deuteriua is a bound state of p

and n in s (and) d vave. It is spin-parity 1*. Pion has parity n (vhich

we vant to find). Analysts of 1°d systea therefore implies J, = 1 and n = n .
oy " M
We now consider the nn systes. Combintng J_ = J; = 1/2, we get J 4 = 0

or 1. For each J_, state ve can choose 2, = 0,1...Note that we can have

24 > 0 because at threshold p,, = P -y = 0, ve have py > 0 asm _+ 3, > 23,
We constrain 1y by (Fault) principle that any state of identical feratons

must be odd under the interchange of the fermions. Looking at the explicit

Values of the Clebsch-Gordon coeffictents, ve see that the J, = 1 state is

eneral

symecric and Iy = 0 antisymetric under the interchange ¢ ~+ d. The

symetry result coes from the relation .

Clopmpmlem = (0T Cloymy am e an

3 =12 and s0 3y m s = 1 gives 41 and

PHEERE

3.4 = 8= 0 the phase -1 under interchange.
Thus ve need £y = 0,2 ... for I 4= 0
Lo m 13 for 3y =1
We can only get total sptn J, = 1 from combining L, = 1 with I, = 1.
The pariey n is then (-1) °d = -l = n_. Ve thus find thac the * has negarive

ya that the above argument depends on the

intrinstc parity. Notice Perkins

usption that o and p have the same parity. I believe this is a mecessary

fact; there 18 no superselection rule alloving one to assign different paritic
o m,p. As they are related by sizple internal symecries, they must have

the

e paricy.
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(® Posterontum

This 1s a bound state of ¢" and ¢ analogous to the hydrogen atom. As

1n nn example, the total spin J,. = 0 or 1, while £ = 0, 1, 2 ... for each
3, chotce.
Now act with C; we get back the same state with ¢’ and e~ interchanged
and no phases (nyng = 1 for C). But the symetry on interchanging p-uxﬂu
+1
S (-0 tizen () 3= 0 and (41) 3 = +1; chis can be vetccen (1)

Hovever, we pick up another extra sinus sign because ve must also interchange

two operators defintag staces. Thus 1f a' (¢%) i operator cre

tng an
chen our intctal e'e” state 15 a(e")a’(e7)[0> where [0> 1o vacuum state.

af@hat@)[0> as any o fornton
LY

Then acting vith C gives a'(e)a’(eh)[0> =

operators must anticommute. Therefore, C acting on state gives
L+

=) *. Note Perkins has a fumny argusent for this extra - sign vhich

=y

15 dublous to say the least.

If ve constder the n photon decay of positronium, e'e
Ly,

“n

ooy, Thea (-1° =

a8 C acting on final scate 1s (-

Tor the ground state, L = 0 and 80 ve s

thae 3, = 3, = 0 state (b

Positrontus) decays fato 2 photons while the state J, = J = 1 (orthoposttronium)

decays tato 3 photons.
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IV.F 2 Pareicle » 2 Pareicle Scattering

- cd w

Where particle 4 has sass 3. The transition asplitude s ¥ = <cd|T|ab>, the

matrix element of the Lorent: tavariant operator T. If ve have spinl

par-
ticles, then M 1s a function of the possible Lorentz favartants one can fora

2.2
o7 = al, these are

from the momenta p,. Apart from the mass

o Gyt - omp?
EERE R @
us Gpp? - Gyp)?
where, of course,
gt ry @

expresses energy momentus conservation for the process. One can easily prove

from (2) and (3) that

and 0 for fixed



independent tavartants which we can take to be s and t. s, t and u are often
called the Mandelstam varisbles.

et

To understand the interpretation of the

+ let us consider a typ-

a of some fixed momentun

fcal expertmental set up. Namely, a beam of particl
Piap 18 fncident on a target of pareicles b which fa at rest. b is ususlly
 procon but can also be a deuteron, heavier nucleus or even an electron.
There 1o a vide variety of choices for a = 1, K, B, &, by Y, ¥, ate.

Let o travel fn the positive : direction so that the four vectors of a

and b are

- 00,8, 4L

)

Py - 0,0,03).

Then 8 = (ptm)? = 82 + 07+ 2p,p, = 5E 4 + 23 h + T, Gemerally
4 veceor
product

Prap > %

e mampyy
®

=~ 2p,,, for proton targets

The latter approximation is worth remesbering. Note that in p nucleus

collteton

the effective s 1s still given by (6) with m, ~ proton mas

except for coherent reactions (vhich are normally iadependent of 8 anyvay)

the tacident proton collides not with the whole nucleus but with the individual
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protons (or even more precisely quarks) inside the tary

a5 .\ Statia, T.-aa-
o —> — (ﬂi&.\aw

>
2 dirction

Another inter

ting c

e 1s that of colliding beans where normally a = b
or antiparticle § (for pp, 7p and e’e” machines). The kinematics is partic-

ularly cransparent when a and b have equal but opposite momenta.
a and § are

(True vhen

ccelerated in the same ring as for e'e” and Fp collistons. In
PP colliders one needs two rings and at Feratlab the rings will be run at

dtfferent momenta.] The four vectors

= ©.00y Ao
™
By = .0,y AT )
and PERIS SN
®
~ap?
wlye

For a given size ring, i.c., a given maxtmum momentun Py

o(colliding beam)
#(stacionary cargen) ~ 2Plav’ ©



a5

As the cost of stationary target sachine i proporeional to py ., Lt
follovs that 1¢ 1s much more effictent to build colliding besss to get to high
energy than o butld a bigger stationary target machine. ALL the new machines
vith the latter

Planned Lavolve colliding beams. Notice there is one probls
€hat interaction rate is much lover as beas is much lover density than a target

of 1quid hydrog

spectfying the {nitial energy of resction.

In sumary, ve can regard s

e can be vieved as spectying the

Now we will interpret ¢ (or u) which ve

scattertog angle.

First note that in a typical reaction e p + e p

(X e~

Pe

€ rreeien. . Momantum

Pa-Pe

WP p %
€= (,7p)? 16 the square of four vector carried by vircual photon. When
e rn th Toemn et scisciel, o 1 e b 4 g

(the lovest order "Born tera"),

- <
— .
€ = Quch
.‘,\g ; l.l“f‘ a0

Che aptisude 1o propocional o 1/(c-ad vhers =, 1a the shyeteal an she1l

© dynamtcal

mass of the vircual particle e. Thus t certainly has an import
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signtficance; in (10) e corresponds to the force "causing” scattering and

approxtaacely the Yukava pocential
Vs expl-agrl. an

As very different examples contrast

D~ o7p, vhere virtual photon with m = 0 Ls exchanged.

ot

The amplitude 1s proportional to 1/t or from (11) the potencial is 1/t
(1.e., long-range and not exponentially damped as for =, > 0).

v .

Yyt Y
a»

w’
(Y0 P ()

Here, on the other hand, the amplicude is proporcional to 1/(c-agl. This

1a a short rang [we will learn

[x ~ 1/ay from (11)] force and for low enerste

ator

soon that kinemacic range of ¢ is approxtuately 0 2 € 2 =81, che prop
1/le-sl] can be approxtmated by 1/ag. In fact, ve have already used one con-

sequence of this, 1.c., in a unified theory, the vertices in (12) are just

2,2
a & and 50 strengeh of veak interactions is ¢2/al ~ Gy to estimate m, from
observed value of Fernt constant Gp.

Now let us try to interprec u. Consider dG + dG. This has three low
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«1sad) a3

1/t (a8 gluon
mass exacely )
zex0)

d e aw

§

and the third diagran L1lustrates that u as well as ¢ can have dynamical sig-

nificance. MNotice that u and € can be interchanged by simply relabeling the
f1nal particles, L.e., u~> ¢ 1F ve put ¢ = G, d = d quark lnstead of ¢ = d

quark, 4 = G as used 1n (13). One tends to write reactions (as 4G + dG not
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46 + Gd for example) in such a vay that ¢ appe:

s more often than u in the

dynantcal equations. Ve refer to the three disgrams (13a,b,c) € and

dtagrans), respectively. Again note that

only ¢ channel and mo s or u channel disgrams; e'e

ams; e*e” + ¢*¢ has s and € but no u channel

e b

> n

s and 5o u or ¢ channel diay

dtagrass.
We mow consider the kinematic fnterpretation of € and u. (Ve have learned
that s 1s the square of total energy in c.m.s..] Consider the reaction (1)

1n the overall c.m.

of ab ot cd. Choose the axes so that a is along positive
2 axts, b along negative z axts and c,d in xz plane. Let the 3 vector of ¢

make angle 8 wich that of a in this frame.

Then we can easily find the explicit forms of the four vectors as follows

(ct. 11.B)



3.

= 00,58

7y = 00,58

av
B = (2eg9108,0,p 4e080,2)
where
as)
ana
as)
peg = 22 0dy 25,
Now ve can calculate
€= p,mp?
cdedom
2ol 2p et
N2 e ot = a6 + ey
an

2) 1o+ (e2on) (a2onl
- 2ec - sCzafyratecel o) le)
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We see that for fixed s, cos

1s Linearly related to t and so:

chotce of variables s and € 1s

uivalent to incident energy and scatter-
ing angle. € s natural for scactering angle between a and c; u between

Naturally on iacerchanging ¢ ++ u [and m_ +> 5], one finds from (17) that

= cos(6+7) where 8 + 7 Ls the angle between a and d.

Lec un Sovestigace che Kinemacics in che very simple case o = 0 uhich

slvays gives the leading order results at high energles. Then (17) becones

cos® = (t-u)/s or using (4), cosd = 1+ 2t/s = -1 - 2uls.

As the physical region is -1 = cosé = 1, ve see that t,u lte in rangs

02cua-s as)

This can be usefully illuscrated in a tvo dimensional plot of & v. t.
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The physical regton is contained between the soltd black lines which are

€= 0andu= 0. Notice that constant u contours are straight lines at ~45*
€0 the s axts [as 8 + ¢ +u = 0]. Yore elegantly but not particularly usefully,
one can use s, €, u axes that are symetrically placed at 60° to each other.

The kinematic diagras makes it clear that reglons of small ¢ and small u are

kinemattcally distince at high energles

t-channel dtagran

small ¢ enhance

small u enhances u-channel diagram

50 t,u channel diagrans doatnate in very different kinematic réglmes.

the analytic structure

We will return to this picture vhen we discus

of the scattering asplicude.

IV.F.2 Parcial Wave Expansion for Spinless Parcicles
Let us try to relate the sbove to our orbital asgular sosentun foraaliss.

1f the particles are spinless, the fattial and final orbital angular somenta

£y and 2, are equal to each other and to the total spin J of the system. One

can describe a reaction either by its s and ¢ dependence or by its s and J

dependence. I 1a conjugate directly to the varisble coss; as ¢ is linearly

related to cosd, J 1s essenttally a conjugate varisble o t. The relation
becveen 3 and cost 1s stoply
H(e,0) = LI, (P, (cos0) as
3

0

L
) = 3] He,02, (cose)acos
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When s J,8 a conventent description and vhen is 8,t conventent?

A If there 1 a dontnent s channel dis

ran (or a fev of thes) then

3 vill have a definite value, e.5.

A"

%- i

and clearly M;(s) 1s much the best parameterization. This s also true at low

energies 1n hadron hadron scattering

< T s xJ?/;_.

D023 I’

At high energles in hadron hadron scattering, a huge nusber of J

values are present and the s,

description becoses very clumsy. A classical

argument suggests the number of J values.

3 ~ momentum x distance an

where momentus ~ PP ~ /a/2 at high energles. The "dLstance” in (21) is

the impact paraseter b. To find this, consider nucleons

spheres of radtus
1 Ferni. Then the diagram below shovs the maxtmum b for vhich there is still

scattertng.
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nadaon
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Thus 0 £b b, ~2 fa ~ 10 GeV’

053550 @2)

ured in GeV. At Fermilab energles py,, ~ 400 GeV, we find

a8 claised, a plechora of partial waves contribute.

section falls

Actually there 1s no "sharp" cutoff but the scattering cro

exponeatially (remesber V ~ 1/r exp(-ax) with  ~ b) above the ltmie (22).

1V.7.3 Partisl Wave Expansion for Particles with Spin

When considertng particles with spin, ve have learned qualitatively hov to

use the orbical anguler momentus formalisa in the discussion of 7d + na fa

IV.E. However, this s ususlly rather a clumsy way of expressing angular

attering amplitude for particles with spin (compa:

(cost) vartation of a

0.0 (3) and Q7).
Constder the reaction (1) for particles with spin J, (1 =, b, ¢, ).

Then the scattering amplitude <cd|M|ab> 1s a matrix element of M between (tvo)

particle staces vhose momenta are given in IV.F (14). Let us suppose spin
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content of states 1s specified in the helicity foraaliss, i.c., sach particle

has heltcity Ay wich -J, A, = J;. Then the reaction 1s described by "heli-

ety amplitudes”
L RAEN

ity " lerte] a0 AgllHlate i) byl @D

For each chotce of dndices A, M £s a function of 5, ¢ and u vhich enjoy
the same kinematics and interprecation given fn IV.F.2. The introduction of
3 given in IV.F.2 for the spinless case (where J = orbital angular momentus)
can foraally be regarded as the "Clebsh-Gordon” problem for the Podncare grovp,
f.e., the direct product of representation a by representation b is decomposed
into trreductble eprasentations of the Poincare group. This is most conve

otent 1a the ab c.

. as the product representation has momentua vector

50+ 7y and comee. corvesponds to oue "scandard” choice of 5y for & systen
vieh 57 = (5, #m)? > 0. The torencs favectance of  toplien chat 2.5 and c.d
combine o give syscems of sme cotal apin 3 (and paricy). Torsally ve cam

proceed by tntroductng a complete set of states.

e <cdlM]ab>

[e0y

= <cdlIpprengd e Agltlugd 2 ay<dpy lab>
Ighy
Igng

Where 1, denote fafeial, final, respectively. b, b ace spin components

along z direction for states (vhich are at rest because ve vork 1a ab,cd c.a.s.)

of aptn J, and 3, respectively. In (26), <JguglH|3pu> muet also have lavels

L.e., states of these

Ay because the labels J, and u, do mot define state,
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quantua numbers can be gocten with several different chotces of 3,3, ((26)

18 only the constratat]. The Loreats invariance of M implies that

<wglgiag gl @

R N
'ty = sy

Now for the chotce IV.F (1) with a,b along z axts, we have from IV.D
@

PEENEEN @)

while TV.D (3)

. an
-
Combtatag (20 to (27, ve Fisd the aneleg of (19) for pareicien vieh
Jr—
)
o, (s,t,u) = I(2J41) (8)d] ®)
Aaticta 3 ‘qnlhleld Gy i) s Bhg)
(28)
-
1t J
gy ® =31 o e Ly o0
a

Compartson of (19, 20) with (28, 29) we see that using heltcity states (and

only in this case) gives us esseacially the same forsulae for particles with

pin as vithout. We vill u

these formulae later in the year vhen ve discuss
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the veak nteractions. Here is a foret:

reaction e*e” + 43,

te; constder the electromagnetic

In the it of zero ma:

for the external particles (but not mece

rily

the photant), the only nonzero matrix elessnce have [3,ohy| = Ayl = 1.
Positive and negacive values of A, = ky, A = )y have equal provabilicy from

parity tavartance of the electromagnetic interaction.

Under those circumstances, the cost dependence of the cross section

I, @t te
R RERH

« 1
PER

<l @2+ 1a @ + 1 o+ e @2

a0y

=1+ cos

This behavior has been seen at the o

colliding beans - reseaber (30)

holds at fixed s, 1.e., fixed bean energtes for o* and

For a typical veak fteraction,

RS R

an
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The W™ does 1ot conserve parity and only couples with A, - iy =

1.e., the angular dtstribucion is

2
= lay, |

a2

25 + 2c00

=1+ cor

opposed to 1 or cos’8) fn (31) is characteristic of a parity

violating process. (31) 1s one of the important processes for producing W '
1n 7 (9p) colltstons. Here quarks and antiquarks are found inside colliding

hadron

In the Pp case, the G dominantly comes from p and d from p. The

ymetry (slectron tends to be

asymetric decay (32) then shows wp
nearer p than 7 direction) in angular distribution of observed electron. pp

scattering will alvays give a symetric final state even though subprocs

G 1s

ymmetric; the ability o test for the asymetry (sad heace the parity

violation characteristic of a veak decay) 1s an important advantage of 7p

colltding beans.





