Summer School on Reaction Theory

INDIANA UNIVERSITY

lichael Pennington Jefferson Lab

S(**p**₁,**p**₂,...,**p**_j; σ₁,σ₂...,σ_j; **q**₁,...,**q**_k; τ₁,...,τ_k)

Amplitude Analysis

Amplitude Analysis

πN scattering

Quark model

Infant Quark Model

Strong Nuclear Force : 10

$$\frac{g_{\pi NN}^2}{4\pi} \simeq 14$$

Electromagnetism: QED 10⁻²

R.J.EDEN P.V.LANDSHOFF D.I.OLIVE J.C.POLKINGHORNE Cambridge University Press

The Analytic S-Matrix

STANDARD MODEL OF ELEMENTARY PARTICLES

Non-Abelian gauge theories

Electroweak Lagrangia	in	SU(2) x U(1)
$\mathcal{L}_{\text{GWS}} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$		
$\mathcal{L}_{1} = -\frac{1}{4}W^{a}_{\mu\nu}W^{a\mu\nu} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$		
$\mathcal{L}_2 = i\bar{R}\gamma^\mu D_\mu R + i\bar{L}\gamma^\mu D_\mu L$		
$\mathscr{L}_{3} = D_{\mu}\phi^{\dagger}D^{\mu}\phi - m^{2}\phi^{\dagger}\phi - \lambda($	$\phi^{\dagger}\phi)^2$	
+ $G_e(\bar{L}\phi R + \bar{R}\phi^{\dagger}L)$	$W^a_{\mu\nu} = \partial_\mu W^a_\nu$	$-\partial_{\nu}W^a_{\mu} + gf^{abc}W^b_{\mu}W^c_{\nu}$
	$F_{\mu\nu} = \partial_{\mu}B_{\nu} -$	$\partial_ u B_\mu$
	$D_{\mu}R = (\partial_{\mu} + ig$	$g'B_{\mu})R$
	$D_{\mu}L = \left[\partial_{\mu} + (a_{\mu})\right]$	$(/2)g'B_{\mu}-(i/2)g\sigma_i W^i_{\mu}]L$
	$D_{\mu}\phi = [\partial_{\mu} - ($	$i/2)g\sigma_i W^i_\mu - (i/2)g'B_\mu \Big]\phi$

 $\tau \rightarrow \nu_{\tau} \pi \pi \pi$ decay

CKM matrix elements

$$\begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

 $B → \overline{D}K → \overline{K}K \pi \pi$

Baryon resonances (N*s and \Delta*s)

hadron states

Baryon resonances (N*s and \Delta*s)

spinless particle scattering

Spectroscopy: interplay of poles & zeros

$$D^0 \longrightarrow \overline{K}{}^0 \pi^+ \pi^-$$

$$D^0 \longrightarrow \overline{K}{}^0 \pi^+ \pi^-$$

Hadroproduction

Hadroproduction

Hadroproduction

Amplitude Analysis

Amplitude Analysis

COMPASS @ CERN

COMPASS @ CERN

$$2^{++}1^{+}[\rho\pi]D:a_{2}(1320)$$

Robust 1⁻⁺ results awaited impact of limiting

 $2^{-+}0^{+}[f_2\pi]S:\pi_2(1670)$

essential to eliminate partial wave truncation

reaction mechanisms

reaction mechanisms

Conservation of probability

S-MATRIX RELOADED

The Analytic S-Matrix

P.V. LANDSHOFF D.I.OLIVE J.C.POLKINGHORNE

Cambridge University r

Weapons: analyticity unitarity

S-MATRIX RELOADED

The Analytic S-Matrix R.J. EDEN P.V. LANDSHOFF D.J.OLIVE

J.C.POLKINGHORNE

Cambridge University r

Outstanding theory issues

• Techniques of Amplitude Analysis

synergy with scattering on the lattice

Outstanding theory issues

Techniques of Amplitude Analysis

Understand reaction mechanisms

Ν

Β

B

Ν

Model

Analyses

Model-independent Analyses

Beyond the Isobar

Joint Physics Analysis Center program

Joint Physics Analysis Center program

