Light-by-light scattering: a paradigm for S-matrix methods

INDIANA UNIVERSITY

Tuesday June 9th, 2015 Michael Pennington

Light-by-light scattering: a paradigm for S-matrix methods

Two Photon Physics

Two Photon Physics at e⁺e⁻ colliders

Brodsky, Kinoshita & Terazawa

Brodsky, Kinoshita & Terazawa

$$\sigma \text{ (e^+e^-} \rightarrow \text{e^+e^-X) = } \frac{\alpha^2}{2\pi^2} \ln^2 \frac{s}{4m_e^2} \int \frac{dW^2}{W^2} f\left(\frac{W^2}{s}\right) \sigma (\gamma\gamma \rightarrow X; W^2)$$

where $f(x) = \frac{1}{2}(2+x)2 \ln(1/x) - (1-x)(3+x)$

big uncertainty in $(g-2)_{\mu}$

g-2 contributions

Dirac

Schwinger

 $a_{\ell} = (g-2)_{\ell}/2$

Mount Auburn Cemetery

$(g-2)_e$: Experiment v Standard Model $a_e [10^{-11}]$ $\Delta a_e [10^{-11}]$ QED $O(\alpha \rightarrow \alpha^5)$ 115965218.007 0.007 Electroweak 0.003 0.001 Hadronic 0.168 0.02

	1/ α (⁸⁷ Rb)	137.035999049 (9	
Experiment	115965218.073	0.028	
a brown on the brown			
Theory Total	115965218.178	0.02	

BNL $(g-2)_{\mu}$ experiment

a_{μ} is proportional to the difference between the spin precession and the rotation rate

$$\Delta \omega = \omega_a = \left(\frac{g-2}{2}\right) \frac{eB}{mc}$$

$$N(t) = N_{\theta} e^{-t/\tau} \left[1 + A\cos(\omega_a t + \phi)\right]$$

$(g-2)_{\mu}$: Experiment v Standard Model

	α _μ [10 ⁻¹¹]	Δ <i>a</i> _μ [10 ⁻¹¹]		
QED O($\alpha \rightarrow \alpha^5$)	116584718.95	0.04		
Electroweak	156.0	1.0		
Hadronic Vac Pol	6851	43		
Hadronic LbL	116	40		
Theory Total	116591839	59		
and the second second		at minipal at min		
Experiment	116592089	63		

$(g-2)_{\mu}$: Experiment v Standard Model

	α _μ [10 ⁻¹¹]	Δ <i>a</i> _μ [10 ⁻¹¹]		
QED O($\alpha \rightarrow \alpha^5$)	116584718.95	0.04		
Electroweak	156.0	1.0		
Hadronic Vac Pol	6851	43		
Hadronic LbL	116	40		
Theory Total	116591839	59		
Experiment	116592089	63		

Contributions	BFP	HKS	KN	MV	PdRV	N/JN
π ⁰ ,η,η'	85 +- 13	82.7+-6.4	83+-12	114+-10	114+-13	99+-16
π,K loops	-10 +- 12	-4.5+-8.1			-19+-19	-19+-13
axial vectors	2.5+-1.0	1.7+-1.7		22+- 5	15+-10	22+-5
scalars	-6.5+- 2.0				-7+-7	-7+-2
quark loops	21 +- 3	9.7+-11.1			2.3+-	21+-3
Total	83 +-32	89.6+-15.4	80+-40	136+-25	105+-26	116+-39

ππ, πη, **κ**κ, ...

ππ, πη, **κ**κ, ...

ĸ ν C ππ, πη, **ΚΚ̄**, ... **q**₄ **q**₁ q₂ **q**₃ λ μ

Two Photon Physics at e⁺e⁻ colliders

Brodsky, Kinoshita & Terazawa

input discontinuity into dispersion relation for $\,\Pi_{\kappa\lambda\mu\nu}$

$\gamma\gamma$ couplings

Amplitude analysis

separate quantum numbers
I, J,

$\gamma\gamma$ couplings

Amplitude analysis

separate quantum numbers
I, J,

cm frame

 $s = 4E^2$, $t = m^2 - 2E^2 + 2Ek \cos \vartheta$, $u = m^2 - 2E^2 - 2Ek \cos \vartheta$

Low energy theorems

Low energy theorems

Is amplitude just :

if not, why not ?

$$\gamma\gamma \longrightarrow \pi \pi$$

$$\mathcal{F}(s)$$
 for each $\mathbf{I}, \mathbf{J}, \lambda$

$$\gamma\gamma \longrightarrow \pi \pi$$

$$\mathcal{F}(s)$$
 for each $\mathbf{I}, \mathbf{J}, \lambda$

$$\gamma\gamma \longrightarrow \pi \pi$$

$$\mathcal{F}(s)$$
 for each $\, \mathbf{I}, \mathbf{J}, oldsymbol{\lambda} \,$

Calculating $\gamma\gamma \longrightarrow \pi^0\pi^0$

To perform a partial wave separation need to know the partial waves at low energy accurately

$$1 = \pi \pi \qquad \text{Im } T_{11}(s) = \rho_1(s) \quad T_{11}^*(s) \quad T_{11}(s)$$

$$\rho_1 = k_1 / E$$

= $\sqrt{1 - 4m_1^2 / s}$

$$\rho_1 = k_1 / E$$

= $\sqrt{1 - 4m_1^2 / s}$

Im $\mathcal{F}_{1}(s) = \rho_{1}(s) \mathcal{F}_{1}^{*}(s) T_{11}(s) = \rho_{1}(s) \mathcal{F}_{1}(s) T_{11}^{*}(s)$

Im
$$\mathcal{F}_1(s) = \rho_1(s) \mathcal{F}_1^*(s) T_{11}(s) = \rho_1(s) \mathcal{F}_1(s) T_{11}^*(s)$$

let $\mathcal{F}_1 = |\mathcal{F}_1| e^{i\varphi}$ recall $T_{11} = \frac{1}{\rho_1} \sin \delta e^{i\delta}$

Im
$$\mathcal{F}_1(s) = \rho_1(s) \mathcal{F}_1^*(s) T_{11}(s) = \rho_1(s) \mathcal{F}_1(s) T_{11}^*(s)$$

let $\mathcal{F}_1 = |\mathcal{F}_1| e^{i\phi}$ recall $T_{11} = \frac{1}{\rho_1} \sin \delta e^{i\delta}$ $\implies \sin \phi = \sin \delta$

Im
$$\mathcal{F}_{1}(s) = \rho_{1}(s) \mathcal{F}_{1}^{*}(s) T_{11}(s) = \rho_{1}(s) \mathcal{F}_{1}(s) T_{11}^{*}(s)$$

let $\mathcal{F}_1 = |\mathcal{F}_1| e^{i\phi}$ recall $T_{11} = \frac{1}{\rho_1} \sin \delta e^{i\delta}$ $\implies \sin \phi = \sin \delta$

Watson's final state interaction theorem:

 $\mathcal{F}(s)$ for each $\mathbf{I},\mathbf{J},\lambda$

$$\mathcal{F}(\mathbf{s}) = |\mathcal{F}(\mathbf{s})| \exp[\mathbf{i}\varphi(\mathbf{s})]$$
 for $\mathbf{s} > \mathbf{s}_{th}$

 $\mathcal{F}(s)$ for each $\mathbf{I}, \mathbf{J}, \lambda$

$$\mathcal{F}(\mathbf{s}) = |\mathcal{F}(\mathbf{s})| \exp[\mathbf{i}\varphi(\mathbf{s})]$$
 for $\mathbf{s} > \mathbf{s}_{th}$

define function $\Omega(s) = |\Omega(s)| \exp[i\varphi(s)]$ with only a right hand cut

$$\mathcal{F}(s)$$
 for each $\mathbf{I}, \mathbf{J}, \lambda$

$$\mathcal{F}(\mathbf{s}) = |\mathcal{F}(\mathbf{s})| \exp[\mathbf{i}\varphi(\mathbf{s})]$$
 for $\mathbf{s} > \mathbf{s}_{th}$

define function
$$\Omega(s) = |\Omega(s)| \exp[i\varphi(s)]$$
with only a right hand cut

then
$$\Omega(\mathbf{s}) = \exp\left[\frac{\mathbf{s}}{\pi} \int_{\mathbf{s}_{th}}^{\infty} \mathbf{ds}' \frac{\varphi(\mathbf{s}')}{\mathbf{s}'(\mathbf{s}'-\mathbf{s})}\right]$$

construct $g_1(s) \equiv \mathcal{F}(s) \Omega^{-1}(s)$ with only a left hand cut

$$\mathcal{F}(s) = rac{\Omega(s)}{\pi} \int_{-\infty}^{0} ds' \, rac{\mathrm{Im}\mathcal{H}(s')\,\Omega^{-1}(s')}{s'-s}$$

with no subtractions

construct
$$g_2(s) \equiv (\mathcal{F}(s) - \mathcal{H}(s)) \Omega^{-1}(s)$$
 then

$$\mathcal{F}(s) = \mathcal{H}(s) - \frac{\Omega(s)}{\pi} \int_{s_{th}}^{\infty} ds' \frac{\mathcal{H}(s') \operatorname{Im} \Omega^{-1}(s')}{s' - s}$$
with no subtractions
$$f(s) = \mathcal{F}(s) \text{ for each I, J, } \lambda$$

construct
$$g_3(s) \equiv (\mathcal{F}(s) - \mathcal{H}(s)) \Omega^{-1}(s)/s^2$$
 then

$$\mathcal{F}(s) = \mathcal{H}(s) + \mathfrak{C} \mathfrak{s} \Omega(s) - \frac{s^2 \Omega(s)}{\pi} \int_{s_{th}}^{\infty} ds' \frac{\mathcal{H}(s') \operatorname{Im} \Omega^{-1}(s')}{s'^2 (s' - s)}$$
with subtraction constant c fixed by χ PT
$$\mathcal{F}(s) \text{ for each I, J, } \lambda$$

$$\mathcal{F}(s) \equiv \mathcal{H}(\mathbf{s}) = \mathcal{B}(\mathbf{s}) + \mathcal{L}(\mathbf{s})$$

along left hand cut

For $J = \lambda = 0$, consider $(\mathcal{F}(s) - \mathcal{B}(s)) \Omega^{-1}(s)$ with I = 0,2

$$\mathcal{F}_{00}^{I}(s) = \mathcal{B}_{00}^{I}(s) + b^{I}s \,\Omega_{00}^{I}(s) + \frac{s^{2} \,\Omega_{00}^{I}(s)}{\pi} \int_{L} ds' \frac{\operatorname{Im}\left[\mathcal{L}_{00}^{I}(s')\right] \Omega_{00}^{I}(s')^{-1}}{s'^{2}(s'-s)} \\ - \frac{s^{2} \,\Omega_{00}^{I}(s)}{\pi} \int_{R} ds' \frac{\mathcal{B}_{00}^{I}(s') \operatorname{Im}\left[\Omega_{00}^{I}(s')^{-1}\right]}{s'^{2}(s'-s)}$$

with subtraction constants *b*^I

Consider $(\mathcal{F}(s) - \mathcal{B}(s)) \Omega^{-1}(s) / s^{n} (s - 4m_{\pi}^{2})^{J/2}$ with $n = 2 - \lambda/2$, and $J > 0, \lambda = 0,2$, I = 0,2

$$\mathcal{F}_{J\lambda}^{I}(s) = \mathcal{B}_{J\lambda}^{I}(s) + \frac{s^{n}(s - 4m_{\pi}^{2})^{J/2}}{\pi} \Omega_{J\lambda}^{I}(s) \int_{L} ds' \frac{\operatorname{Im}\left[\mathcal{L}_{J\lambda}^{I}(s')\right] \Omega_{J\lambda}^{I}(s')^{-1}}{s'^{n}(s' - 4m_{\pi}^{2})^{J/2}(s' - s)} - \frac{s^{n}(s - 4m_{\pi}^{2})^{J/2}}{\pi} \Omega_{J\lambda}^{I}(s) \int_{R} ds' \frac{B_{J\lambda}^{I}(s') \operatorname{Im}\left[\Omega_{J\lambda}^{I}(s')^{-1}\right]}{s'^{n}(s' - 4m_{\pi}^{2})^{J/2}(s' - s)}$$

Dispersive calculation of low energy partial waves

Unusual feature: large D-waves near threshold, I=2 as large as I=0

Born amplitude modified by final state interactions

