

Dispersion relations: some applications Light quark masses from $\eta \rightarrow 3\pi$

Emilie Passemar Indiana University/Jefferson Laboratory epassema@indiana.edu

1.3 QCD at low energy

• At low energy, impossible to describe QCD with perturbation theory since α_s becomes large

1.4 Chiral Symmetry

• Limit $m_k \rightarrow 0$

$$\mathcal{L}_{QCD} \rightarrow \left[\mathcal{L}_{QCD}^{0} = -\frac{1}{4} G_{\mu\nu} G^{\mu\nu} + \bar{q}_{L} i \gamma^{\mu} D_{\mu} q_{L} + \bar{q}_{R} i \gamma^{\mu} D_{\mu} q_{R} \right], q = \begin{pmatrix} u \\ d \\ s \end{pmatrix}$$
with $q_{L/R} \equiv \frac{1}{2} (1 \mp \gamma_{5}) q$
Symmetry: $G \equiv SU(3)_{L} \otimes SU(3)_{R} \rightarrow SU(3)_{V}$

• G spontaneously broken, ground state not invariant under $G \equiv SU(3)_L \otimes SU(3)_R$ but invariant under $SU(3)_{V=L+R}$

Goldstone bosons with quantum numbers of pseudoscalar mesons are generated *Goldstone's Theorem*

$$\Rightarrow \pi^+, \pi^0, \pi^-, K^+, K^0, \overline{K}^0, K^-, \eta$$
 massless states

Emilie Passemar

1.5 Construction of an effective theory: ChPT

- Degrees of freedom: Goldstone bosons (GB) Symmetry group: $G \equiv SU(3)_L \otimes SU(3)_R$
- Build all the corresponding invariant operators including explicit symmetry breaking parameters

$$\mathcal{L}_{ChPT} \equiv \mathcal{L}(U, \chi)$$

$$\mathcal{G}B's \quad Masses \sim m_q$$

• Goldstone bosons interact weakly at low energy and $m_u, m_d \ll m_s < \Lambda_{QCD}$ \implies expansion organized in external momenta and quark masses *Weinberg's power counting rule*

$$\mathcal{L}_{eff} = \sum_{d \ge 2} \mathcal{L}_d , \mathcal{L}_d = \mathcal{O}(p^d), p = \{q, m_q\} \quad p \ll \Lambda_H = 4\pi F_\pi \sim 1 \text{ GeV}$$

•
$$\mathcal{L}_{ChPT} = \mathcal{L}_{2} + \mathcal{L}_{4} + \mathcal{L}_{6} + \dots$$

 $\mathsf{LO}: \mathcal{O}(p^{2}) \quad \mathsf{NLO}: \mathcal{O}(p^{4}) \quad \mathsf{NNLO}: \mathcal{O}(p^{6})$

- Renormalizable and unitary order by order in the expansion
- The structure of the lagrangian is fixed by chiral symmetry but not the coupling constants → LECs appearing at each order

$$\mathcal{L}_{2}: \mathbf{F}_{0}, \mathbf{B}_{0}, \qquad \mathcal{L}_{4} = \sum_{i=1}^{10} \mathbf{L}_{i} O_{4}^{i}, \qquad \mathcal{L}_{6} = \sum_{i=1}^{90} \mathbf{C}_{i} O_{6}^{i}$$

- LECs describe the influence of heavy degrees of freedom not contained in the ChPT lagrangian
- Naturalness: LECs of order one

- The LECs calculable if QCD solvable, instead
 - Determined from experimental measurement
 - Estimated with models: Resonances, large N_C
 - Computed on the lattice

• In a specific process, only a limited number of LECs appear

Comparison of values of Q from Dashen corrections

Comparison of values of Q

Fair agreement with the determination from meson masses

Emilie Passemar

$$\eta$$

$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

Mass $m = 547.862 \pm 0.018$ MeV Full width $\Gamma = 1.31 \pm 0.05$ keV

C-nonconserving decay parameters

$$\begin{array}{ll} \pi^{+}\pi^{-}\pi^{0} & \text{left-right asymmetry} = (0.09 \substack{+0.11 \\ -0.12}) \times 10^{-2} \\ \pi^{+}\pi^{-}\pi^{0} & \text{sextant asymmetry} = (0.12 \substack{+0.10 \\ -0.11}) \times 10^{-2} \\ \pi^{+}\pi^{-}\pi^{0} & \text{quadrant asymmetry} = (-0.09 \pm 0.09) \times 10^{-2} \\ \pi^{+}\pi^{-}\gamma & \text{left-right asymmetry} = (0.9 \pm 0.4) \times 10^{-2} \\ \pi^{+}\pi^{-}\gamma & \beta \ (D\text{-wave}) = -0.02 \pm 0.07 \quad (S = 1.3) \end{array}$$

CP-nonconserving decay parameters

 $\pi^+\pi^-e^+e^-$ decay-plane asymmetry $A_{\phi}=(-0.6\pm3.1) imes10^{-2}$

Dalitz plot parameter

 $\pi^0 \pi^0 \pi^0 \qquad \alpha = -0.0315 \pm 0.0015$

			~ ~		0/	C 11	074
2γ		(39.4	$1 \pm 0.20)$	%	S=1.1	274
-02		(32.68	8±0.23)	% ₩ 10 ⁻⁴	S=1.1	179
$\frac{\pi}{2\pi}$		(2.7	± 0.5)	$\times 10^{-3}$	S=1.1	257
$\Delta \gamma$			2.2		$^{10}_{-4}$	CL = 90%	230
invisible			1.0		$^{-}$ 10 $^{-}$ 10	CL = 90%	214
invisible			1.0		~ 10	CL=9070	
	Cr	narged	moc	les	0.4		
charged modes $+ - 0$		(28.10	$0 \pm 0.34)$	%	S=1.2	
$\pi + \pi - \pi^{\circ}$		(22.92	$2\pm0.28)$	%	S=1.2	174
$\pi + \pi - \gamma$		(4.22	$2\pm0.08)$	% 	S=1.1	236
$e^+e^-\gamma$		(0.9	± 0.4)	$\times 10^{-4}$	5=1.3	274
$\mu^+\mu^-\gamma$		(5.1	± 0.4)	$\times 10^{-6}$	CI	255 274
e e ,,+,,-			5.0	+08)	$\times 10^{-6}$	CL=9076	214
$\mu^{\mu} \mu^{\mu}$ 2e ⁺ 2e ⁻		(2 4	⊥0.0) n+0.22)	$^{-10}_{-5}$		233
$\pi^{+}\pi^{-}e^{+}e^{-}(\gamma)$		(2.68	$8 \pm 0.22)$ $8 \pm 0.11)$	$\times 10^{-4}$		235
$e^+e^-u^+u^-$		<	1.6	010.11)	$\times 10^{-4}$	CL=90%	253
$2\mu^+ 2\mu^-$		<	3.6		$\times 10^{-4}$	CL=90%	161
$\mu^{+} \mu^{-} \pi^{+} \pi^{-}$		<	3.6		$\times 10^{-4}$	CL=90%	113
$\pi^+ e^- \overline{\nu}_e + \text{c.c.}$		<	1.7		$\times 10^{-4}$	CL=90%	256
$\pi^+\pi^-2\gamma$		<	2.1		$\times 10^{-3}$		236
$\pi^+\pi^-\pi^0\gamma$		<	5		imes 10 ⁻⁴	CL=90%	174
$\pi^{0}\mu^{+}\mu^{-}\gamma$		<	3		imes 10 ⁻⁶	CL=90%	210
Charge	e coniu	gation	(<i>C</i>)). Parit	v (P).		
Charge conjugation \times Parity (CP), or							
Lepton Family number (<i>LF</i>) violating modes							
$\pi^{0}\gamma$	С	<	9	-	imes 10 ⁻⁵	CL=90%	257
$\pi^+\pi^-$	P, CP	<	1.3		imes 10 ⁻⁵	CL=90%	236
$2\pi^{0}$	P, CP	<	3.5		imes 10 ⁻⁴	CL=90%	238
$2\pi^0\gamma$	С	<	5		imes 10 ⁻⁴	CL=90%	238
$3\pi^0\gamma$	С	<	6		imes 10 ⁻⁵	CL=90%	179
3γ	С	<	1.6		$\times 10^{-5}$	CL=90%	274
$4\pi^{0}$	P, CP	<	6.9		$\times 10^{-7}$	CL=90%	40
$\pi^{0}e^{+}e^{-}$	С	[f] <	4		$\times 10^{-5}$	CL=90%	257
$\pi^{o}\mu^{+}\mu^{-}$	С	[f] <	5		$\times 10^{-6}$	CL=90%	210
$\mu^+e^-+\mu^-e^+$	LF	<	6		$\times 10^{-6}$	CL=90%	264

Fraction (Γ_i/Γ)

 η DECAY MODES

Scale factor/ p Confidence level (MeV/c)

Emilie Passemar

43. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS, AND d FUNCTIONS

Emilie Passemar

4.2 Method: Representation of the amplitude

• Decomposition of the amplitude as a function of isospin states

$$M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$$

Fuchs, Sazdjian & Stern'93 Anisovich & Leutwyler'96

- $> M_I$ isospin / rescattering in two particles
- > Amplitude in terms of S and P waves \implies exact up to NNLO ($\mathcal{O}(p^6)$)
- Main two body rescattering corrections inside M_I
- Functions of only one variable with only right-hand cut of the partial wave $\implies disc[M_I(s)] \equiv disc[f_\ell^I(s)]$
- Elastic unitarity Watson's theorem

with $t_{\ell}(s)$ partial wave of elastic \mathbb{K} scattering

4.4 Dispersion Relations for the $M_{I}(s)$

• Elastic Unitarity

[l=1 for I=1, l=0 otherwise]

$$\implies disc[M_I] = disc[f_1^I(s)] = \theta(s - 4M_\pi^2) [M_I(s) + \hat{M}_I(s)] \sin \delta_1^I(s) e^{-i\delta_1^I(s)}$$

 $\delta^{I}_{
m l}$ phase of the partial wave $f^{I}_{
m l}(s)$

 $\pi\pi$ phase shift

 \Rightarrow Watson theorem: elastic $\pi\pi$ scattering phase shifts

Solution: Inhommogeneous Omnès problem

$$M_{0}(s) = \Omega_{0}(s) \left(\alpha_{0} + \beta_{0}s + \gamma_{0}s^{2} + \frac{s^{3}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{3}} \frac{\sin \delta_{0}^{0}(s') \hat{M}_{0}(s')}{|\Omega_{0}(s')|(s'-s-i\varepsilon)} \right)$$

Omnès function
Similarly for M₁ and M₂
$$\left[\Omega_{I}(s) = \exp\left(\frac{s}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\delta_{1}^{I}(s')}{s'(s'-s-i\varepsilon)}\right) \right]$$

3.3 Dispersion Relations for the $M_{I}(s)$

• Unitary relation for M_I(s):

$$\frac{disc \ M_{I}(s) = 2i \left(M_{I}(s) + \right) t_{\pi\pi \to \pi\pi}^{*}(s) \rho(s) \ \theta\left(s - 4M_{\pi}^{2}\right)}{\text{right-hand cut}}$$

$$\text{Elastic Unitarity}$$

$$\text{disc} \left[\swarrow \left[1 \right] = 2i \left(M_{I}(s) + \right) t_{\pi\pi \to \pi\pi}^{*}(s) \rho(s) = \sin \delta_{I}(s) e^{-i\delta_{I}(s)} \right]$$

Right-hand cut only Omnès problem

$$M_{I}(s) = P_{I}(s) \ \Omega_{I}(s) \qquad \left[\Omega_{I}(s) = \exp\left(\frac{s}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\delta_{I}(s')}{s'(s'-s-i\varepsilon)}\right) \right]$$

• *Watson's theorem* in the elastic region: Inputs needed : S and P-wave phase shifts of $\pi\pi$ scattering

Emilie Passemar

Inputs: $\pi\pi$ scattering

ππ phase shifts extracted combining all experimental results solving Roy equations A large number of theoretical analyses Ananthanarayan et al'01, Colangelo et al'01, Descotes-Genon et al'01, Garcia-Martin et al'09,'11, Colangelo et al.'11 and all agree

3.3 Dispersion Relations for the $M_{I}(s)$

• Unitary relation for M_I(s):

$$\frac{disc \ M_{I}(s) = 2i \left(M_{I}(s) + \hat{M}_{I}(s) \right) \sin \delta_{I}(s) e^{-i\delta_{I}(s)} \theta \left(s - 4M_{\pi}^{2} \right)}{\text{right-hand cut}}$$

$$\text{Dispersion relation for the } M_{I}'s$$

$$\frac{M_{I}(s) = \Omega_{I}(s) \left(P_{I}(s) + \frac{s^{n}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{ds'}{s'''} \frac{\sin \delta_{I}(s') \hat{M}_{I}(s')}{|\Omega_{I}(s')| \left(s' - s - i\varepsilon \right)} \right)} \left[\Omega_{I}(s) = \exp \left(\frac{s}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\delta_{I}(s')}{s'(s' - s - i\varepsilon)} \right) \right]$$

Omnès function

• $\hat{M}_{I}(s)$: singularities in the t and u channels, depend on the other $M_{I}(s)$ Crossed-channel scattering between s-, t-, and u-channel Angular averages of the other functions Coupled equations $\hat{M}_{I}(s)$ Khuri & Treiman'60Aitchison'77Anisovich & Leutwyler'98

Emilie Passemar

Hat functions

• Subtract $M_{I}(s)$ from the partial wave projection of M(s,t,u)

• Ex:
$$\hat{M}_0(s) = \frac{2}{3} \langle M_0 \rangle + 2(s - s_0) \langle M_1 \rangle + \frac{20}{9} \langle M_2 \rangle + \frac{2}{3} \kappa(s) \langle zM_1 \rangle$$

where
$$\langle z^n M_I \rangle (s) = \frac{1}{2} \int_{-1}^{1} dz \ z^n M_I (t(s,z)), \ z = \cos \theta$$
 scattering angle

Non trivial angular averages include to deform the integration path to avoid crossing cuts *Anisovich & Anselm'66* Generates complex analytic structure (3-particle cuts) • Cauchy Theorem: build the FF in the entire phase space

$$F(s) = \frac{1}{2i\pi} \oint_{C} \frac{F(s')}{(s'-s)} ds'$$

= $\frac{1}{\pi} \int_{s_{th}}^{\Lambda^{2}} ds' \frac{disc(F(s))}{s'-s-i\varepsilon} + \frac{1}{2i\pi} \oint_{s=|\Lambda^{2}|} ds' \frac{F(s')}{s'-s}$
$$\bigwedge \to \infty$$

$$F(s) = \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{disc[F(s')]}{s'-s-i\varepsilon} ds'$$
 Dispersion Relation

1

4.4 Dispersion Relations for the $M_{I}(s)$

•
$$M_0(s) = \Omega_0(s) \left(\alpha_0 + \beta_0 s + \gamma_0 s^2 + \frac{s^3}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'^3} \frac{\sin \delta_0^0(s') \hat{M}_0(s')}{|\Omega_0(s')| (s' - s - i\varepsilon)} \right)$$

Omnès function

Similarly for M_1 and M_2

- Four subtraction constants to be determined: $\alpha_0,\,\beta_0,\,\gamma_0$ and one more in $M_1\,(\beta_1)$
- Inputs needed for these and for the $\pi\pi$ phase shifts δ_{ℓ}^{I}
 - M_0 : $\pi\pi$ scattering, $\ell=0$, I=0
 - M_1 : $\pi\pi$ scattering, $\ell=1$, I=1
 - M_2 : $\pi\pi$ scattering, ℓ =0, I=2
- Solve dispersion relations numerically by an iterative procedure

3.5 Subtraction constants

• Extension of the numbers of parameters compared to Anisovich & Leutwyler'96

$$P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3$$
$$P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2$$
$$P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2$$

- In the work of Anisovich & Leutwyler'96 matching to one loop ChPT Use of the SU(2) x SU(2) chiral theorem
 ➡ The amplitude has an Adler zero along the line s=u
- Now data on the Dalitz plot exist from KLOE, WASA and MAMI
 - \Rightarrow Use the data to directly fit the subtraction constants
- Solution *linear* in the *subtraction constants* $M(s,t,u) = \alpha_0 M_{\alpha_0}(s,t,u) + \beta_0 M_{\beta_0}(s,t,u) + ...$ makes the fit much easier

Emilie Passemar

Anisovich & Leutwyler'96

Experimental measurements

Dalitz plot measurement : Amplitude expanded in X and Y around X=Y=0

$$|A(s,t,u)|^{2} = \Gamma(X,Y) = N(1 + aY + bY^{2} + dX^{2} + fY^{3})$$

$$X = \frac{\sqrt{3} (T_{+} - T_{-})}{Q_{c}} = \frac{\sqrt{3}}{2M_{n}Q_{c}} (u - t)$$

$$Y = \frac{3T_0}{Q_c} - 1 = \frac{3}{2M_\eta Q_c} \left(\left(M_\eta - M_{\pi^0} \right)^2 - s \right) - 1$$

with T_i : kinetic energy of π^i in the η rest frame

and
$$Q_c \equiv T_0 - T_+ - T_- = M_\eta - 2M_{\pi^+} - M_{\pi^0}$$

Emilie Passemar

Experimental measurements : Charged channel

• Charged channel measurements with high statistics from *KLOE* and *WASA* e.g. *KLOE*: ~1.3 x 10⁶ $\eta \rightarrow \pi^+ \pi^- \pi^0$ events from $e^+e^- \rightarrow \phi \rightarrow \eta \gamma$

Experimental measurements : Neutral channel

• Neutral channel measurements with high statistics from *MAMI-B*, *MAMI-C* and *WASA* e.g. *MAMI-C*: ~3 x 10⁶ $\eta \rightarrow 3\pi^0$ events from $\gamma p \rightarrow \eta p$

$$A_n(s,t,u)\Big|^2 = N\left(1+2\alpha Z+6\beta Y\left(X^2-\frac{Y^2}{3}\right)+2\gamma Z^2\right)$$

Extraction of the slope :

 $Z = \frac{2}{3} \sum_{i=1}^{3} \left(\frac{3T_i}{Q_n} - 1 \right)$

Emilie Passemar

 $= X^2 + Y^2$

Experimental measurements : Neutral channel

• Neutral channel measurements with high statistics from *MAMI-B*, *MAMI-C* and *WASA* e.g. *WASA*: ~1.2 x 10⁵ $\eta \rightarrow 3\pi^0$ events from pp $\rightarrow \eta$ pp

$$A_n(s,t,u)\Big|^2 = N\left(1+2\alpha Z+6\beta Y\left(X^2-\frac{Y^2}{3}\right)+2\gamma Z^2\right)$$

$$Z = \frac{2}{3} \sum_{i=1}^{3} \left(\frac{3T_i}{Q_n} - 1 \right)^2 = X^2 + Y^2$$
$$Q_n \equiv M_\eta - 3M_{\pi^0}$$

WASA'09

$$X = \frac{\sqrt{3} (T_{+} - T_{-})}{Q_{c}} = \frac{\sqrt{3}}{2M_{\eta}Q_{c}} (u - t)$$

$$Y = \frac{3T_0}{Q_c} - 1 = \frac{3}{2M_{\eta}Q_c} \left(\left(M_{\eta} - M_{\pi^0} \right)^2 - s \right) - 1$$

3.4 Subtraction constants

• As we have seen, only Dalitz plots are measured, unknown normalization!

$$A(s,t,u) = -\frac{1}{Q^2} \frac{M_K^2}{M_\pi^2} \frac{M_K^2 - M_\pi^2}{3\sqrt{3}F_\pi^2} M(s,t,u)$$

$$Q^2 \equiv \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$$

To determine Q, one needs to know the normalization

➡ For the normalization one needs to use ChPT

• The subtraction constants are

 $P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3$ $P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2$ $P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2$

Only 6 coefficients are of physical relevance

3.4 Subtraction constants

• The subtraction constants are

$$P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3$$
$$P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2$$
$$P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2$$

Only 6 coefficients are of physical relevance

- They are determined from
 - Matching to one loop ChPT $\implies \delta_0 = \gamma_1 = 0$
 - Combine ChPT with fit to the data $\implies \delta_{_0}$ and $\gamma_{_1}$ are determined from the data

Dispersive approach

• Dispersion Relations: extrapolate ChPT at higher energies

 Important corrections in the physical region taken care of by the dispersive treatment!

4.3 Qualitative results of our analysis

• Plot of Q versus α :

• All the data give consistent results. The preliminary outcome for Q is intermediate between the lattice result and the one of Kastner and Neufeld.

 $\eta \rightarrow 3\pi$

• Isospin violating process \implies possibility to extract the quark mass ratio Q:

$$\Gamma_{\eta \to 3\pi} \propto \int |A(s,t,u)|^2 \propto Q^{-4}$$

$$Q^{2} \equiv \frac{m_{s}^{2} - \hat{m}^{2}}{m_{d}^{2} - m_{u}^{2}} \qquad \left[\widehat{m} \equiv \frac{m_{d} + m_{u}}{2} \right]$$

$$A(s,t,u) = \frac{N}{Q^2}M(s,t,u)$$

 M(s,t,u) determined through the dispersive analysis of the data but for N one has to rely on ChPT

• Analysis for JPAC by *P. Guo, I. Danilkin, D. Schott et al'15* using *WASA* data $Q = 21.4 \pm 0.4$ Analysis of *CLAS* data

2.4 Results: quark mass ratios

5. Back-up

2.2 Extraction of Q

• Extraction of the quark masses:

$$Q^2 \propto \left(m_u - m_d\right)$$

ExperimentComputed with
dispersive methods
+ ChPTKLOE (Italy),+ ChPTMAMI (Germany),CLAS (JLab, USA)

• Dispersive method: Take into account the $\pi\pi$ final state interactions

Discontinuities of the M_I(s)

• Ex:
$$\hat{M}_0(s) = \frac{2}{3} \langle M_0 \rangle + 2(s - s_0) \langle M_1 \rangle + \frac{20}{9} \langle M_2 \rangle + \frac{2}{3} \kappa(s) \langle zM_1 \rangle$$

where $\langle z^n M_I \rangle(s) = \frac{1}{2} \int_{-1}^{1} dz \ z^n M_I(t(s,z)), \ z = \cos\theta$ scattering angle

Non trivial angular averages index in the integration path to avoid crossing cuts Anisovich & Anselm'66

Discontinuities of the M_I(s)

• Ex:
$$\hat{M}_0(s) = \frac{2}{3} \langle M_0 \rangle + 2(s - s_0) \langle M_1 \rangle + \frac{20}{9} \langle M_2 \rangle + \frac{2}{3} \kappa(s) \langle zM_1 \rangle$$

where $\langle z^n M_I \rangle(s) = \frac{1}{2} \int_{-1}^{1} dz \ z^n M_I(t(s,z)), \ z = \cos\theta$ scattering angle

Non trivial angular averages index in the integration path to avoid crossing cuts Anisovich & Anselm'66

3.7 Comparison of values of Q

Fair agreement with the determination from meson masses