Dispersion relations: some applications Light quark masses from $\eta \rightarrow 3 \pi$

Emilie Passemar Indiana University/Jefferson Laboratory epassema@indiana.edu

1.3 QCD at low energy

- At low energy, impossible to describe QCD with perturbation theory since α_{s} becomes large

Need non perturbative methods

1.4 Chiral Symmetry

- Limit $\boldsymbol{m}_{\boldsymbol{k}} \boldsymbol{\rightarrow} \mathbf{0}$

$$
\mathcal{L}_{Q C D} \rightarrow \mathcal{L}_{Q C D}^{0}=-\frac{1}{4} G_{\mu \nu} G^{\mu \nu}+\bar{q}_{L} i \gamma^{\mu} D_{\mu} q_{L}+\bar{q}_{R} i \gamma^{\mu} D_{\mu} q_{R}, q=\left(\begin{array}{l}
u \\
d \\
s
\end{array}\right)
$$

$$
\text { with } \boldsymbol{q}_{L / R} \equiv \frac{\mathbf{1}}{\mathbf{2}}\left(\mathbf{1} \mp \gamma_{5}\right) q
$$

Symmetry: $G \equiv S U(3)_{L} \otimes S U(3)_{R} \rightarrow S U(3)_{V}$

- G spontaneously broken, ground state not invariant under $\boldsymbol{G} \equiv \boldsymbol{S} \boldsymbol{U}(\mathbf{3})_{L} \otimes \boldsymbol{S} \boldsymbol{U}(\mathbf{3})_{R}$ but invariant under $\boldsymbol{S U}(\mathbf{3})_{V=L+R}$
\square Goldstone bosons with quantum numbers of pseudoscalar mesons are generated

Goldstone's Theorem
$\Rightarrow \pi^{+}, \pi^{\mathbf{0}}, \pi^{-}, \boldsymbol{K}^{+}, K^{\mathbf{0}}, \overline{\boldsymbol{K}}^{\mathbf{0}}, \boldsymbol{K}^{-}, \boldsymbol{\eta}$ massless states

1.5 Construction of an effective theory: ChPT

- Degrees of freedom: Goldstone bosons (GB)

Symmetry group: $G \equiv S U(\mathbf{3})_{L} \otimes S U(3)_{R}$

- Build all the corresponding invariant operators including explicit symmetry breaking parameters

- Goldstone bosons interact weakly at low energy and $m_{u}, m_{d} \ll m_{s}<\Lambda_{Q C D}$ \Rightarrow expansion organized in external momenta and quark masses

Weinberg's power counting rule

$$
\mathcal{L}_{e f f}=\sum_{d \geq 2} \mathcal{L}_{d}, \mathcal{L}_{d}=\mathcal{O}\left(p^{d}\right), p \equiv\left\{q, m_{q}\right\}
$$

$$
\mathrm{p} \ll \Lambda_{H}=4 \pi F_{\pi} \sim 1 \mathrm{GeV}
$$

1.6 Chiral expansion

$-\mathcal{L}_{C h P T}=\underbrace{\mathcal{L}_{2}}_{\text {LO }: \mathcal{O}\left(p^{2}\right)}+\underbrace{\mathcal{L}_{4}}_{\text {NLO }: \mathcal{O}\left(p^{4}\right)}+\underbrace{\mathcal{L}_{6}}_{\text {NNLO }: \mathcal{O}\left(p^{6}\right)}+\ldots$.

- Renormalizable and unitary order by order in the expansion
- The structure of the lagrangian is fixed by chiral symmetry but not the coupling constants \rightarrow LECs appearing at each order

$$
\mathcal{L}_{2}: F_{0}, B_{0}, \quad \mathcal{L}_{4}=\sum_{i=1}^{10} L_{i} O_{4}^{i}, \quad \mathcal{L}_{6}=\sum_{i=1}^{90} C_{i} O_{6}^{i}
$$

- LECs describe the influence of heavy degrees of freedom not contained in the ChPT lagrangian
- Naturalness: LECs of order one

1.6 Chiral expansion

- The LECs calculable if QCD solvable, instead
- Determined from experimental measurement
- Estimated with models: Resonances, large N_{C}
- Computed on the lattice
- In a specific process, only a limited number of LECs appear

1.6 Chiral expansion

- Ex: $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0} \Rightarrow A=A_{2}+A_{4}+A_{6}+\ldots$
$>$ Tree level $\mathcal{O}\left(\boldsymbol{p}^{\mathbf{2}}\right): \eta \overline{p_{\eta}}$
$>$ One loop $\mathcal{O}\left(p^{4}\right):$

$\pi \pi \rightarrow \pi \pi$ at tree

1.6 Chiral expansion

- Ex: $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0} \Rightarrow A=A_{2}+A_{4}+A_{6}+\ldots$
$>$ Tree level $\mathcal{O}\left(\boldsymbol{p}^{\mathbf{2}}\right): \eta \overline{p_{\eta}}$
$>$ One loop $\mathcal{O}\left(p^{4}\right):$

$\pi \pi \rightarrow \pi \pi$ at tree

Comparison of values of \mathbf{Q} from Dashen corrections

Comparison of values of \mathbf{Q}

\square Fair agreement with the determination from meson masses

$$
I^{G}\left(J^{P C}\right)=0^{+}\left(0^{-+}\right)
$$

Mass $m=547.862 \pm 0.018 \mathrm{MeV}$
Full width $\Gamma=1.31 \pm 0.05 \mathrm{keV}$

C-nonconserving decay parameters

$$
\begin{array}{ll}
\pi^{+} \pi^{-} \pi^{0} & \text { left-right asymmetry }=\left(0.09_{-0.12}^{+0.11}\right) \times 10^{-2} \\
\pi^{+} \pi^{-} \pi^{0} & \text { sextant asymmetry }=\left(0.12_{-0.11}^{+0.10}\right) \times 10^{-2} \\
\pi^{+} \pi^{-} \pi^{0} & \text { quadrant asymmetry }=(-0.09 \pm 0.09) \times 10^{-2} \\
\pi^{+} \pi^{-} \gamma & \text { left-right asymmetry }=(0.9 \pm 0.4) \times 10^{-2} \\
\pi^{+} \pi^{-} \gamma & \beta(D \text {-wave })=-0.02 \pm 0.07 \quad(S=1.3)
\end{array}
$$

$C P$-nonconserving decay parameters

$$
\pi^{+} \pi^{-} e^{+} e^{-} \text {decay-plane asymmetry } A_{\phi}=(-0.6 \pm 3.1) \times 10^{-2}
$$

Dalitz plot parameter

$$
\pi^{0} \pi^{0} \pi^{0} \quad \alpha=-0.0315 \pm 0.0015
$$

2γ
$3 \pi^{0}$
$\pi^{0} 2 \gamma$
$2 \pi^{0} 2 \gamma$
4γ
invisible
charged modes
$\pi^{+} \pi^{-} \pi^{0}$
$\pi^{+} \pi^{-} \gamma$
$e^{+} e^{-} \gamma$
$\mu^{+} \mu^{-} \gamma$
$e^{+} e^{-}$
$\mu^{+} \mu^{-}$
$2 e^{+} 2 e^{-}$
$\pi^{+} \pi^{-} e^{+} e^{-}(\gamma)$
$e^{+} e^{-} \mu^{+} \mu^{-}$
$2 \mu^{+} 2 \mu^{-}$
$\mu^{+} \mu^{-} \pi^{+} \pi^{-}$
$\pi^{+} e^{-} \bar{\nu}_{e}+$ с.с.
$\pi^{+} \pi^{-2 \gamma}$
$\pi^{+} \pi^{-} \pi^{0} \gamma$
$\pi^{0} \mu^{+} \mu^{-} \gamma$

(39.41 ± 0.20)	$\%$	$\mathrm{~S}=1.1$	274
(32.68 ± 0.23)	$\%$	$\mathrm{~S}=1.1$	179
$(2.7 \pm 0.5) \times 10^{-4}$	$\mathrm{~S}=1.1$	257	
<1.2	$\times 10^{-3}$	$\mathrm{CL}=90 \%$	238
<2.8	$\times 10^{-4}$	$\mathrm{CL}=90 \%$	274
<1.0	$\times 10^{-4}$	$\mathrm{CL}=90 \%$	-

Charged modes

(28.10 ± 0.34)	$\%$	$\mathrm{~S}=1.2$	-
(22.92 ± 0.28)	$\%$	$\mathrm{~S}=1.2$	174
(4.22 ± 0.08)	$\%$	$\mathrm{~S}=1.1$	236
$(6.9 \pm 0.4) \times 10^{-3}$	$\mathrm{~S}=1.3$	274	
$(3.1 \pm 0.4) \times 10^{-4}$		253	
$<$			
$(5.6$	$\times 10^{-6}$	$\mathrm{CL}=90 \%$	274
$(5.8 \pm 0.8) \times 10^{-6}$		253	
$(2.40 \pm 0.22) \times 10^{-5}$		274	
$(2.68 \pm 0.11) \times 10^{-4}$		235	
$<$	$\times 10^{-4}$	$\mathrm{CL}=90 \%$	253
$<$	$\times 10^{-4}$	$\mathrm{CL}=90 \%$	161
<3.6	$\times 10^{-4}$	$\mathrm{CL}=90 \%$	113
<1.7	$\times 10^{-4}$	$\mathrm{CL}=90 \%$	256
<2.1	$\times 10^{-3}$		236
<5	$\times 10^{-4}$	$\mathrm{CL}=90 \%$	174
<3	$\times 10^{-6}$	$\mathrm{CL}=90 \%$	210

Charge conjugation (C), Parity (P),
Charge conjugation \times Parity (CP), or Lepton Family number (LF) violating modes

$\pi^{0} \gamma$	C	<9	$\times 10^{-5}$	$C L=90 \%$	257
$\pi^{+} \pi^{-}$	$P, C P$	<1.3	$\times 10^{-5}$	$C L=90 \%$	236
$2 \pi^{0}$	$P, C P$	<3.5	$\times 10^{-4}$	$C L=90 \%$	238
$2 \pi^{0} \gamma$	C	<5	$\times 10^{-4}$	$C L=90 \%$	238
$3 \pi^{0} \gamma$	C	<6	$\times 10^{-5}$	$C L=90 \%$	179
3γ	C	<1.6	$\times 10^{-5}$	$C L=90 \%$	274
$4 \pi^{0}$	$P, C P$	<6.9	$\times 10^{-7}$	$C L=90 \%$	40
$\pi^{0} e^{+} e^{-}$	C	$[f]<4$	$\times 10^{-5}$	$C L=90 \%$	257
$\pi^{0} \mu^{+} \mu^{-}$	C	$[f]<5$	$\times 10^{-6}$	$C L=90 \%$	210
$\mu^{+} e^{-}+\mu^{-} e^{+}$	$L F$	<6	$\times 10^{-6}$	$C L=90 \%$	264

43. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS, AND dFUNCTIONS

Note: A square-root sign is to be understood over every coefficient, e.g., for $-8 / 15 \mathrm{read}-\sqrt{8 / 15}$.

$$
\begin{aligned}
& Y_{1}^{0}=\sqrt{\frac{3}{4 \pi}} \cos \theta \\
& Y_{1}^{1}=-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \phi} \\
& Y_{2}^{0}=\sqrt{\frac{5}{4 \pi}}\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right) \\
& Y_{2}^{1}=-\sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{i \phi} \\
& Y_{2}^{2}=\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \sin ^{2} \theta e^{2 i \phi} \\
& \begin{array}{r}
3 \\
0 \\
1 / 5 \\
3 / 5 \\
1 / 5 \\
\\
\\
\\
\\
d
\end{array} \\
& \begin{array}{r}
2 \\
0 \\
1 / 23
\end{array}
\end{aligned}
$$

Notation:	J	J	\ldots
M	M	\ldots	

4.2 Method: Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)
$$

Fuchs, Sazdjian \& Stern'93
Anisovich \& Leutwyler'96
$>\boldsymbol{M}_{\boldsymbol{I}}$ isospin / rescattering in two particles
$>$ Amplitude in terms of S and P waves \square exact up to NNLO $\left(\mathcal{O}\left(\mathrm{p}^{6}\right)\right)$
$>$ Main two body rescattering corrections inside M_{1}

- Functions of only one variable with only right-hand cut of the partial wave $\breve{ } \quad \operatorname{disc}\left[M_{I}(s)\right] \equiv \operatorname{disc}\left[f_{\ell}^{I}(s)\right]$
- Elastic unitarity Watson's theorem $\operatorname{disc}\left[f_{\ell}^{I}(s)\right] \propto t_{\ell}^{*}(s) f_{\ell}^{I}(s) \quad \begin{aligned} & \text { with } t_{\ell}(s) \text { partial wave of elastic 団団 } \\ & \text { scattering }\end{aligned}$

4.4 Dispersion Relations for the $\mathbf{M}_{\mathrm{I}}(\mathrm{s})$

- Elastic Unitarity

$$
[1=1 \text { for } I=1,1=0 \text { otherwise }]
$$

$\Rightarrow \operatorname{disc}\left[M_{I}\right]=\operatorname{disc}\left[f_{1}^{I}(s)\right]=\theta\left(s-4 M_{\pi}^{2}\right)\left[M_{I}(s)+\hat{M}_{I}(s)\right] \sin \delta_{1}^{I}(s) e^{-i \delta_{1}^{I}(s)}$
$\boldsymbol{\delta}_{1}^{I}$ phase of the partial wave $\boldsymbol{f}_{1}^{I}(\boldsymbol{s})$
mim phase shift
\Rightarrow Watson theorem: elastic $\Pi \pi$ scattering phase shifts

- Solution: Inhommogeneous Omnès problem

$$
M_{0}(s)=\Omega_{0}(s)\left(\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\frac{s^{3}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime 3}} \frac{\sin \delta_{0}^{0}\left(s^{\prime}\right) \hat{M}_{0}\left(s^{\prime}\right)}{\Omega_{0}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right.
$$

Omnès function
Similarly for M_{1} and M_{2}

$$
\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{1}^{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right]
$$

3.3 Dispersion Relations for the $\mathbf{M}_{\mathrm{I}}(\mathrm{s})$

- Unitary relation for $\mathrm{M}_{\mathrm{l}}(\mathrm{s})$:

$$
\operatorname{disc} M_{I}(s)=2 i\left(M_{I}(s)+\quad\right) t_{\pi \pi \rightarrow \pi \pi}^{*}(s) \rho(s) \theta\left(s-4 M_{\pi}^{2}\right)
$$

right-hand cut
Elastic Unitarity

- Right-hand cut only \Rightarrow Omnès problem

$$
M_{I}(s)=P_{I}(s) \Omega_{I}(s)
$$

$$
\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right]
$$

- Watson's theorem in the elastic region: Inputs needed : S and P-wave phase shifts of $\pi \pi$ scattering

Inputs: $\pi \pi$ scattering

Garcia-Martin et al.'11

- $\quad \pi \pi$ phase shifts extracted combining all experimental results solving Roy equations \square A large number of theoretical analyses Ananthanarayan et al'01, Colangelo et al'01, Descotes-Genon et al'01, Garcia-Martin et al'09,'11, Colangelo et al.'11 and all agree

3.3 Dispersion Relations for the $\mathbf{M}_{\mathrm{I}}(\mathrm{s})$

- Unitary relation for $\mathrm{M}_{\mathrm{l}}(\mathrm{s})$:

$$
M_{I}(s)=\underset{\Omega_{I}(s)}{\Omega_{I}\left(P_{I}(s)+\frac{s^{n}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime n}} \frac{\sin \delta_{I}\left(s^{\prime}\right) \hat{M}_{I}\left(s^{\prime}\right)}{\Omega_{I}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right)} \quad\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right]
$$

Omnès function

- $\hat{M}_{I}(s)$: singularities in the t and u channels, depend on the other $\boldsymbol{M}_{I}(s)$ Crossed-channel scattering between s-, t-, and u-channel Angular averages of the other functions

Hat functions

- Subtract $\boldsymbol{M}_{I}(s)$ from the partial wave projection of $\boldsymbol{M}(\boldsymbol{s}, \boldsymbol{t}, \boldsymbol{u})$
- Ex: $\hat{M}_{0}(s)=\frac{2}{3}\left\langle M_{0}\right\rangle+2\left(s-s_{0}\right)\left\langle M_{1}\right\rangle+\frac{20}{9}\left\langle M_{2}\right\rangle+\frac{2}{3} \kappa(s)\left\langle z M_{1}\right\rangle$
where $\left\langle z^{n} M_{I}\right\rangle(s)=\frac{1}{2} \int_{-1}^{1} d z z^{n} M_{I}(t(s, z)), \quad z=\cos \theta \quad$ scattering angle
Non trivial angular averages \square need to deform the integration path to avoid crossing cuts
Generates complex analytic structure (3-particle cuts)

1.4 Determination of the form factors : $F_{\pi}(s)$

- Cauchy Theorem: build the FF in the entire phase space

$$
\begin{aligned}
F(s) & =\frac{1}{2 i \pi} \oint_{C} \frac{F\left(s^{\prime}\right)}{\left(s^{\prime}-s\right)} d s^{\prime} \\
& =\frac{1}{\pi} \int_{s_{t h}}^{\Lambda^{2}} d s^{\prime} \frac{\operatorname{disc}(F(s))}{s^{\prime}-s-i \varepsilon}+\frac{1}{2 i \pi} \oint_{s=\left|\Lambda^{2}\right|} d s^{\prime} \frac{F\left(s^{\prime}\right)}{s^{\prime}-s}
\end{aligned}
$$

$$
\stackrel{\square}{\square} \boldsymbol{F}(\boldsymbol{s})=\frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{\boldsymbol{d i s c}\left[\boldsymbol{F}\left(\boldsymbol{s}^{\prime}\right)\right]}{\boldsymbol{s}^{\prime}-\boldsymbol{s}-\boldsymbol{i} \boldsymbol{\varepsilon}} \boldsymbol{d s ^ { \prime }} \text { Dispersion Relation }
$$

4.4 Dispersion Relations for the $\mathrm{M}_{\mathrm{I}}(\mathrm{s})$

-

$$
M_{0}(s)=\Omega_{0}(s)\left(\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\frac{s^{3}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime 3}} \frac{\sin \delta_{0}^{0}\left(s^{\prime}\right) \hat{M}_{0}\left(s^{\prime}\right)}{\Omega_{0}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right)
$$

Omnès function

Similarly for M_{1} and M_{2}

- Four subtraction constants to be determined: $\alpha_{0}, \beta_{0}, \gamma_{0}$ and one more in $\mathrm{M}_{1}\left(\beta_{1}\right)$
- Inputs needed for these and for the $\pi \pi$ phase shifts $\boldsymbol{\delta}_{\ell}^{I}$
- M_{0} : $\pi \pi$ scattering, $\ell=0, \mathrm{l}=0$
- M_{1} : $\pi \pi$ scattering, $\ell=1, l=1$
- $\mathrm{M}_{2}: \pi \pi$ scattering, $\ell=0, \mathrm{l}=2$
- Solve dispersion relations numerically by an iterative procedure

3.4 Iterative Procedure

3.5 Subtraction constants

- Extension of the numbers of parameters compared to Anisovich \& Leutwyler'96
$P_{0}(s)=\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\delta_{0} s^{3}$
$P_{1}(s)=\alpha_{1}+\beta_{1} s+\gamma_{1} s^{2}$
$P_{2}(s)=\alpha_{2}+\beta_{2} s+\gamma_{2} s^{2}$
- In the work of Anisovich \& Leutwyler'96 matching to one loop ChPT Use of the $\operatorname{SU}(2) \times \operatorname{SU}(2)$ chiral theorem
\Rightarrow The amplitude has an Adler zero along the line s=u
- Now data on the Dalitz plot exist from KLOE, WASA and MAMI
\Rightarrow Use the data to directly fit the subtraction constants
- Solution linear in the subtraction constants $M(s, t, u)=\alpha_{0} M_{\alpha_{0}}(s, t, u)+\beta_{0} M_{\beta_{0}}(s, t, u)+\ldots$
\Rightarrow makes the fit much easier

Experimental measurements

- Dalitz plot measurement : Amplitude expanded in X and Y around $X=Y=0$

$$
\left.A(s, t, u)\right|^{2}=\Gamma(X, Y)=N\left(1+a Y+b Y^{2}+d X^{2}+f Y^{3}\right)
$$

$$
\begin{aligned}
& X=\frac{\sqrt{3}\left(T_{+}-T_{-}\right)}{Q_{c}}=\frac{\sqrt{3}}{2 M_{\eta} Q_{c}}(u-t) \\
& Y=\frac{3 T_{0}}{Q_{c}}-1=\frac{3}{2 M_{\eta} Q_{c}}\left(\left(M_{\eta}-M_{\pi^{0}}\right)^{2}-s\right)-1
\end{aligned}
$$

with T_{i} : kinetic energy of π^{i} in the η rest frame
and $Q_{c} \equiv T_{0}-T_{+}-T_{-}=M_{\eta}-2 M_{\pi^{+}}-M_{\pi^{0}}$

Experimental measurements : Charged channel

- Charged channel measurements with high statistics from KLOE and WASA e.g. KLOE: $\sim 1.3 \times 10^{6} \eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ events from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \varphi \rightarrow \eta \gamma$

$$
\left.A_{c}(s, t, u)\right|^{2}=N\left(1+a Y+b Y^{2}+d X^{2}+f Y^{3}\right)
$$

KLOE'08

$$
Y=\frac{3}{2 M_{\eta} Q_{c}}\left(\left(M_{\eta}-M_{\pi^{0}}\right)^{2}-s\right)-1
$$

$$
X=\frac{\sqrt{3}}{2 M_{\eta} Q_{c}}(u-t)
$$

Experimental measurements : Neutral channel

- Neutral channel measurements with high statistics from MAMI-B, MAMI-C and WASA e.g. MAMI-C: $\sim 3 \times 10^{6} \eta \rightarrow 3 \pi^{0}$ events from $\gamma p \rightarrow \eta p$

$$
\left.A_{n}(s, t, u)\right|^{2}=N\left(1+2 \alpha Z+6 \beta Y\left(X^{2}-\frac{Y^{2}}{3}\right)+2 \gamma Z^{2}\right)
$$

\Rightarrow Extraction of the slope:

MAMI-C'09

$$
\begin{array}{r}
Z=\frac{2}{3} \sum_{i=1}^{3}\left(\frac{3 T_{i}}{Q_{n}}-1\right)^{2}=X^{2}+Y^{2} \\
Q_{n} \equiv M_{\eta}-3 M_{\pi^{0}}
\end{array}
$$

$$
X=\frac{\sqrt{3}\left(T_{+}-T_{-}\right)}{Q_{c}}=\frac{\sqrt{3}}{2 M_{\eta} Q_{c}}(u-t)
$$

$$
Y=\frac{3 T_{0}}{Q_{c}}-1=\frac{3}{2 M_{\eta} Q_{c}}\left(\left(M_{\eta}-M_{\pi^{0}}\right)^{2}-s\right)-1
$$

Experimental measurements : Neutral channel

- Neutral channel measurements with high statistics from MAMI-B, MAMI-C and WASA e.g. WASA: $\sim 1.2 \times 10^{5} \eta \rightarrow 3 \pi^{0}$ events from $p p \rightarrow \eta p p$

$$
\left.A_{n}(s, t, u)\right|^{2}=N\left(1+2 \alpha Z+6 \beta Y\left(X^{2}-\frac{Y^{2}}{3}\right)+2 \gamma Z^{2}\right)
$$

Extraction of the slope :

$$
\begin{array}{r}
Z=\frac{2}{3} \sum_{i=1}^{3}\left(\frac{3 T_{i}}{Q_{n}}-1\right)^{2}=X^{2}+Y^{2} \\
Q_{n} \equiv M_{\eta}-3 M_{\pi^{0}}
\end{array}
$$

WASA'09

$$
X=\frac{\sqrt{3}\left(T_{+}-T_{-}\right)}{Q_{c}}=\frac{\sqrt{3}}{2 M_{\eta} Q_{c}}(u-t)
$$

$$
Y=\frac{3 T_{0}}{Q_{c}}-1=\frac{3}{2 M_{\eta} Q_{c}}\left(\left(M_{\eta}-M_{\pi^{0}}\right)^{2}-s\right)-1
$$

3.4 Subtraction constants

- As we have seen, only Dalitz plots are measured, unknown normalization!

$$
A(s, t, u)=-\frac{1}{Q^{2}} \frac{M_{K}^{2}}{M_{\pi}^{2}} \frac{M_{K}^{2}-M_{\pi}^{2}}{3 \sqrt{3} F_{\pi}^{2}} M(s, t, u) \quad\left(Q^{2} \equiv \frac{m_{s}^{2}-\hat{m}^{2}}{m_{d}^{2}-m_{u}^{2}}\right)
$$

To determine Q , one needs to know the normalization
\Rightarrow For the normalization one needs to use ChPT

- The subtraction constants are

$$
\begin{aligned}
& P_{0}(s)=\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\delta_{0} s^{3} \\
& P_{1}(s)=\alpha_{1}+\beta_{1} s+\gamma_{1} s^{2} \\
& P_{2}(s)=\alpha_{2}+\beta_{2} s+\gamma_{2} s^{2}
\end{aligned}
$$

Only 6 coefficients are of physical relevance

3.4 Subtraction constants

- The subtraction constants are

$$
\begin{aligned}
& P_{0}(s)=\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\delta_{0} s^{3} \\
& P_{1}(s)=\alpha_{1}+\beta_{1} s+\gamma_{1} s^{2} \\
& P_{2}(s)=\alpha_{2}+\beta_{2} s+\gamma_{2} s^{2}
\end{aligned}
$$

Only 6 coefficients are of physical relevance

- They are determined from
- Matching to one loop ChPT $\Rightarrow \boldsymbol{\delta}_{0}=\gamma_{1}=\mathbf{0}$
- Combine ChPT with fit to the data $\Rightarrow \boldsymbol{\delta}_{0}$ and γ_{1} are determined from the data
- Matching to one loop ChPT :Taylor expand the dispersive M_{1} Subtraction constants \Leftrightarrow Taylor coefficients

Dispersive approach

- Dispersion Relations: extrapolate ChPT at higher energies

Anisovich \& Leutwyler'96

- Important corrections in the physical region taken care of by the dispersive treatment!

4.3 Qualitative results of our analysis

- Plot of Q versus α :

NB: Isospin breaking has not been accounted for

From kaon mass spliting :
$Q=20.7 \pm 1.2$
Kastner \& Neufeld'08

- All the data give consistent results. The preliminary outcome for Q is intermediate between the lattice result and the one of Kastner and Neufeld.
- Isospin violating process \square possibility to extract the quark mass ratio Q:
G. Colangelo, S. Lanz,

$$
\Gamma_{\eta \rightarrow 3 \pi} \propto \int|A(s, t, u)|^{2} \propto Q^{-4}
$$

$$
Q^{2} \equiv \frac{m_{s}^{2}-\hat{m}^{2}}{m_{d}^{2}-m_{u}^{2}} \quad\left[\widehat{m} \equiv \frac{m_{d}+m_{u}}{2}\right]
$$

$$
A(s, t, u)=\frac{N}{Q^{2}} M(s, t, u)
$$

- $M(s, t, u)$ determined through the dispersive analysis of the data but for N one has to rely on ShPT
- Analysis for JPAC by P. Guo, I. Danilkin, D. Schott et al'15 using WASA data $\boldsymbol{Q}=\mathbf{2 1 . 4} \pm \mathbf{0 . 4} \quad \square$ Analysis of CLAS data

2.4 Results: quark mass ratios

5. Back-up

1.6 Chiral expansion

- Ex: $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0} \Rightarrow A=A_{2}+A_{4}+A_{6}+\ldots$
$\pi^{+} p_{\pi^{+}}$
$>$ Tree level $\mathcal{O}\left(\boldsymbol{p}^{\mathbf{2}}\right): \eta \overline{p_{\eta}} \quad \pi^{-} p_{\pi^{-}} \quad \boldsymbol{A}_{\mathbf{2}}$
$>$ Two loops $\mathcal{O}\left(p^{6}\right):$

$+$

2.2 Extraction of Q

- Extraction of the quark masses:

$$
\begin{aligned}
& \quad \begin{array}{l}
\Gamma_{\eta \rightarrow 3 \pi} \propto Q^{-4}|\boldsymbol{M}|^{2}
\end{array} \boldsymbol{Q}^{2} \propto\left(m_{u}-m_{d}\right) \\
& \text { Experiment } \quad \begin{array}{l}
\text { Computed with } \\
\text { dispersive methods }
\end{array} \\
& \text { KLOE (Italy), } \quad \text { ChPT } \\
& \text { MAMI (Germany), } \\
& \text { WASA (Sweden, Germany), } \\
& \text { CLAS (JLab, USA) }
\end{aligned}
$$

- Dispersive method: Take into account the $\pi \pi$ final state interactions

Discontinuities of the $M_{I}(s)$

- Ex: $\hat{M}_{0}(s)=\frac{2}{3}\left\langle M_{0}\right\rangle+2\left(s-s_{0}\right)\left\langle M_{1}\right\rangle+\frac{20}{9}\left\langle M_{2}\right\rangle+\frac{2}{3} \kappa(s)\left\langle z M_{1}\right\rangle$ where $\left\langle z^{n} M_{I}\right\rangle(s)=\frac{1}{2} \int_{-1}^{1} d z z^{n} M_{I}(t(s, z)), z=\cos \theta$ scattering angle

Non trivial angular averages \Rightarrow need to deform the integration path to avoid crossing cuts

Discontinuities of the $M_{I}(s)$

- Ex: $\hat{M}_{0}(s)=\frac{2}{3}\left\langle M_{0}\right\rangle+2\left(s-s_{0}\right)\left\langle M_{1}\right\rangle+\frac{20}{9}\left\langle M_{2}\right\rangle+\frac{2}{3} \kappa(s)\left\langle z M_{1}\right\rangle$ where $\left\langle z^{n} M_{I}\right\rangle(s)=\frac{1}{2} \int_{-1}^{1} d z z^{n} M_{I}(t(s, z)), z=\cos \theta$ scattering angle

Non trivial angular averages \Rightarrow need to deform the integration path to avoid crossing cuts

3.7 Comparison of values of \mathbf{Q}

\Rightarrow Fair agreement with the determination from meson masses

