
Dispersion relations: some applications 
Light quark masses from η → 3π  
 

Emilie Passemar 
Indiana University/Jefferson Laboratory 

epassema@indiana.edu 
 



Emilie Passemar 2 

1.3   QCD at low energy 

• At low energy, impossible to describe QCD with perturbation theory 
since DS becomes large 
 
      Need non perturbative  
      methods 
 

 
• Two model independent  

methods: 
– Effective field theory           
 Ex: ChPT for light quarks 
 
‒ Numerical simulations on  

the lattice 
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1.4   Chiral Symmetry 

• Limit 
 
 
 
 
 
 
 
Symmetry: 
 

• G spontaneously broken, ground state not invariant under                                        
      but  invariant under 
 

                   Goldstone bosons with quantum numbers of pseudoscalar  
 mesons are generated 
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1.5   Construction of an effective theory: ChPT 

• Degrees of freedom: Goldstone bosons (GB) 
 

Symmetry group: 
  
• Build all the corresponding invariant operators including explicit 

symmetry breaking parameters 
 
 
 
 

• Goldstone bosons interact weakly at low energy and  
        expansion organized in external momenta and quark masses    
                                                                                Weinberg’s  power counting rule 
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1.6   Chiral expansion 

•   
 
 
 

• Renormalizable and unitary order by order in the expansion 
 

• The structure of the lagrangian is fixed by chiral symmetry but not 
the coupling constants Æ LECs appearing at each order 

 

 
 

• LECs describe the influence of heavy degrees of freedom not 
contained in the ChPT lagrangian 
 

• Naturalness: LECs of order one  
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1.6   Chiral expansion 

• The LECs calculable if QCD solvable, instead 
– Determined from experimental measurement 
– Estimated with models: Resonances, large NC 

– Computed on the lattice 
 
 

• In a specific process, only a limited number of LECs appear 
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• Ex : K →  S+ S- S0  
 

 
      

 
 
 

1.6   Chiral expansion 
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• Ex : K →  S+ S- S0  
 

 
      

 
 
 

1.6   Chiral expansion 
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1.2 The strong interaction as a quantum field theory

Dashen

Duncan et al.

Bijnens & Prades
Donoghue & Perez

Ananthanarayan & Moussallam

1 2 3
20

21

22

23

24

25

Q

∆mem
K in MeV

Figure 1.4: Q as calculated from a meson ratio with different values for the electro-
magnetic kaon mass splitting. The left-most point has been calculated in the absence
of Dashen violation and thus agrees with QD. The other points, from left to right,
have been taken from Refs. [68], [69], [70], and [71]. The figure has been inspired by
a similar picture in Ref. [72].

This is the value of Q in the absence of Dashen violation. The electromag-
netic kaon mass splitting ∆mem

K is substantially changed by higher order ef-
fects. Several authors have calculated Dashen violating contributions, e.g.,
Refs. [68–71], and found deviations from Dashen’s theorem that range from
50 up to 150 per cent. Figure 1.4 shows their values for ∆mem

K together with
the corresponding results for Q.

Kaplan and Manohar [73] have shown that a change in the quark masses
of the form mu !→ mu + αmdms (and cyclic) can be absorbed into O(p4) op-
erators by shifting the low-energy constants L6, L7, and L8 accordingly. The
quark mass ratios mu/md, ms/md, and R are not invariant under this trans-
formation which implies that corrections from L4 can, in principle, change
them to any value that can be reached by the aforementioned shift of the
quark masses. The double ratio Q, on the other hand, is invariant not affected
by the transformation up to corrections of O(M2). The transformation of the
quark masses depends on a single parameter α, such that the ratios mu/md

and ms/md are not independent. They are rather constrained to lie on an

37

Comparison of  values of  Q from Dashen corrections 
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Comparison of  values of  Q 

Fair agreement with the determination from meson masses 

22.8Q =

22Q =

21.5Q =

20.7Q =

20.7 1.2Q = ±

22.3 0.9Q = ±
22.1 0.9Q = ±

24.2Q =

Emilie Passemar 
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Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)

For decay limits to particles which are not established, see the appropriate
Search sections (A0 (axion) and Other Light Boson (X0) Searches, etc.).

Scale factor/ p

π0 DECAY MODESπ0 DECAY MODESπ0 DECAY MODESπ0 DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

2γ (98.823±0.034) % S=1.5 67

e+ e−γ ( 1.174±0.035) % S=1.5 67

γpositronium ( 1.82 ±0.29 ) × 10−9 67

e+ e+ e− e− ( 3.34 ±0.16 ) × 10−5 67

e+ e− ( 6.46 ±0.33 ) × 10−8 67

4γ < 2 × 10−8 CL=90% 67

ν ν [e] < 2.7 × 10−7 CL=90% 67

νe νe < 1.7 × 10−6 CL=90% 67

νµ νµ < 1.6 × 10−6 CL=90% 67

ντ ντ < 2.1 × 10−6 CL=90% 67

γν ν < 6 × 10−4 CL=90% 67

Charge conjugation (C ) or Lepton Family number (LF ) violating modesCharge conjugation (C ) or Lepton Family number (LF ) violating modesCharge conjugation (C ) or Lepton Family number (LF ) violating modesCharge conjugation (C ) or Lepton Family number (LF ) violating modes

3γ C < 3.1 × 10−8 CL=90% 67

µ+ e− LF < 3.8 × 10−10CL=90% 26

µ− e+ LF < 3.4 × 10−9 CL=90% 26

µ+ e− + µ− e+ LF < 3.6 × 10−10CL=90% 26

ηηηη IG (JPC ) = 0+(0 − +)

Mass m = 547.862 ± 0.018 MeV
Full width Γ = 1.31 ± 0.05 keV

C-nonconserving decay parametersC-nonconserving decay parametersC-nonconserving decay parametersC-nonconserving decay parameters

π+π−π0 left-right asymmetry = (0.09+0.11
−0.12) × 10−2

π+π−π0 sextant asymmetry = (0.12+0.10
−0.11) × 10−2

π+π−π0 quadrant asymmetry = (−0.09 ± 0.09) × 10−2

π+π−γ left-right asymmetry = (0.9 ± 0.4) × 10−2

π+π−γ β (D-wave) = −0.02 ± 0.07 (S = 1.3)

CP-nonconserving decay parametersCP-nonconserving decay parametersCP-nonconserving decay parametersCP-nonconserving decay parameters

π+π− e+ e− decay-plane asymmetry Aφ = (−0.6 ± 3.1) × 10−2

Dalitz plot parameterDalitz plot parameterDalitz plot parameterDalitz plot parameter

π0π0π0 α = −0.0315 ± 0.0015

HTTP://PDG.LBL.GOV Page 2 Created: 8/25/2014 17:06
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Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)

Scale factor/ p

η DECAY MODESη DECAY MODESη DECAY MODESη DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

Neutral modesNeutral modesNeutral modesNeutral modes
neutral modes (72.12±0.34) % S=1.2 –

2γ (39.41±0.20) % S=1.1 274

3π0 (32.68±0.23) % S=1.1 179

π02γ ( 2.7 ±0.5 ) × 10−4 S=1.1 257

2π02γ < 1.2 × 10−3 CL=90% 238

4γ < 2.8 × 10−4 CL=90% 274

invisible < 1.0 × 10−4 CL=90% –

Charged modesCharged modesCharged modesCharged modes
charged modes (28.10±0.34) % S=1.2 –

π+π−π0 (22.92±0.28) % S=1.2 174

π+π−γ ( 4.22±0.08) % S=1.1 236

e+ e−γ ( 6.9 ±0.4 ) × 10−3 S=1.3 274

µ+µ−γ ( 3.1 ±0.4 ) × 10−4 253

e+ e− < 5.6 × 10−6 CL=90% 274

µ+µ− ( 5.8 ±0.8 ) × 10−6 253

2e+2e− ( 2.40±0.22) × 10−5 274

π+π− e+ e− (γ) ( 2.68±0.11) × 10−4 235

e+ e−µ+µ− < 1.6 × 10−4 CL=90% 253

2µ+2µ− < 3.6 × 10−4 CL=90% 161

µ+µ−π+π− < 3.6 × 10−4 CL=90% 113

π+ e− νe + c.c. < 1.7 × 10−4 CL=90% 256

π+π−2γ < 2.1 × 10−3 236

π+π−π0γ < 5 × 10−4 CL=90% 174

π0µ+µ−γ < 3 × 10−6 CL=90% 210

Charge conjugation (C ), Parity (P),Charge conjugation (C ), Parity (P),Charge conjugation (C ), Parity (P),Charge conjugation (C ), Parity (P),
Charge conjugation × Parity (CP), orCharge conjugation × Parity (CP), orCharge conjugation × Parity (CP), orCharge conjugation × Parity (CP), or

Lepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modes

π0γ C < 9 × 10−5 CL=90% 257

π+π− P,CP < 1.3 × 10−5 CL=90% 236

2π0 P,CP < 3.5 × 10−4 CL=90% 238

2π0γ C < 5 × 10−4 CL=90% 238

3π0γ C < 6 × 10−5 CL=90% 179

3γ C < 1.6 × 10−5 CL=90% 274

4π0 P,CP < 6.9 × 10−7 CL=90% 40

π0 e+ e− C [f ] < 4 × 10−5 CL=90% 257

π0µ+µ− C [f ] < 5 × 10−6 CL=90% 210

µ+ e− + µ− e+ LF < 6 × 10−6 CL=90% 264

HTTP://PDG.LBL.GOV Page 3 Created: 8/25/2014 17:06
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43. Clebsch-Gordan coefficients 1

43. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,

AND d FUNCTIONS

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
√

8/15.
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Figure 43.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).



•  Decomposition of the amplitude as a function of isospin states  

 
 

Ø         isospin I rescattering in two particles  
Ø Amplitude in terms of S and P waves       exact up to NNLO (O(p6)) 
Ø Main two body rescattering corrections inside MI 

•  Functions of only one variable with only right-hand cut of the partial  
     wave 

•  Elastic unitarity 
 

   
 

 

 
 

      

 
 

with           partial wave of  elastic  
scattering 
 

4.2   Method: Representation of the amplitude 

14 

( ) ( )0 1 1 2 2 2
2( , , ) ( ) ( ) ( ) ( ) ( ) ( )
3

M s t u M s s u M t s t M u M t M u M s= + − + − + + −

IM

Fuchs, Sazdjian & Stern’93 
Anisovich & Leutwyler’96 

   disc MI (s)⎡⎣ ⎤⎦ ≡ disc fℓ
I (s)⎡⎣ ⎤⎦

Watson’s  theorem 

   disc fℓ
I (s)⎡⎣ ⎤⎦ ∝ tℓ

*(s) fℓ
I (s)    tℓ (s)



4.4  Dispersion Relations for the MI(s)   
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•  Elastic Unitarity 

 
 

         Watson theorem: elastic ππ scattering phase shifts  

•  Solution: Inhommogeneous Omnès problem 
  

 
 
 
 

 Similarly for M1 and M2  
 

( )2

03
2 0 0

0 0 0 0 0 3
04
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s M ss dsM s s s s
s s s s i
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π ε
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3.3   Dispersion Relations for the MI(s) 
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•  Unitary relation for MI(s): 

 
 
 
 

•  Right-hand cut only          Omnès problem 

 
 
 
 
 

•  Watson’s theorem in the elastic region: Inputs needed : S and P-wave 
phase shifts of ππ scattering 

     

  disc MI (s) = 2i  MI (s) +     ( )  tππ→ππ
* (s)ρ(s) θ s − 4Mπ

2( )
right-hand cut  

From unitarity to integral equation

Unitarity relation:

discF(s) = 2i
{

F(s)
︸︷︷︸

right-hand cut

}

× θ(s− 4M2
π)× sin δ11(s) e

−iδ11(s)

=disc

• Omnès problem; solution well known: Omnès 1958

F(s) = αΩ(s) , Ω(s) = exp

{

s

π

∫ ∞

4M2
π

ds′

s′
δ11(s

′)

s′ − s− iϵ

}

−→ pion vector form factor, given in terms of P-wave phase shift

F(s, t, u) =

B. Kubis, Chiral perturbation theory and final-state interactions in meson decays – p. 13

  MI (s) = PI (s) Ω I (s)
  

Ω I (s) = exp
s
π

ds'
δ I (s')

s'(s'− s − iε )
4 Mπ

2

∞

∫
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  tππ→ππ
* (s)ρ(s) = sinδ I (s)e− iδ I (s)

Elastic Unitarity 
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FIU Colloquium. Jan 30, 2015

Amplitude analysis: ππ scattering

24
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FIU Colloquium. Jan 30, 2015

Amplitude analysis: ππ scattering
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Inputs: ππ   scattering 

17 

•  S wave 

•  ππ  phase shifts extracted combining all experimental results solving Roy 
equations        A large number of theoretical analyses Ananthanarayan et 
al’01, Colangelo et al’01, Descotes-Genon et al’01, Garcia-Martin et al’09,’11, 
Colangelo et al.’11 and all agree 

 
 
 
 

 

 
 
 
 
 

     

•  P wave 
Garcia-Martin et al.’11  
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3.3   Dispersion Relations for the MI(s) 

•  Unitary relation for MI(s): 

 
 
 
 
 

•  Dispersion relation for the MI’s 
 

 
 
 
 
 
 

•            : singularities in the t and u channels, depend on the other 
Crossed-channel scattering between s-, t-, and u-channel 
Angular averages of the other functions         
        Coupled equations 

 
 
 
 

 
 
 
 
 

     

  
disc MI (s) = 2i  MI (s) + M̂I (s)( )  sinδ I (s)e− iδ I (s)θ s − 4Mπ

2( )
right-hand cut  left-hand cut  

From unitarity to integral equation

Unitarity relation for F(s):
discF(s) = 2i

{

F(s)
︸︷︷︸

right-hand cut

+ F̂(s)
︸︷︷︸

left-hand cut

}

× θ(s− 4M2
π)× sin δ11(s) e

−iδ11(s)

• inhomogeneities F̂(s): angular averages over the F(s)

F(s) = aΩ(s)

{

1 +
s

π

∫ ∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s− iϵ)
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F̂(s) =
3

2

∫ 1

−1

dz (1− z2)F
(

t(s, z)
)

Khuri, Treiman 1960
Aitchison 1977

Anisovich, Leutwyler 1998

F(s) = +++ ...

B. Kubis, Precision tools in hadron physics for Dalitz plot studies – p. 12

  
MI (s) = Ω I (s) PI (s) + sn
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Omnès function 

Khuri & Treiman’60 
         Aitchison’77  

Anisovich & Leutwyler’98  
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•  Subtract           from the partial wave projection of 
 

 

•  Ex: 
  

19 

Hat functions 

( )0 0 0 1 2 1
2 20 2ˆ ( ) 2 ( )
3 9 3

M s M s s M M s zMκ= + − + +

Non trivial angular averages        need to deform the integration path to 
avoid crossing cuts 
Generates complex analytic structure (3-particle cuts)  
         
 

Anisovich & Anselm’66 

where ( ) ( )1

1

1  ( , ) ,
2

n n
I Iz M s dz z M t s z

−
= ∫ cosz θ= scattering angle 

  MI (s) ( , , )M s t u
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•  Cauchy Theorem: build the FF in the entire phase space 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

1.4  Determination of the form factors : Fπ(s) 
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F(s) = 1

2iπ
F(s')

(s'− s)C!∫ ds'

24ths mπ≡

  
F(s) = 1

π
disc F(s')⎡⎣ ⎤⎦

s'− s − iε
4 Mπ

2

∞

∫ ds'

   
= 1
π

ds' disc(F(s))
s'− s − iε

+ 1
2iπsth

Λ2

∫ ds' F(s')
s'− ss= Λ2!∫

Λ→∞
Dispersion Relation 



1.4  Determination of the form factors : Fπ(s) 
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4.4  Dispersion Relations for the MI(s)   

Emilie Passemar IFIC, Valencia, 19 May 2011 46 

 
•   

 
 
 

     Similarly for M1 and M2 
 

• Four subtraction constants to be determined: D0, E0, J0 and one more in 
M1 (E1) 

 

• Inputs needed for these and for the SS phase shifts  
– M0: SS scattering,  ℓ=0,  I=0 
– M1: SS scattering,  ℓ=1,  I=1 
– M2: SS scattering,  ℓ=0,  I=2  

 

• Solve dispersion relations numerically by an iterative procedure 
 

� �2
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3.4  Iterative Procedure 
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3.5  Subtraction constants 
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•  Extension of the numbers of parameters compared to Anisovich & Leutwyler’96 

 
 

•  In the work of Anisovich & Leutwyler’96 matching to one loop ChPT 
Use of the SU(2) x SU(2) chiral theorem 
       The amplitude has an Adler zero along the line s=u 

 

•  Now data on the Dalitz plot exist from KLOE, WASA and MAMI 

      Use the data to directly fit the subtraction constants 
 

•  Solution linear in the subtraction constants    Anisovich & Leutwyler’96  

 
 
 

          makes the fit much easier  
 

  P0(s) = α 0 + β0s + γ 0s
2 + δ 0s

3

  P1(s) = α 1 + β1s + γ 1s
2

  P2(s) = α 2 + β2s + γ 2s
2

  
M (s, t,u) = α 0Mα 0

(s, t,u) + β0Mβ0
(s, t,u) + ...
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Experimental measurements  

•  Dalitz plot measurement : Amplitude expanded in X and Y around X=Y=0 

  A s, t,u( ) 2
= Γ(X ,Y ) = N 1 + aY + bY 2 + dX 2 + fY 3( )

with     : kinetic energy of πi  in the η     
	
rest frame 

 

and  

X =
3 T+ −T−( )
Qc

= 3
2MηQc

u − t( )

Ti

Y =
3T0
Qc

−1 = 3
2MηQc

Mη −Mπ 0( )2 − s⎛
⎝

⎞
⎠ −1

Emilie Passemar 24 

Qc ≡ T0 −T+ −T− = Mη − 2Mπ + −Mπ 0



Experimental measurements : Charged channel 

•  Charged channel measurements with high statistics from KLOE and WASA 
 

e.g. KLOE: ~1.3 x 106 η→ π+ π- π0  events from e+e-→ ϕ → η γ	


Emilie Passemar ( )3
2 c

X u t
M Qη

= −( )( )0

23 1
2 c

Y M M s
M Q η π

η

= − − −

KLOE’08 
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  Ac s, t,u( ) 2
= N 1 + aY + bY 2 + dX 2 + fY 3( )



Experimental measurements : Neutral channel 

•  Neutral channel measurements with high statistics from MAMI-B, MAMI-C  
and WASA e.g. MAMI-C: ~3 x 106 η→ 3π0 events from γ p → ηp 

	
Extraction of the slope : 
  
An s, t,u( ) 2

= N 1 + 2α Z + 6βY X 2 − Y 2

3
⎛
⎝⎜

⎞
⎠⎟
+ 2γ Z 2⎛

⎝⎜
⎞

⎠⎟

MAMI-C’09  
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X =

3  T+ −T−( )
Qc

= 3
2MηQc

u − t( )

Y =
3T0
Qc

−1 = 3
2MηQc

Mη −Mπ 0( )2 − s⎛
⎝

⎞
⎠ −1

  
Z = 2

3
3Ti

Qn

−1
⎛
⎝⎜

⎞
⎠⎟i=1

3

∑
2

= X 2 +Y 2

  Qn ≡ Mη − 3M
π 0
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Experimental measurements : Neutral channel 

•  Neutral channel measurements with high statistics from MAMI-B, MAMI-C  
and WASA e.g. WASA: ~1.2 x 105  η→ 3π0 events from p p → ηpp 

	
Extraction of the slope : 
  
An s, t,u( ) 2

= N 1 + 2α Z + 6βY X 2 − Y 2

3
⎛
⎝⎜

⎞
⎠⎟
+ 2γ Z 2⎛

⎝⎜
⎞

⎠⎟

WASA’09  
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X =

3  T+ −T−( )
Qc

= 3
2MηQc

u − t( )

Y =
3T0
Qc

−1 = 3
2MηQc

Mη −Mπ 0( )2 − s⎛
⎝

⎞
⎠ −1

  
Z = 2

3
3Ti

Qn

−1
⎛
⎝⎜

⎞
⎠⎟i=1

3

∑
2

= X 2 +Y 2

  Qn ≡ Mη − 3M
π 0
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In order to reconstruct the 3π0 Dalitz plot, a kinematic fit
is applied. In ref. [17], the full final state including the two
protons was considered in the fitting procedure. Here, only the
η→ 3π0 decay system is fitted, based on the reconstructed pho-
ton angles and momenta. This approach reduces systematic un-
certainty due to proton reconstruction. Different reconstruction
uncertainties (as a function of energy and angle) were obtained
from a full GEANT Monte Carlo detector simulation, with res-
olution parameters matched to reproduce experimental distribu-
tions. The experimental distribution of the kinematic fit prob-
ability (P(χ2)) is compared in Fig. 4 to the Monte Carlo sim-
ulation. The simulation includes background from direct three
pion production, pp → ppπ0π0π0, the cross section was ob-
tained by interpolation of the results from the CELSIUS/WASA
experiment [36]. The relative amount of background is less than
4% in the final event sample after P(χ2) > 0.1 cut (vertical line
in Fig. 4).

4. Extraction of the slope parameter

z0 0.2 0.4 0.6 0.8 1

/c2 |
A|

0.8

0.9

1.0

1.1

Figure 5: Extracted dependence of |Ā|2 on the z variable. The solid line is a
c(1 + 2αz) fit. The dashed line is a prediction of the cusp effect [37].

Based on the analysis procedure, the efficiency corrected ra-
dial density distribution |Ā|2 is shown in Fig. 5. The efficiency
correction is obtained by dividing the measured z distribution
by the result of the Monte Carlo simulation, assuming α = 0.
A linear fit to the data points is applied to extract the slope pa-
rameter α, yielding a statistical uncertainty of σ(α) = 8 · 10−3.
The achieved resolution in z is σ(z)=0.055.
The systematic uncertainty of the result is estimated by vary-

ing one by one all parameters that are important in the analy-
sis. Table 2 summarizes some of these studies. The dominant
contribution comes from an uncertain fraction of the interac-
tions with gas stemming from pellet evaporation or with pellets
bouncing in the beam pipe. This causes a spread in the vertex
position.
The combinatoric purity of the selected event sample depends
on the cut on χ2j probability of the best combination and on the
confidence level of the fit. A variation of these parameters has

only a minor effect on the obtained slope result.
Another source of systematic errors is imposed by the remain-
ing background. This effect is under control by changing the
width of the proton–proton missing mass cut and, hence, vary-
ing the relative amount of background in the range from 4 % to
12 %. The observed effect contributes with 0.002 to the slope
parameter uncertainty.
The kinematic fit performance relies on the precise understand-
ing of the errors of reconstructed quantities. This effect was
studied by replacing the polar angle dependent parametrization
of reconstruction uncertainties with a much simpler polar angle
independent description, again showing only a small effect on
the result (see table 2).

Source of systematic uncertainty RMS
Combinatoric background 0.001
Missing mass cut 0.002
Background 3π0 production 0.001
Vertex position 0.004
Confidence level cut 0.001
Error parametrization for the kinematical fit 0.002

Overall systematic uncertainty 0.005

Table 2: The main contributions to the systematic uncertainty as discussed in
the text. The overall systematic uncertainty was calculated as the square root of
the summed squares of all contributions.

Taking into account the systematic studies, the final result for
the extracted slope parameter α is

α = −0.027 ± 0.008(stat) ± 0.005(syst)

based on 120000 events. The result agrees within one standard
deviation with the high statistics measurements of the slope
parameter performed by the KLOE collaboration [18] and the
Crystal Ball collaboration [15]. It is also consistent with the
previous measurement performed by the CELSIUS/WASA col-
laboration [17]. The shape of the z distribution including the
cusp that emerges from a virtual π+π− intermediate state fol-
lowed by a π+π− → π0π0 transition, can be calculated from the
η → π+π − π0 amplitude and the π − π scattering lengths. The
cusp effect leads to a broad local minimum in the radial den-
sity of the Dalitz plot for 0.6 < z < 0.9 due to the contribution
of the regions where the invariant mass of the two pions less
than 2mπ± (see Fig. 1). The dashed line in Fig. 5 was obtained
using a parameterization of the η → π+π−π0 decay amplitude
from the KLOE collaboration [38] and a nonrelativistic effec-
tive field theory [29, 37]. It is seen that the statistical precision
of the data is insufficient to investigate the cusp effect.

5. Outlook

One motivation for the presented study was the striking dis-
crepancy between KLOE and Crystal Ball results for the η →

5

Cusp effect 
Gullstrom, Kupsc, Rusetsky’09 

 α = −0.027 ± 0.008(stat) ± 0.005(syst)



2 22

2 2 2

1( , , ) ( , , )
3 3
KK M MMA s t u M s t u

Q M F
π

π π

−= −

3.4  Subtraction constants 
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•  As we have seen, only Dalitz plots are measured, unknown normalization! 

               To determine Q, one needs to know the normalization 
 

                                     For the normalization one needs to use ChPT 
 
 

•  The subtraction constants are  

 
 
 
 

       Only 6 coefficients are of physical relevance 
 

  P0(s) = α 0 + β0s + γ 0s
2 + δ 0s

3

  P1(s) = α 1 + β1s + γ 1s
2

  P2(s) = α 2 + β2s + γ 2s
2

2 22

2 2 2

1( , , ) ( , , )
3 3
KK M MMA s t u M s t u

Q M F
π

π π

−= −
2 2

2
2 2

ˆs

d u

m mQ
m m

⎛ ⎞−
≡⎜ ⎟−⎝ ⎠
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3.4  Subtraction constants 
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•  The subtraction constants are  

 
 
 
 

       Only 6 coefficients are of physical relevance 
 

•  They are determined from  
–  Matching to one loop ChPT 
–  Combine ChPT with fit to the data             and       are determined from 

the data 

•  Matching to one loop ChPT : Taylor expand the dispersive MI   
Subtraction constants         Taylor coefficients	


	


  P0(s) = α 0 + β0s + γ 0s
2 + δ 0s

3

  P1(s) = α 1 + β1s + γ 1s
2

  P2(s) = α 2 + β2s + γ 2s
2

 δ 0 = γ 1 = 0

 δ 0  γ 1
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Dispersive approach 

•  Dispersion Relations: extrapolate ChPT at higher energies 

•  Important corrections in the physical region taken care of by the dispersive 
treatment! 
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Good convergence 

ChPT NLO 

ChPT LO 

 ChPT

Dispersion relations 

Dispersive Re M 

s in units of Mπ	


Anisovich & Leutwyler’96  



4.3  Qualitative results of our analysis  

•  Plot of Q versus α : 

 
 
•  All the data give consistent results. The preliminary outcome for Q is 

intermediate between the lattice result and the one of Kastner and Neufeld.   
31 

NB: Isospin breaking  
has not been accounted for 

  Q = 20.7 ±1.2
From kaon mass spliting : 

Kastner & Neufeld’08 



Preliminary 

η → 3π 

•  Isospin violating process         possibility to extract the quark mass ratio Q:   

 
 
•  M(s,t,u) determined through  

the dispersive analysis of  
the data but for N one has  
to rely on ChPT 
 

•  Analysis for JPAC by P. Guo, I. Danilkin, D. Schott et al’15 using WASA data 
                                    Analysis of CLAS data 

32 

G. Colangelo, S. Lanz,  
H. Leutwyler , E.P., in progress 

  
Γη→3π ∝ A(s, t,u)

2

∫ ∝Q−4

2 2
2

2 2

ˆs

d u

m mQ
m m

−≡
−    

m ≡
md + mu

2
⎡

⎣
⎢

⎤

⎦
⎥

  
A(s, t,u) = N

Q2 M (s, t,u)

  Q = 21.4 ± 0.4



2.4  Results: quark mass ratios 
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H.Leutwyler 
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5.   Back-up 
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• Ex : K →  S+ S- S0  
 

 

      
 

 
 

1.6   Chiral expansion 
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2A

2 4 6 ...A A AA � � �

� �2p
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6A
iC

...

...

iL

¾ Tree level               : 
 
 

 
 

¾ Two loops               : � �6p



2.2  Extraction of Q 

•  Extraction of the quark masses: 

 
 
 
 

•  Dispersive method: Take into account the ππ    final state interactions 
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24
3 Q Mη π

−
→Γ ∝

Experiment Computed with 
dispersive methods 
+ ChPT  KLOE (Italy),  

MAMI (Germany),  
WASA (Sweden, Germany), 
CLAS (JLab, USA) 

  Q
2 ∝ mu − md( )

η⇾3π

14

P. Guo, D. Schott"
A. Szczepaniak
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P. Guo and I. Danilkin
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Discontinuities of the MI(s) 

Emilie Passemar University of Lund, 6 May 2011 37 
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•  Ex: 
  

( )0 0 0 1 2 1
2 20 2ˆ ( ) 2 ( )
3 9 3

M s M s s M M s zMκ= + − + +

Non trivial angular averages        need to deform the integration 
path to avoid crossing cuts Anisovich & Anselm’66 

where ( ) ( )1

1

1  ( , ) ,
2

n n
I Iz M s dz z M t s z

−
= ∫ cosz θ= scattering angle 



Discontinuities of the MI(s) 
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•  Ex: 
  

( )0 0 0 1 2 1
2 20 2ˆ ( ) 2 ( )
3 9 3

M s M s s M M s zMκ= + − + +

Non trivial angular averages        need to deform the integration 
path to avoid crossing cuts Anisovich & Anselm’66 

where ( ) ( )1

1

1  ( , ) ,
2

n n
I Iz M s dz z M t s z

−
= ∫ cosz θ= scattering angle 
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3.7  Comparison of  values of  Q 

Fair agreement with the determination from meson masses 

22.8Q =

22Q =

21.5Q =

20.7Q =

20.7 1.2Q = ±

22.3 0.9Q = ±
22.1 0.9Q = ±

24.2Q =


