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History

• 1935: Yukawa predicted the existence of the pion — its
exchange generates the static strong interaction

• 1960s: Nearly everybody worked on the applications of Regge theory, which sums
the exchanges of many particles and generates the high-energy strong interaction

• The known particles not are enough — we need to include exchange of another
object, the pomeron

• 1970s: QCD is discovered — the BFKL equation uses perturbative QCD to
generate pomeron exchange as gluon exchange, but it makes total cross sections
rise with energy much faster than is observed



Basic beliefs

• When two protons collide, most of the cross section results from a long-range force
between them

• That force is quantum chromodynamics (QCD)

• Although QCD is weak at short range and so can be calculated by perturbation
theory, this is not the case at long range

• For long range the only theory we have is Regge Theory, but it has its limitations

• Regge Theory models the exchange of families of particles ρ, ω, f2, a2 etc

• But to describe data it needs another exchange, called the “pomeron”

• Pomeron exchange is probably the exchange of a family of glueballs

Because of our inability to calculate, we have to inform the theory with information
from the data, and build models





Linear particle trajectories

Plot of spins of families of particles against their squared masses:
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4 degenerate familes of particles: α(t) ≈ 1
2 + 0.9t

The particles in square brackets are listed in the data tables, but there is some un-
certainty about whether they exist.

The function α(t) is called a Regge trajectory.



Regge trajectories
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First daughter α1(t) = α0(t)− 1 Second daughter α2(t) = α0(t)− 2 etc

C = +1 and C = −1 trajectories not exactly degenerate

Why are trajectories almost straight lines?
Cannot be exactly so: meson trajectories become complex for t > 4m2

π

and baryon trajectories for (mN +mπ)
2

Im α(t) at a resonance is proportional to its width



Regge theory

Regge theory sums the exchanges of many particles.
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Define
s = (P1 + P2)

2 = squared CM energy
t = (P3 − P1)

2 = squared momentum transfer

At large s but |t| << s each trajectory α(t) contributes to the amplitude a power of s:

A(s, t) ∼ B(t) sα(t)−1

We know only a little about the function B(t) —- later



Total cross sections

Optical theorem:
σTOT(s) = Im A(s, t = 0)

So each trajectory contributes a fixed power

sα(0)−1 ≈ s−
1
2 for ρ, ω, f2, a2 trajectories

The contribution from the ρ trajectory sums the exchanges of ρ, ρ3, ρ5, . . .
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Agrees with experiment only at rather low energies



Total cross section data

Total cross sections rise gently at large s
So we need another trajectory αIP (t) with αIP (0) a little > 1
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• We call this the pomeron trajectory (after the Russian physicist Pomeranchuk)

Coupling to nucleon
coupling to pion

=
21.7

13.63
≈ 3

2

• The pomeron seems to couple to the separate quarks in a hadron – quark counting rule

• These were fits made in 1992 – best value for αIP (0) now is 1.096 rather than
1.0808

• The pomeron couples a bit more weakly to s quarks – much more so for c quarks

• Pomeranchuk theorem: σpp/σp̄p ∼ 1 at high energy. So the pomeron contributions
to AB and ĀB scattering are equal: pomeron exchange has C-parity +1

• f2, a2 also have C = +1 and so contribute equally to AB and ĀB scattering. But
ρ, ω have C = −1 and so contribute to AB and ĀB scattering with opposite signs.

• Probably pomeron exchange corresponds to the exchange of glueballs



Miracle
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The cross sections rise smoothly even from very low energies where only pions can
be produced. Thresholds for heavier particles, jets etc make no difference.
The pomeron term is there down to

√
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Unitarity

Unit probability that a given initial state results in some final state, and that any final
state came from some initial state.

*

2

X

Xi

• Optical theorem σTOT(s) = Im A(s, t = 0)

• Froissart-Lukaszuk-Martin bound

σTOT(s) <
π

m2
π

log2(s/s0)

for some unknown s0 — probably of the order of 1 GeV2.
At LHC energy, this gives σTOT < 4.3 barns
So the bound has little to do with physics!

• More restrictive is the bound on the elastic partial-wave amplitude

Im Aℓ(s) = |Aℓ(s)|2 + inelastic terms so that |Aℓ(s)| < 1

• Note that these bounds do not apply to photon or lepton beams.



Impact parameter

In the CM frame
P1 = (E,p+ 1

2q) P3 = (E,p− 1
2q)

P2 = (E,−p− 1
2q) P4 = (E,−p+ 1

2q)

with (p+ 1
2q)

2 = (p− 1
2q)

2 so that p.q = 0 and therefore q is in the two-dimensional
space perpendicular to p. Also t = −q2.
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Write the amplitude as a 2-dimensional Fourier integral

A(s,−q2) = 4

∫
d2b e−iq.bÃ(s,b2)

Ã(s,b2) =
1

16π2

∫
d2q eiq.bA(s,−q2)

b is called the “impact parameter”. Roughly speaking, it is the transverse distance
between the two scattering particles.



Eikonal representation

Define
χ(s, b) = − log(1 + 2iÃ/s)

so that
Ã(s,b2) = 1

2 is(1− e−χ(s,b))

and
A(s,−q2) = 2is

∫
d2b e−iq.b(1− e−χ(s,b)).

It can be shown that the unitarity condition |Aℓ(s)| < 1 is just

Re χ(s, b) ≥ 0

so this is an easy way to satisfy unitarity when one makes models



Multiple exchanges

A(s,−q2) = 2is

∫
d2b e−iq.b

(
χ− χ2

2!
+
χ3

3!
. . .− (−χ)n

n!
. . .
)
.

If we choose χ(s, b) so that the first term represents the exchange of a single pomeron,
then the next term will be two-pomeron exchange, then three-pomeron etc.

+ + +   . . . .

But this is only a model: we do not know how to calculate multiple exchanges prop-
erly.

Only single exchange is a simple power of s. So in our fits with s0.08 this is an
effective power, representing single plus mutliple exchanges.

This is usually good enough, but not always.



Multiple exchanges

This is data for elastic �� scattering at
p

s = 126 GeV from the CERN Intersecting
Storage Rings:

The energy is high enough for pomeron exchange to dominate
The shape of the curve is similar to the intensity pattern for optical diffraction, so
pomeron exchange is often called diffractive scattering
At small t the dominant contribtion is from one pair of nucleons scattering
But the dip comes from interference with double exchange: two pairs of nucleons
scattering, calculated by Glauber formula which is just the eikonal model



Proton-proton scattering

Now the scattering is mainly between pairs of constituent quarks:
For pp scattering there are 3 � 3 = 9 pairings and for �p there are 2 � 3 = 6
Ratio of coef�cients of s0:08 in �ts to ppand �p total cross sections is 21:7=13:63 � 3=2

Note:
� The forward peak gets steeper as the energy increases
� The dip is at larger jt j than in �� scattering, which makes the theory more compli-
cated



The Regge formula

The theory of pomeron exchange uses the same mathematics as for optical diffrac-
tion: promote the orbital angular momentum ` into a complex variable and transform
the partial-wave series into an integral

After some quite subtle mathematics �nd that the exchange of particles associated
with a Regge trajectory � (t) contributes at high energy

A(s; t) = � (t) � (� (t)) ( s=s0) � ( t ) � 1

for jt j << s and �xed s0.

� (� (t)) is a phase factor:

� (� (t)) =

(
e� 1

2 i�� ( t ) C = +1 exchange

� ie� 1
2 i�� ( t ) C = � 1 exchange

The theory does not tell us what is the function � (t), except
It is real for t < 0
It has a pole for values of t corresponding to each particle on the trajectory

(unimportant when we are interested in t < 0)



Photon coupling to a nucleon

The coupling to a quark is (quark charge) �  �

To get the coupling to the nucleon we couple to each quark in turn and take account
of the nucleon wave function, giving

eF1(t) � +
�

2m
F2(t)i� �� (p0

� � p� ) F1(0) = F2(0) = 1

e is the sum of the quark charges, ie the charge of the nucleon
� is its anomalous magnetic moment, ie the amount it differs from the Dirac-equation
value
If this is used to calculate scattering from photon exchange, the last term �ips the
helicity of the nucleon
The photon is a mixture of isospin 0 and 1. The last term comes almost entirely from
the I = 1 part, because � p = 1 :79 � n = � 1:91 so that 1

2 (� p + � n ) � 0
The F2 term �ips the helicity of the nucleon



The proton form factors

� p = 1 + � p

http://www.phy.anl.gov/theory/PHYTI09/
PHYTI09 �chiers/ArringtonQCD09.pdf

De�ne
GE (t) = F1(t) + t

4m 2
p
F2(t) GM (t) = F1(t) + F2(t)

Data:
GM (t) � �G E (t) GE (t) � 1

1� t= 0:71) 2

This gives

F1(t) �
4m 2

p � 2:79t
4m 2

p � t
1

(1 � t= 0:71) 2



Pomeron coupling to nucleon (1974!)

Coef�cient of s0:0808 same as for pp and �pp: the pomeron is isosinglet
Also C = +1 : it couples equally to quarks and antiquarks

Big assumption: its coupling to quarks is just like an isoscalar photon, so to a hadron
it is n�F 1(t) where F1(t) is its electromagnetic form factor and � is a constant.
n is the number of constituent (quarks + antiquarks) in the hadron: n = 3 for a
nucleon and 2 for a pion.
The absence of an F2 term means no helicity �ip – �ts data

[Note that the coef�cients of the s� 0:4525 term in pn are also not very different from
pp, so the ! couples to the nucleon more strongly than the � ]



Pomeron exchange

A(s; t) =
�u(p3) 3 � � IP F1(t) u(p1) � �u(p4) 3 � � IP F1(t) u(p2)

e� 1
2 �� ( t ) (s=s0) � IP ( t ) � 1

Assume the pomeron trajectory is linear (like �; !; f 2; a2):

� IP (t) = � IP + � 0
IP t

The choice of s0 is not critical, but s0 = 1=� 0
IP works well

� IP and � IP are known from � TOT

The only free parameter is � 0
IP

d�
dt

=
[3� IP F1(t)]4

4�
(� 0

IP s)2( � IP + � 0
IP t )

Include also the �; !; f 2; a2 trajectory � R (t) = 1 � 0:4525 + 0:9t



Proton-proton scattering

Fix � 0 from the very-low-t data at some energy, say
p

s = 53 Gev:

Determines � 0 = 0 :25 GeV� 2

Then the formula works well out to larger t at the same energy
It also �ts well to pp and p�p elastic scattering data at all other available energies.
Because F1(t) is raised to the power 4 in the formula, this gives a good test that it is
the correct form factor, but why this should be so is not understood.

Note that the curves do not include photon exchange, which adds e2=t to the ampli-
tude and contributes signi�cantly at very small t.



Shrinkage of the forward peak

Because the formula contains the factor

(� 0
IP s)2� 0

IP t = exp( � 2� 0
IP log(� 0

IP s)jt j)

the contribution of pomeron exchange to the forward peak in d�=dt becomes steeper
as the energy increases:

Note the discrepancy between the data from the two Tevatron experiments.



Pion form factor

Measure ep ! ep� at t = 0

The exchanged � is almost on shell
So gives pion form factor F� (q2) (Chew-Low theory)

The curve is

F� (t) =
1

1 � t=m2
0

m2
0 = 0 :5 GeV2 � m2

�



Pion-proton elastic scattering

d�
dt

=
[3� IP F1(t)]4

4�
(� 0

IP s)2( � IP + � 0
IP t ) pp

d�
dt

=
[2� IP F� (t)]2[3� IP F1(t)]2

4�
(� 0

IP s)2( � IP + � 0
IP t ) �p

Pomeron exchange dominates already at
p

s = 19:4 GeV, because ! couples strongly
to the nucleon but not to the pion



Proton-proton elastic scattering at large t

For jt j greater than about 3 Gev2, the data are consistent with being energy-independent
and �t well to a simple power of t: d�=dt = 0 :09t � 8

This behaviour is what is calculated from triple-gluon exchange
Why this simple mechanism, with no higher-order perturbative QCD corrections?

Note that triple-gluon exchange is C = � 1 — its contributions to the pp and �pp
amplitudes are opposite in sign



Double pomeron exchange

What we know about double exchange:

� IP (t) = 1 + � IP + � 0
IP (t) � IP IP (t) = 1 + 2 � IP + 1

2 � 0
IP (t)

Phase e� 1
2 i�� IP ( t ) � e� 1

2 i�� IP IP ( t )

So IP IP has less steep t-dependence than IP and is opposite in sign at small t

But:
Not simple power s� IP IP ( t ) – there are also unknown log factors
Unknown factor FIP IP (t), both t-dependence and magnitude

A(s; � q2) = 2 is
Z

d2b e� i q :b
�

� �
� 2

2!
+ : : :

�

If choose �rst term to be single exchange IP , second term has the right structure to
be IP IP , but is wrong in detail



Effective power

The IP IP term gives a negative contribution to the total cross sections

Blue line 17:55 s0:110 IP
Red crosses IP + IP IP
Red line 18:23 s0:096 effective power
Black points TOTEM data

Current �t to pp and �pp total cross
sections with IP; IP IP; �; !; f 2; a2



Dips in proton-proton scattering
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s =31 GeV

Both real and imaginary parts of amplitude
almost vanish at same t value

IP and IPIP have different phases e−
1
2 iπαIP (t)

and −e−
1
2 iπαIPIP (t)

Adjust IPIP to cancel imaginary parts
Need another term to cancel real parts: perhaps ggg
But ggg is C = −1 so then no dip in p̄p scattering
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Challenge: can you do better than this?
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Challenge: get a better fit to all the data!
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Odderon



A C = −1 term like ggg which survives at high energy is called an odderon.
There have been many attempts to see signs of an odderon at t = 0.
A sensitive test is thought to be in

ρ =
ReA(s, t)
ImA(s, t)

∣∣∣
t=0
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Not there?



Glueball trajectory??

Our fit has
αIP (t) = 1.1 + 0.165t

If this linear form extends to positive t it should pass through the mass of a
JPC = 2++ glueball
Experimental situation with glueballs obscure
Lattice calculations:

Bali et al (1993) 2.27± 0.1 GeV
Morningstar et al (1999) 2.4± 0.12 GeV
Chen et al (2006) 2.39± 0.12 GeV
Gregory et al (2012) 2620± 0.05 GeV
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Summary so far

Effective-power approach describes small-t elastic scattering and total cross sec-
tions:

pp p̄p πp Kp γp

But for larger t need to consider

IP + IPIP + ggg + . . . ?

Easy to fit subsets of data, but universal fit more challenging
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53 GeV pp and ppBAR



Diffraction dissociation

AB → AX with particle A losing a very small fraction ξ of its momentum

A

B

A
1 1

2

1
ξ

p p

p X

PI p

t

Can think of the lower part of the diagram as the
pomeron IP scattering on particle B

M2
X = (p1 + p2 − p′1)

2 ∼ ξs

If p is the momentum of one of the particles of system X, define its rapidity

Y = 1
2 log

E + pL
E − pL

(which is invariant under longitudinal Lorentz-frame boosts)

If ξ is small, the rapidity of particle p′1 is approximately
log(

√
s/m′

1T ) m′2
1T = p′21T +m2

while the rapidity of the fastest particle in the system X is approximately 0
So there is a large rapidity gap



Mueller’s generalised optical theorem

A

B

A
1 1

2

1
ξ

p p

p X

PI p

t Sum over systems of hadrons X

d2σ

dt dξ
= DIP/a(t, ξ) σIPb(M2

X , t)

DIP/a(t, ξ) is the ”flux” of pomerons emitted by A:

DIP/a(t, ξ) =
9β2

IP

4π2
(F1(t))

2 ξ1−2αIP (t)

σIPb(M2
X , t) is the cross section for a pomeron of squared mass t scattering on

particle B
Generalised optical theorem: it is calculated from the imaginary part of the forward
IPB elastic scattering amplitude



Triple-reggeon vertex

At large MX the amplitude IPB → IPB should be dominated by pomeron exchange:

t t

dt d
d2 σ

ξ

a
A

B

A
a

c

Upper two pomerons: squared 4-momentum t

Lower pomeron: zero 4-momentum

We know all the factors, except the triple-pomeron
vertex VIPIPIP (t) in the middle

Complications: unless ξ is very small, also need ρ, ω, f2, a2 instead of the top two
pomerons, and unless M2

X = ξs is very large the same for the lower reggeon
So need

IPIP

IP

IPIP

f2

f2IP

IP

IPf2
IP

f2IP

f2

ωIP

ω
. . .

each with its unknown triple vertex in the middle
Usually, for simplicity, only terms of the form aac are considered:

FAa (t)FAa (t)FBc (0)V aac (t) ξαc(0)−2αa(t) (α′
cs)

αc(0)−1

Non-pomeron terms are often important!



Diffraction dissociation data problems
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∫
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are measuring the same thing
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Data at
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d2σ/dtdξ integrated over ξ



Diffraction dissociation data fits

Data for d2σ/dtdξ
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Double diffraction dissociation

Both initial particles lose a very small fraction of their momentum

A A
1 1’

1

2

1

1

2

 t 2

2 B B 2’

ξ p

ξ p

X

t

2

2’

2

2’

1

1’

1

1’

d4σ

dt1dξ1dt2dξ2
= DIP/A(t1, ξ1)D

IP/B(t2, ξ2)σ
IPIP (M2

X , t1, t2)

If MX is large enough for σIPIP (M2
X) to be dominated by IP exchange

d4σ(s)

dt1dξ1dt2dξ2
=
d2σ(s)

dt1dξ1

d2σ(s)

dt2dξ2
σTot
pp (s)



Exclusive central production

H

1

2

a

b

1’

2 ’

5 independent variables, eg
s = (p1 + p2)

2 s1 = (p′1 + pH)2 s2 = (pH + p′2)
2

t1 = (p′1 − p1)
2 t2 = (p′2 − p2)

2

In most events s1, s2 are large and t1, t2 small
s1 ∼ s ξ2 s2 ∼ s ξ1 ξ1ξ2s ∼M2

H

Energy dependence of amplitude: (α′
asξ2)

αa(t1)(α′
bsξ1)

αb(t2)

Square and apply ∫ 1

M2
H
/s

dξ1dξ2 δ(ξ1ξ2 −m2
H/s)

σ(IRIP ) and σ(IPIP ) increase with energy, σ(IRIR) ∼ 1/s

Hope that this is a good mechanism to produce glueballs
ALICE has detected f0(980) and f2(1270) production in pp → ppππ double-gap
events



Inclusive central production

p p → H X

H HH



AGK cancellation

(Abramovskii, Gribov, Kancheli)
Simplest example: Drell-Yan pp→ ℓ+ℓ−X

Add initial-state interactions, and cross interactions between initial and final states
They all cancel in the inclusive cross section dσ/dq2

But they do change the final state



Real photons
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ρ ρ
Simplest form of vector dominance:

dσ

dt
(t) = αEM

4π

γ2ρ

dσ

dt
(ρ0p→ ρ0p : t)

γρ is ρ-photon coupling got from ρ→ e+e−

Assume IP coupling to ρ same as to π and include f2, a2 exchange – need a fudge
factor 0.84 (ρ width? higher resonances?)
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Summary on inelastic diffractive processes

• There are severe problems with the lack of good data

• Single effective-power exchanges should be tried first

• But there are indications that for exclusive production of heavy systems, such as
Higgs or a pair of high-pT jets, initial and final state interactions are important –
people talk about rapidity gap survival probabilities



Models of the pomeron

There are many:

dipole, geometrical, dual, string, color glass, etc
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Simplest QCD model: two-gluon exchange
At t = 0 the amplitude is proportional to∫ 0

−∞ dk2[αSD(k2)]2

where D(k2) is the gluon propagator

The perturbative propagator D(k2) = 1/k2 would make the integral diverge
Introduce a length scale a: the largest distance the gluon can propagate in the
vacuum before confinement pulls it back
Simplest: D(k2) = a2/(1 + a2k2)

Then it turns out that if a is much less than the nucleon radius both gluons want to
couple to the same quark in each nucleon – in line with the quark-counting rule for
total cross sections

(This is the Landshoff-Nachtmann model)



BFKL pomeron

(Balitsky, Fadin, Kuraev, Lipatov)

Sums generalised perturbative gluon ladder graphs
Leading-order calculation: effective power sϵ

ϵ = 12(αs/π) log 2 ≈ 0.4

But DISASTER: next-order calculation makes ϵ negative

0.4 would have been good!



Inelastic lepton scattering

*γk

p

q

X

q

p p

q

µ ν

Q2 = −q2 ν = p.q x =
Q2

2ν
y =

p.q

p.k

W 2 = (p+q)2 = Q2

(
1

x
− 1

)
+m2

Square and sum over X
Need imaginary part of virtual-Compton amplitude(

gµν +
qµqν

Q2

)
F1(x,Q

2)

+
1

ν

(
pµ +

ν

Q2
qµ
)(
pν +

ν

Q2
qν
)
F2(x,Q

2)

Does Regge theory apply when W 2 >> Q2, ie at small x ?



Deep inelastic total cross sections

We already have seen that it applies for the real γp total cross section

σγp(W ) =
4π2αEM
Q2

F2(x,Q
2)
∣∣∣
Q2=0

Adopt same definition for nonzero Q2
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Regge approach

F2(x,Q
2) = F0(Q

2)x−e0 + F1(Q
2)x−e1 at small x ???

e1 = 0.096 "soft pomeron"
e0 between 0.35 and 0.45 "hard pomeron"
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soft

hard

x<0.001
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Q^2
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hard

x<0.001

e_0=0.44

Fit all x < 0.001 data with

F0(Q
2) = A0

( Q2

a0 +Q2

)1+e0 (
1 +

Q2

a0

) 1
2 e0

F1(Q
2) = A1

( Q2

a1 +Q2

)1+e1
Include also f2, a2 exchange term e2 = −0.34
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Charm cross section
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J/ψJ/ψ production

Omega experiment (1977):

p+ Cu → J/ψ +X

p̄+ Cu → J/ψ +X
= 0.15± 0.08

σ(p̄ p→ J/ψ X = 12± 5 nb

So the valence quarks of the beam couple to J/ψ: |cc̄⟩ mixes with |qq̄ >
at 10−4 level
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J/ψJ/ψ production
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Perturbative QCD

Perturbative QCD and Regge theory have to live together

Singlet DGLAP evolution eqation:

Q2 ∂

∂Q2
u(x,Q2) =

∫ 1

x

dzP(z, αs(Q
2))u(x/z,Q2)

u(x,Q2) =

(∑
i(qi(x,Q

2) + q̄i(x,Q
2))

g(x,Q2)

)
xF2(x,Q

2) = 4
9u(x,Q

2) + 1
9d(x,Q

2) + 1
9s(x,Q

2) + 4
9c(x,Q

2)

Mellin transform with respect to x:

u(N,Q2) =

∫ 1

0

dxxN−1u(x,Q2) P(N,αs(Q
2)) =

∫ 1

0

dz zNP(z, αs(Q
2))

Then
Q2 ∂

∂Q2
u(N,Q2) = P(N,αs(Q

2))u(N,Q2).



Problem

If u(x,Q2) ∼ f(Q2)x−ϵ at small x, then

u(N,Q2) ∼ f(Q2)

N − ϵ
and

Q2 ∂

∂Q2
f(Q2) = P(N = ϵ, αs(Q

2)) f(Q2).

For small z

Pgg(z, αs) ∼ (6αs/2π)(1/z) Pgg(N,αs) ∼ (6αs/2π)(1/N)

Pgg(N,αs) is known to be finite at N=0
At small N expansion in powers of αs is illegal
Compare√
N2 + αs−N =

αs
2N

− α2
s

8N3
. . .

The expansion is certainly not OK for the soft pomeron N = 0.096,
but may be OK for the hard pomeron N ≈ 0.4



Procedure

1 Choose some Q2. Calculate hardpom coefficent function fq(Q2) from the fit.

2 Fix the gluon coefficient function fg(x,Q2) by requiring that the
perturbative calculation of

γ∗ + g → c c̄

at is equal to 0.4 fq(Q2)

Use running mass
m(Q2) = m0c(αs(Q

2)/αs(m
2
0c))

C C = 12/(33− 2nf )

and αs(Q2 + 4m2(Q2)), g(x,Q2 + 4m2(Q2)).
According to PDG m0c = 1.275±0.025GeV m0b = 4.18±0.02GeV
Require αs(M2

Z) ≈ 0.1184 giving Λ5 = 230 MeV at NLO. Continuity at Q2 = m2
0b gives

Λ4 = 330 MeV.

3 Apply DGLAP evolution to calculate fq(Q2) and fg(x,Q2) at all Q2.

4 Fit fg(x,Q2) to some simple function of Q2

5 Calculate F c2 (x,Q2) and compare with data.
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Summary on electroproduction

• Small-x data show need for hard pomeron 0.35 < ϵ0 < 0.45

• Charm couples only to the hard pomeron. Why??

• J/ψ contains a small ūu.d̄d component: both pomerons couple to it, but problems
fitting LHC data

• DGLAP evolution can be applied only to the hard pomeron component of F2(x,Q
2)

Overall summary

• Regge theory successfully correlates a large amount of data

• But we do not know how to calculate multiple exchnages


