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2Photons are useful probes of strong dynamics 

Drell-Yan

Photons scatter from single quarks as their virtuality Q2 → ∞ 

The DIS and DY processes are important  
in the determination of parton distributions.
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3Photons are useful probes of strong dynamics  
at any Q2

As in electron microscopes, the  
Q2  ≡ –q2 dependence of eA → eA 
translates into a measurement of 
charge distribution in position space.

Unlike gluons, photons are perturbative at all Q2 .
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4Exercise 4.1
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Show that when ρ(r) = ρ(|r|) .
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FIG. 1. Form factor of He as a function of q —=—t.
Not all data points are shown. The fit corresponds to
N =10 in Eq. {10)with two zeros.

FJG. 3. Form factor of He as a function of q =——t.
Not all data points are shown. The solid curve
corresponds to the fit with N =9 in Eq. {10), and the
dashed curve to N =12, both with two zeros.
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FIG. 2. The charge distribution of He as a function
of r corresponding to the fit shown in Fig. 1.

FIG. 4. The charge distribution of He as a function
of r corresponding to the fits shown in Fig. 3. The solid
curve correponds to the N =9 best fit and the dashed
curve to N.=12.

Charge Profile of a 4He nucleus

r (fm)

⇢(4He) fm–3

Atkin & Dumbrajs, PRC 26 (1982) 680

Note model dependence  
for r → 0:         vs.
At large q, the recoil of the 4He 
target cannot be neglected.

•  Which frame to choose then?  
The Fourier transfrom is  
not covariant under boosts:

•  The quarks move with the speed 
of light: v ≈ c . How can the γ*  
pinpoint their positions?

F (Q2
) =

Z
d3r ⇢(r) exp(�iq · r)
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6Relativistic effects on photon resolution

From DIS, recall that resolution of photon with q2 = – Q2 is different in the 
longitudinal and transverse directions due to Lorentz dilation

e e

N X

γ*(q0,q)

In the target rest frame: q0 = ν 

Photon mass2 : Q2 = –q2 

Lorentz γ-factor: E/M ~ ν/Q

�r? ⇠ 1

Q
�rk ⇠ 1

Q

⌫

Q

=
1

2mxBj

Virtual photon resolution in the target rest frame:

� 1

2m ≥ 0

Only the transverse resolution grows with Q!
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7Boosting to the Infinite Momentum Frame (IMF)
A photon moving along the negative z-axis with speed v = c = 1  
scatters from target quarks at an instant of  
Light-Front (LF) time x+= t+z,   
not at an instant of ordinary time t 

Since DIS probes the target at equal LF time it is convenient to use 
LF quantization: Fock states are defined at x+ = 0 (rather than t = 0).

In the IMF ≈ LF, quarks with a momentum fraction x > 0  
of the target h have energy Eq = x Eh →∞

Hence their speed in the transverse direction is small: vq? =
pq?
xEh

! 0

This makes it easier to understand why the photon can resolve the 
transverse positions of the quarks with infinite accuracy as Q → ∞

t=0 
z=0

t=t 
z=–t

q
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Exercise 4.2

Consider the resolution in DIS, e+p → e+X. Take the virtual photon  
momentum in the proton rest frame to be along the negative z-axis:

q = (q0, q1, q2, q3) = (⌫, 0, 0,�
p

⌫2 +Q2)

Determine q± = q0 ± q3 in the Bjorken limit. Express the Fourier factor 
exp(–iq ⋅ x) in terms of q± and x± . From this find the resolution of 
the virtual photon in x+ and x–.

The resolution in x⊥ = (x1, x2) would appear to vanish. However, x 
represents the distance between the virtual photon vertices in the 
amplitude and its complex conjugate. For the handbag diagram to have 
a discontinuity this distance must be timelike: x2 = x+ x– – (x⊥)2 ≥ 0. 
Conclude from this that |x⊥| = O(1/Q).
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A hadron state of momentum P+ = P0 + P3 defined at given x+ = x0 + x3 
can be expanded in terms its quark and gluon Fock states as

|P+,P�,⇥⇥x+=0 =
�

n,�i

n⇥

i=1

⌅⇤ 1

0

dxi⌅
xi

⇤
d2ki

16⇤3
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16⇤3�(1�

�

i

xi) �(2)(
�

i

ki)

�⇥n(xi,ki,�i) |n; xiP
+, xiP� + ki,�i⇥x+=0

Note: The partons carry fractions xi  ≥ 0 of the hadron momentum P+ and P⊥ . 
          Since P+ > 0, the quark momenta xi P+ ≥ 0.

The LF Fock state expansion

The boost invariance is a consequence of the quantization surface being x+=0

x

+ ! e

⇣
x

+ under a longitudinal Lorentz boost ζ

where the LF wave functions ψn(xi, ki, λi) are independent  
of the hadron momentum P+, P⊥ .
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Exercise 4.3

x

+ ! e

⇣
x

+ under a longitudinal Lorentz boost ζShow that
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Inclusive Deep Inelastic Scattering (DIS)

P

*

P

...
N N

*In the Bj limit (Q2 → ∞ at fixed xB =Q2/2mν) 
the DIS cross section factorizes,

d�

dxBdQ
2
(`p ! `X)

The quark distribution in A+ = 0 gauge is, with x– = t – z

If the nucleon state |N(p)〉 is expressed in terms of the LF Fock expansion  
we find the quark distribution in terms of the LF wave functions

where x+ , x⊥ = 0. The longitudinal resolution is  x– ~ 1/(xBp+) ~ 1/(2mxBj)

xB xB

fq/N(xB)

0 x

=
X

q
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2
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2
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Z
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exp(�ixBp

+
x

�
/2)hN(p)| ¯ (x�

)�

+
 (0) |N(p)i
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fq/N (x) =
�

n,�i,k

n⇥

i=1

⌅⇤ dxi d2ki

16⇥3

⇧
16⇥3�(1�

�

i

xi) �(2)(
�

i

ki)

Quark distribution in terms of LF wave functions

⇥�(x� xk)|⇤n(xi,ki,⇥i)|2

Note:  – The parton distribution is obtained from data in the Q2 → ∞ limit.

PP
fq/N(x)N N

0 z
xB xBThe quark distribution is given by the 

probability to find a quark with momentum 
fraction x, summed over all Fock states n.
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1313Nucleon Form Factors

Aµ
��� = ⇥p + 1

2q, ��|Jµ(0)|p � 1
2q, �⇤

Using Lorentz and gauge invariance, the 
scattering amplitude is expressed in terms  
of the Dirac F1 and Pauli F2 form factors, 
which only depend on Q2 = – q2

= ū(p + 1
2q, ⇥�)

�
F1(Q2)�µ + F2(Q2)

i

2m
⇤µ⇥q⇥

⇥
u(p� 1

2q, ⇥)

p–q/2

γ*

e e

q

p+q/2

N N
F1, F2

The frame is conventionally chosen such that p⊥ = q+ = q– = 0.

q+ = 0 pq+ ≥ 0

pq+ ≥ 0

For q+ = 0 the virtual photon cannot 
create/destroy a pair of quarks on the LF:
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Inserting the LF Fock expansion for the nucleon states gives

⇢0(b) =
1

2p+

Z
d2q

(2⇡)2
e�iq·b ⌦p+, 1

2q,�
�� J+(0)

��p+,� 1
2q,�

↵

The charge density for an unpolarized nucleon is defined as  
a (2-dimensional!) Fourier transform over q⊥:

Nucleon Charge Distribution

⇥0(b) =
� �

0

dQ
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↵

where the wave functions ψ(xi,bi) are Fourier transforms of the ψ(xi,ki).
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15Impact parameter picture of Form Factors

q
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ek
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1

2p+

Z
d2q

(2⇡)2
e�iq·b ⌦p+, 1

2q,�
�� J+(0)

��p+,� 1
2q,�

↵

This is the probability to find a quark at impact parameter b, from which the 
the photon scatters.

The charge density of a nucleon polarized in the transverse (x-) direction 
is similarly given by a Fourier transform of the F2 form factor.

No QCD factorization (Bj limit) required! 
All Q2 contribute: Resolution in b ∼ 1/Qmax

⇥0(b) =
� �

0

dQ

2�
QJ0(b Q)F1(Q2)⇢0(b) =

1

2p+

Z
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(2⇡)2
e�iq·b ⌦p+, 1

2q,�
�� J+(0)

��p+,� 1
2q,�

↵
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empirical quark 
transverse densities 

in neutron 

data : Bradford, Bodek, Budd, Arrington (2006)

induced EDM : dy = - F2n (0) . e / (2 MN)

+

+

by

bx

by

bx

ρ0(b)

ρx(b)

Using measured form factors, find the

ρ0

ρx

Jx

Miller (2007) 
Carlson and Vanderhaeghen (2008)
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17Qualitative change in central neutron charge density

J. J. Kelly, hep-ph/0111251

3-dimensional Fourier transform with 
phenomenological factors (2001)

G. Miller, PRL 99 (2007) 112001

Transverse Fourier transform (2007)

ρ0(b)

6

ρch(r = 0) > 0

ρ0(b = 0) < 0

ρch(r)
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Generalization to any γ* transition PH and S. Kurki 

arXiv:1101.4810

2

The GPD’s reduce to electromagnetic form factors when integrated over the longitudinal momentum fraction,
schematically

⌅
dx q(x, b) = F (b). This revealed the desired relation between form factors in momentum space and

the charge density of hadrons in transverse space. Form factors are much easier to measure than GPD’s, which made
it possible to plot the nucleon density distributions without any model dependence [9, 10]. The momentum transfer
to the target equals the photon momentum in the form factor, q = p(N ⇤) � p(N). There is no notion of a “leading
twist” approximation for form factors. The Fourier transform wrt. q gives the charge density of quarks as a function
of impact parameter b. For the Dirac form factor FN

1 (Q2) of the nucleon,3
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⌥
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4⇧
⇥(2)(

⇧

i

xibi) |⌥N
n (xi, bi)|2

n⇧

k=1

ek ⇥
(2)(b� bk) (2)

Here the ⌥N
n (xi, bi) are LF wave functions of a nucleon state |N(p+, bN = 0)⌃ with ‘plus’ momentum p+ = p0 + p3

and transverse ‘center-of-momentum’ bN =
⇤

xibi = 0. The quarks and gluons in each n-parton Fock state have
longitudinal momenta k+i = xip+ and impact parameters bi. Only quarks at transverse position bk = b contribute
to the charge density at b. The quark distribution in impact parameter (2) is analogous and complementary to the
standard parton distribution fq/N (x,Q2) (1) in longitudinal momentum.4

An expansion similar to (2) pertains also for transition form factors measured in eN ⇤ eN⇥. As we recall below
(Section II) the expression remains diagonal in the LF Fock basis: only Fock states that are common to N and N⇥

contribute. The corresponding wave functions ⌥N
n , ⌥N�

n being distinct their product is no longer positive definite.
Nevertheless, the impact parameter distribution reflects the transverse size of the transition process, and has been
studied using data on several nucleon resonances [10, 11].

The expression (2) for the impact parameter distribution only assumes the general LF Fock expansion of the intial
and final hadronic states. Hence it can be applied also to states with several hadrons in the final (and initial)
state. This allows to study the transverse size of photon scattering processes as a function of the relative momenta
of the final state hadrons. The method can even be applied at the level of cross-sections, thus not requiring a
knowledge of the phase of the scattering amplitudes in the Fourier transform. One obtains then the distribution of
the transverse distance between the photon vertices in the amplitude and its complex conjugate. Since no leading
twist approximation is implied this type of analysis is particularly suitable for data at moderate values of q2, provided
only that the contribution of the J+ current can be isolated. The resolution in impact parameter improves with the
range of q2 for which data is available.

II. BASIC FORMALISM

We first recall [4, 5] the basic steps which lead to the expression corresponding to the nucleon density (2) for any
final state f . The lepton scattering amplitude is

M(�N ⇤ �⇤f) = �e2ū(�⇤)�µu(�)
1

q2

⌥
d4xe�iq·x⇧f |Jµ(x)|N(p)⌃ (3)

where q = � � �⇤ is the virtual photon momentum. Using LF spinors [7] quantized along the negative z-axis and
neglecting the lepton mass,

ū(�⇤,⌅⇧)�µu(�,⌅⇧) =
1⌦

��(�� � q�)

�
2���µ � ��qµ � q��µ + n̄µ� · q + i⌅⇧⇤µ�⇥⇤ n̄

��⇥q⇤
⇥

(4)

where the light-like vector n̄ = (2+, 0�,0⇧) satisfies n̄ · p = p� = p0� p3 for any vector p. A Fock state interpretation
of the matrix element in (3) is only possible for the J+ current, which dominates in the high energy limit, �� ⇤ ⌅

3 We follow the conventions of Ref. [5].
4 The form factor is a scattering amplitude with a single photon vertex and hence has no Wilson line. The relation (2) is exact (up to
higher order electromagnetic corrections) insofar as the LF Fock expansion of hadrons is exact (contributions from partons with xi = 0
are neglected).

3

at fixed q. This limit is also required to formally access all momentum transfers q. Hence we consider

M(⌃N ⇤ ⌃⇥f) = �e2
⌃�

q2
⇧f(pf )|J+(0)|N(p)⌃(2⌅)4⇥4(pf � p� q) (⌃� ⇤ ⌅) (5)

The matrix element ⇧f(pf )|J+(0)|N(p)⌃ may be viewed as a generalized form factor. Apart from its momentum
pf = p+ q there is no restriction on the final hadronic state f which could, e.g., consist of many hadrons (see Section
III).

The J+ quark current projects on the q+ component of the quark field,

J+(x) = eq q̄(x)�
+q(x) = 2eq q

†
+(x)q+(x) (6)

where q+(x) =
1
4 /̄n/nq(x) and the light-like vector n = (0+, 2�,0⌅) satisfies n · p = p+ for an arbitrary 4-vector p. The

q+ quark field may be expanded in LF creation and destruction operators at a given LF time. For x+ = 0,

q+(0
+, x�,x) =

⇤
dk+d2k

16⌅3k+
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+)e�i 1
2k

+x�+ik·x + d†(k+,k)v+(k
+)ei

1
2k

+x��ik·x
⇧

(7)

The u+ and v+ spinors are independent of the transverse momentum k and normalized according to u†
+(k

+)u+(k+) =
k+. In terms of operators at a given impact parameter b,

b(k+, b) =

⇤
d2k

16⌅3
eik·b b(k+,k) (8)

the quark field is expressed more simply as
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+, x�,x) =

⇤
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b(k+,x)u+(k

+)e�i 1
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+x�
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+)ei
1
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+x�
⇧

(9)

The transverse momentum eigenstates may be expanded in impact parameter states

|p+,p⌃ = 4⌅

⇤
d2b eip·b|p+, b⌃ (10)

which have the LF (x+ = 0) Fock expansion

|p+, b⌃ = 1
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+, bi)d

†( )a†( )|0⌃ (11)

The n operators in each Fock state create quarks (b†), antiquarks (d†) and gluons (a†) with longitudinal momenta xip+

at transverse positions bi. The specific advantage of the LF Fock expansion is that a hadron with any longitudinal
momentum p+ and transverse position b is described by the same LF wave functions ⇧n(xi, bi � b), which depend
only on the relative coordinates of the partons.

The quark field (9) eliminates an operator b†(xkp+, bk) at bk = x from the Fock expansion (11), according to the
anti-commutation relation

⌃
b(k+, b), b†(k⇥

+
, b⇥)

⌥
=

1

4⌅
k+⇥(k+ � k⇥

+
) ⇥2(b� b⇥) (12)

Thus, suppressing the contribution of the creation operator d†(k+,x) (see below),
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where the sign (�1)Pk related to operator ordering is irrelevant, since according to (6) the J+ matrix element in (5)
is the overlap of two states of the form (13).

q+ (x) = ¼ γ– γ+ q(x)

q

N N

π

e el

3

at fixed q. This limit is also required to formally access all momentum transfers q. Hence we consider

M(⌃N ⇤ ⌃⇥f) = �e2
⌃�

q2
⇧f(pf )|J+(0)|N(p)⌃(2⌅)4⇥4(pf � p� q) (⌃� ⇤ ⌅) (5)

The matrix element ⇧f(pf )|J+(0)|N(p)⌃ may be viewed as a generalized form factor. Apart from its momentum
pf = p+ q there is no restriction on the final hadronic state f which could, e.g., consist of many hadrons (see Section
III).

The J+ quark current projects on the q+ component of the quark field,

J+(x) = eq q̄(x)�
+q(x) = 2eq q

†
+(x)q+(x) (6)

where q+(x) =
1
4 /̄n/nq(x) and the light-like vector n = (0+, 2�,0⌅) satisfies n · p = p+ for an arbitrary 4-vector p. The

q+ quark field may be expanded in LF creation and destruction operators at a given LF time. For x+ = 0,

q+(0
+, x�,x) =

⇤
dk+d2k

16⌅3k+
⇤(k+)

⌅
b(k+,k)u+(k

+)e�i 1
2k

+x�+ik·x + d†(k+,k)v+(k
+)ei

1
2k

+x��ik·x
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(7)

The u+ and v+ spinors are independent of the transverse momentum k and normalized according to u†
+(k

+)u+(k+) =
k+. In terms of operators at a given impact parameter b,

b(k+, b) =

⇤
d2k

16⌅3
eik·b b(k+,k) (8)

the quark field is expressed more simply as

q+(0
+, x�,x) =
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dk+
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(9)

The transverse momentum eigenstates may be expanded in impact parameter states

|p+,p⌃ = 4⌅

⇤
d2b eip·b|p+, b⌃ (10)

which have the LF (x+ = 0) Fock expansion

|p+, b⌃ = 1
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†( )a†( )|0⌃ (11)

The n operators in each Fock state create quarks (b†), antiquarks (d†) and gluons (a†) with longitudinal momenta xip+

at transverse positions bi. The specific advantage of the LF Fock expansion is that a hadron with any longitudinal
momentum p+ and transverse position b is described by the same LF wave functions ⇧n(xi, bi � b), which depend
only on the relative coordinates of the partons.

The quark field (9) eliminates an operator b†(xkp+, bk) at bk = x from the Fock expansion (11), according to the
anti-commutation relation

⌃
b(k+, b), b†(k⇥

+
, b⇥)

⌥
=

1

4⌅
k+⇥(k+ � k⇥

+
) ⇥2(b� b⇥) (12)

Thus, suppressing the contribution of the creation operator d†(k+,x) (see below),
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i ⇤=k
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⇧
|0⌃ (13)

where the sign (�1)Pk related to operator ordering is irrelevant, since according to (6) the J+ matrix element in (5)
is the overlap of two states of the form (13).

Consider states in impact parameter:

Measure the transverse distribution of charge contributing to a general process:

E.g.: l– → ∞ at fixed q selects J+

Need to select J+ current contribution, 
which gives a probability density: 
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3

at fixed q. This limit is also required to formally access all momentum transfers q. Hence we consider
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The matrix element ⇧f(pf )|J+(0)|N(p)⌃ may be viewed as a generalized form factor. Apart from its momentum
pf = p+ q there is no restriction on the final hadronic state f which could, e.g., consist of many hadrons (see Section
III).

The J+ quark current projects on the q+ component of the quark field,
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†
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where q+(x) =
1
4 /̄n/nq(x) and the light-like vector n = (0+, 2�,0⌅) satisfies n · p = p+ for an arbitrary 4-vector p. The
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The u+ and v+ spinors are independent of the transverse momentum k and normalized according to u†
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+)u+(k+) =
k+. In terms of operators at a given impact parameter b,
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the quark field is expressed more simply as
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The transverse momentum eigenstates may be expanded in impact parameter states

|p+,p⌃ = 4⌅

⇤
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which have the LF (x+ = 0) Fock expansion
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The n operators in each Fock state create quarks (b†), antiquarks (d†) and gluons (a†) with longitudinal momenta xip+

at transverse positions bi. The specific advantage of the LF Fock expansion is that a hadron with any longitudinal
momentum p+ and transverse position b is described by the same LF wave functions ⇧n(xi, bi � b), which depend
only on the relative coordinates of the partons.

The quark field (9) eliminates an operator b†(xkp+, bk) at bk = x from the Fock expansion (11), according to the
anti-commutation relation
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Thus, suppressing the contribution of the creation operator d†(k+,x) (see below),

q+(0
+, x�,x)|p+, b⌃ =

1

(4⌅)2

�

n

⌅ n⇥

i=1

⇤ 1

0

dxi⌥
xi

⇤
4⌅d2bi

⇧
⇥(1�

�

i

xi)⇥
2(b�

�

i

xibi)⇧n(xi, bi � b)

⇥
�

k

⌅
(�1)Pk⇥2(bk � x)u+(xkp

+)e�
1
2xkp

+x�
n⇥

i ⇤=k

b†(xip
+, bi)d

†( )a†( )
⇧
|0⌃ (13)

where the sign (�1)Pk related to operator ordering is irrelevant, since according to (6) the J+ matrix element in (5)
is the overlap of two states of the form (13).

Expand into LF Fock states:
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The n operators in each Fock state create quarks (b†), antiquarks (d†) and gluons (a†) with longitudinal momenta xip+

at transverse positions bi. The specific advantage of the LF Fock expansion is that a hadron with any longitudinal
momentum p+ and transverse position b is described by the same LF wave functions ⇧n(xi, bi � b), which depend
only on the relative coordinates of the partons.

The quark field (9) eliminates an operator b†(xkp+, bk) at bk = x from the Fock expansion (11), according to the
anti-commutation relation
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where the sign (�1)Pk related to operator ordering is irrelevant, since according to (6) the J+ matrix element in (5)
is the overlap of two states of the form (13).
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4

To allow a simple interpretation of the amplitude (5) it is essential to choose a frame where p+f = p+.5 A photon

with q+ = 0 cannot create a qq̄ pair, causing the matrix element to be diagonal in the number of incoming and
outgoing quarks. In fact, the initial and final Fock states are identical. As seen from (13) the J+(0) current interacts
with a single quark or antiquark6 at bk = 0⇤ in |N⇧, and similarly in ⌅f |. The remaining n� 1 partons in |N⇧ must
thus be identical to those in ⌅f |. The constraints

�
i xi = 1 in the initial and final states forces also the momentum

fraction xk of the struck quark to be the same. The “center of momentum” constraint b =
�

i xibi in (13) then
requires the impact parameters of the initial and final states to be equal,

1
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where, after a shift of integration variables bi ⇤ bi + bN ,
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This expression for the current matrix element in impact parameter space is central for the applications we consider
below. For f = N the positivity of |⌅N

n (xi, bi)|2 allows the Fourier transform (2) of the elastic form factor to be
interpreted as a charge density. Even when the final state di�ers from the initial one its electro-excitation still
proceeds only via Fock components which are common to both.

As already indicated in (2), the Fourier transform wrt. q of the generalized form factor in (5) should be done in a
frame where the nucleon and photon momenta are

p = (p+, p�,� 1
2q)

q = (0+, q�, q) (16)

pf = (p+, p� + q�, 1
2q)

The excitation amplitude in impact parameter space is then, using (10) and (14),
⌅
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e�iq·b 1

2p+
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2p+
⌅f(p+, bf )|J+(0)|N(p+, bN )⇧ = AfN (b)

The expansion (15) shows that AfN (b) gets contributions from LF Fock states that are common to the initial and
final states (localized at bN = bf = 0) which have a quark or antiquark at transverse position bk = b. The range of
AfN (b) in b thus reflects the transverse size of the transition process.

The above analysis has previously been applied to elastic and transition electromagnetic form factors [9–11]. The
Fock expansion (11) is, however, completely general and applies also to states |f⇧ that consist of several hadrons. This
makes it possible to measure the transverse shape of the hadronic states that contribute to �⇥ + i ⇤ f transitions,
for any states i and f .

III. TWO-BODY FINAL STATES

The momentum pf = p + q of the final state f varies with q in the Fourier transform (17), hence the dependence
of the Fock amplitudes on the parent momentum pf must be known. As seen from (11) the LF wave functions
depend only on the relative coordinates of the constituents, not on the total momentum of the state. Final states
|f⇧ = |h1, . . . , hn⇧ consisting of several hadrons may be regarded as a particular type of hadronic state, where we are
free to specify the relative momenta of the hadrons, each one of which has its own (non-perturbative) Fock expansion.
The multi-hadron Fock amplitudes must conform with the general LF rules to ensure the frame independence of the
state |f⇧. In this Section we specify the LF Fock expansion and the Fourier transform for a two-body (⇤N) state, and
illustrate it with a tree-level QED amplitude. The multi-hadron case is considered in Section IV, where we discuss
the Fourier transform of the cross section.

5 In the case of GPD’s this condition implies an extrapolation from the experimentally accessible kinematic region. For form factors it
amounts to a choice of frame.

6 Due to the anti-commutation of the d-operators the charge ek in (15) has opposite sign for quarks and antiquarks.
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This expression for the current matrix element in impact parameter space is central for the applications we consider
below. For f = N the positivity of |⌅N

n (xi, bi)|2 allows the Fourier transform (2) of the elastic form factor to be
interpreted as a charge density. Even when the final state di�ers from the initial one its electro-excitation still
proceeds only via Fock components which are common to both.

As already indicated in (2), the Fourier transform wrt. q of the generalized form factor in (5) should be done in a
frame where the nucleon and photon momenta are
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The expansion (15) shows that AfN (b) gets contributions from LF Fock states that are common to the initial and
final states (localized at bN = bf = 0) which have a quark or antiquark at transverse position bk = b. The range of
AfN (b) in b thus reflects the transverse size of the transition process.

The above analysis has previously been applied to elastic and transition electromagnetic form factors [9–11]. The
Fock expansion (11) is, however, completely general and applies also to states |f⇧ that consist of several hadrons. This
makes it possible to measure the transverse shape of the hadronic states that contribute to �⇥ + i ⇤ f transitions,
for any states i and f .

III. TWO-BODY FINAL STATES

The momentum pf = p + q of the final state f varies with q in the Fourier transform (17), hence the dependence
of the Fock amplitudes on the parent momentum pf must be known. As seen from (11) the LF wave functions
depend only on the relative coordinates of the constituents, not on the total momentum of the state. Final states
|f⇧ = |h1, . . . , hn⇧ consisting of several hadrons may be regarded as a particular type of hadronic state, where we are
free to specify the relative momenta of the hadrons, each one of which has its own (non-perturbative) Fock expansion.
The multi-hadron Fock amplitudes must conform with the general LF rules to ensure the frame independence of the
state |f⇧. In this Section we specify the LF Fock expansion and the Fourier transform for a two-body (⇤N) state, and
illustrate it with a tree-level QED amplitude. The multi-hadron case is considered in Section IV, where we discuss
the Fourier transform of the cross section.

5 In the case of GPD’s this condition implies an extrapolation from the experimentally accessible kinematic region. For form factors it
amounts to a choice of frame.

6 Due to the anti-commutation of the d-operators the charge ek in (15) has opposite sign for quarks and antiquarks.
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is diagonal in Fock states n provided q+ = 0
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FT of γ* matrix element in momentum space

In the frame:

4

To allow a simple interpretation of the amplitude (5) it is essential to choose a frame where p+f = p+.5 A photon

with q+ = 0 cannot create a qq̄ pair, causing the matrix element to be diagonal in the number of incoming and
outgoing quarks. In fact, the initial and final Fock states are identical. As seen from (13) the J+(0) current interacts
with a single quark or antiquark6 at bk = 0⇤ in |N⇧, and similarly in ⌅f |. The remaining n� 1 partons in |N⇧ must
thus be identical to those in ⌅f |. The constraints
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i xi = 1 in the initial and final states forces also the momentum

fraction xk of the struck quark to be the same. The “center of momentum” constraint b =
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This expression for the current matrix element in impact parameter space is central for the applications we consider
below. For f = N the positivity of |⌅N

n (xi, bi)|2 allows the Fourier transform (2) of the elastic form factor to be
interpreted as a charge density. Even when the final state di�ers from the initial one its electro-excitation still
proceeds only via Fock components which are common to both.

As already indicated in (2), the Fourier transform wrt. q of the generalized form factor in (5) should be done in a
frame where the nucleon and photon momenta are

p = (p+, p�,� 1
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The expansion (15) shows that AfN (b) gets contributions from LF Fock states that are common to the initial and
final states (localized at bN = bf = 0) which have a quark or antiquark at transverse position bk = b. The range of
AfN (b) in b thus reflects the transverse size of the transition process.

The above analysis has previously been applied to elastic and transition electromagnetic form factors [9–11]. The
Fock expansion (11) is, however, completely general and applies also to states |f⇧ that consist of several hadrons. This
makes it possible to measure the transverse shape of the hadronic states that contribute to �⇥ + i ⇤ f transitions,
for any states i and f .

III. TWO-BODY FINAL STATES

The momentum pf = p + q of the final state f varies with q in the Fourier transform (17), hence the dependence
of the Fock amplitudes on the parent momentum pf must be known. As seen from (11) the LF wave functions
depend only on the relative coordinates of the constituents, not on the total momentum of the state. Final states
|f⇧ = |h1, . . . , hn⇧ consisting of several hadrons may be regarded as a particular type of hadronic state, where we are
free to specify the relative momenta of the hadrons, each one of which has its own (non-perturbative) Fock expansion.
The multi-hadron Fock amplitudes must conform with the general LF rules to ensure the frame independence of the
state |f⇧. In this Section we specify the LF Fock expansion and the Fourier transform for a two-body (⇤N) state, and
illustrate it with a tree-level QED amplitude. The multi-hadron case is considered in Section IV, where we discuss
the Fourier transform of the cross section.

5 In the case of GPD’s this condition implies an extrapolation from the experimentally accessible kinematic region. For form factors it
amounts to a choice of frame.

6 Due to the anti-commutation of the d-operators the charge ek in (15) has opposite sign for quarks and antiquarks.
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This expression for the current matrix element in impact parameter space is central for the applications we consider
below. For f = N the positivity of |⌅N

n (xi, bi)|2 allows the Fourier transform (2) of the elastic form factor to be
interpreted as a charge density. Even when the final state di�ers from the initial one its electro-excitation still
proceeds only via Fock components which are common to both.

As already indicated in (2), the Fourier transform wrt. q of the generalized form factor in (5) should be done in a
frame where the nucleon and photon momenta are
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The expansion (15) shows that AfN (b) gets contributions from LF Fock states that are common to the initial and
final states (localized at bN = bf = 0) which have a quark or antiquark at transverse position bk = b. The range of
AfN (b) in b thus reflects the transverse size of the transition process.

The above analysis has previously been applied to elastic and transition electromagnetic form factors [9–11]. The
Fock expansion (11) is, however, completely general and applies also to states |f⇧ that consist of several hadrons. This
makes it possible to measure the transverse shape of the hadronic states that contribute to �⇥ + i ⇤ f transitions,
for any states i and f .

III. TWO-BODY FINAL STATES

The momentum pf = p + q of the final state f varies with q in the Fourier transform (17), hence the dependence
of the Fock amplitudes on the parent momentum pf must be known. As seen from (11) the LF wave functions
depend only on the relative coordinates of the constituents, not on the total momentum of the state. Final states
|f⇧ = |h1, . . . , hn⇧ consisting of several hadrons may be regarded as a particular type of hadronic state, where we are
free to specify the relative momenta of the hadrons, each one of which has its own (non-perturbative) Fock expansion.
The multi-hadron Fock amplitudes must conform with the general LF rules to ensure the frame independence of the
state |f⇧. In this Section we specify the LF Fock expansion and the Fourier transform for a two-body (⇤N) state, and
illustrate it with a tree-level QED amplitude. The multi-hadron case is considered in Section IV, where we discuss
the Fourier transform of the cross section.

5 In the case of GPD’s this condition implies an extrapolation from the experimentally accessible kinematic region. For form factors it
amounts to a choice of frame.

6 Due to the anti-commutation of the d-operators the charge ek in (15) has opposite sign for quarks and antiquarks.

When f  consists of several hadrons their relative momenta must be 
consistent with the LF Fock expansion at all  pf = q + p

The b-distribution may be studied as a function of the final state f, providing 
information about the transverse size of the contributing Fock states.
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Example: f = π (p1) N(p2)

In order to conform with the Lorentz covariance of LF states, at any pf  :

5

A. Transverse shape analysis of ��N � ⇥N

The standard LF Fock expansion in transverse momentum space for a single pion is [5, 7]
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where · · · stands for the operators which create the remaining n� 1 partons of the Fock state. As noted above, the
wave functions ⇤�

n(xi,ki) are independent of the pion momentum p1. The ‘plus’ momentum of parton i is xip
+
1 and

its transverse momentum is xip1 + ki. The restrictions on the xi and ki implied by (18) ensure that the parton
momenta sum to the total pion momentum in each Fock state.

For a ⇥N state we have then the double expansion
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which should be transformed into the standard form (18), where parton momenta refer to the total momentum
pf = p1 + p2 of the state. We parametrize the pion and nucleon momenta in terms of a momentum fraction x and
relative transverse momentum k,

p+1 = xp+f p1 = xpf + k

p+2 = (1� x)p+f p2 = (1� x)pf � k
(20)

where p+f = p+ and pf = 1
2q in the frame (16). The momentum fractions of the pion and nucleon constituents wrt.

p+ are then x�
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where x =
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i x
�
i on the rhs. The transverse momenta of the partons may be expressed as
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For a |f⌅ = |⇥N⌅ state specified by a wave function �f (x,k) of the relative hadron momentum defined in (20) we get
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where Ψf (x,k) defines the final state in terms of the relative variables x, k :
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relative transverse momentum k,
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For a |f⌅ = |⇥N⌅ state specified by a wave function �f (x,k) of the relative hadron momentum defined in (20) we get
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With x, k being independent of  pf , this defines the pion and nucleon 
momenta p1, p2 at all photon momenta q.

The                              state-to-be is created by the photon at an instant of x+. 

The pion and nucleon are formed later, via final state interactions.
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For a |f⌅ = |⇥N⌅ state specified by a wave function �f (x,k) of the relative hadron momentum defined in (20) we get
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Illustration (1): γ*+ µ → µ + γ 

The QED matrix element

6

where x =
⌥

i x
⇥
i and k =

⌥
i ki on the rhs. This Fock expansion has the standard LF form, implying that the

superposition of ⌅N plane wave states should be given by �f (x,k) with x and k determined by the relations (20) in
any frame. The standard normalization condition (suppressing the helicities)
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This would be satisfied, e.g., by standard partial wave analyses. A superposition defined by the appropriate spherical
harmonics in the rest frame (pf = 0) determines directly the frame independent wave function �f (x,k). However,
it is not necessary to constrain the mass (27) to be fixed. States with di⇥erent mass that are produced at the same
q+ = 0 and q will di⇥er wrt. q�, which does not a⇥ect the Fourier transform.

It is instructive to express the ⌅N states also in impact parameter space, again following the conventions for partonic
states. For the state (24)
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B. Illustration: ⇥µ � ⇥�µ�

We denote the photon matrix element in the amplitude (5) for ⇧µ ⇥ ⇧⇥µ� by
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where p1 + p2 = pf = p+ q and (as indicated) the initial muon has helicity ⇤ = 1
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expressed in terms of the relative variables x, k is:
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B. Illustration: ⇥µ � ⇥�µ�
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where p1 + p2 = pf = p+ q and (as indicated) the initial muon has helicity ⇤ = 1
2 . At lowest order, using LF helicity

spinors [7] in the frame (16) and the parametrization (20),
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⌃
(33)

where e⇥ · k = �⇤ei⇥⌅k |k|/
⇧
2. The corresponding expressions for the other helicity amplitudes are given in the

Appendix. The Fourier transform (17) gives the amplitude for the virtual photon to interact with a muon at impact
parameter b, when the center-of-momentum of the initial and final states is at zero impact parameter:
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where
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where x =
⌥

i x
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i and k =
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i ki on the rhs. This Fock expansion has the standard LF form, implying that the

superposition of ⌅N plane wave states should be given by �f (x,k) with x and k determined by the relations (20) in
any frame. The standard normalization condition (suppressing the helicities)

⇤⌅N(p⇥+,p⇥;�f )|⌅N(p+,p ;�f )⌅ = 16⌅3p+⇥(p+ � p⇥+)⇥2(p� p⇥) (25)

implies

� 1

0
dx

�
d2k

16⌅3
|�f (x,k)|2 = 1 (26)

For the wave function �f (x,k) to preserve the invariant mass of the ⌅N state it should have support only at fixed
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This would be satisfied, e.g., by standard partial wave analyses. A superposition defined by the appropriate spherical
harmonics in the rest frame (pf = 0) determines directly the frame independent wave function �f (x,k). However,
it is not necessary to constrain the mass (27) to be fixed. States with di⇥erent mass that are produced at the same
q+ = 0 and q will di⇥er wrt. q�, which does not a⇥ect the Fourier transform.

It is instructive to express the ⌅N states also in impact parameter space, again following the conventions for partonic
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The Fourier transform gives:
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In the first term the γ* interacts with the initial muon, which by definition is at 
b = 0. The second term reflects the b-distribution of the final muon. 

This expression agrees exactly with the wave function overlap formula:
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Illustration (1): γ*+ µ → µ + γ   (cont.)
4

To allow a simple interpretation of the amplitude (5) it is essential to choose a frame where p+f = p+.5 A photon

with q+ = 0 cannot create a qq̄ pair, causing the matrix element to be diagonal in the number of incoming and
outgoing quarks. In fact, the initial and final Fock states are identical. As seen from (13) the J+(0) current interacts
with a single quark or antiquark6 at bk = 0⇤ in |N⇧, and similarly in ⌅f |. The remaining n� 1 partons in |N⇧ must
thus be identical to those in ⌅f |. The constraints

�
i xi = 1 in the initial and final states forces also the momentum

fraction xk of the struck quark to be the same. The “center of momentum” constraint b =
�

i xibi in (13) then
requires the impact parameters of the initial and final states to be equal,

1

2p+
⌅f(p+, bf )|J+(0)|N(p+, bN )⇧ ⇥ 1

(4⇤)2
⇥2(bf � bN )AfN (�bN ) (14)

where, after a shift of integration variables bi ⇤ bi + bN ,

AfN (b) =
1

4⇤

⇥

n

⇧ n⇤

i=1

⌅ 1

0
dxi

⌅
4⇤d2bi

⌃
⇥(1�

⇥

i

xi)⇥
2(
⇥

i

xibi)⌅
f
n
⇥
(xi, bi)⌅

N
n (xi, bi)

⇥

k

ek⇥
2(bk � b) (15)

This expression for the current matrix element in impact parameter space is central for the applications we consider
below. For f = N the positivity of |⌅N

n (xi, bi)|2 allows the Fourier transform (2) of the elastic form factor to be
interpreted as a charge density. Even when the final state di�ers from the initial one its electro-excitation still
proceeds only via Fock components which are common to both.

As already indicated in (2), the Fourier transform wrt. q of the generalized form factor in (5) should be done in a
frame where the nucleon and photon momenta are

p = (p+, p�,� 1
2q)

q = (0+, q�, q) (16)

pf = (p+, p� + q�, 1
2q)

The excitation amplitude in impact parameter space is then, using (10) and (14),
⌅

d2q

(2⇤)2
e�iq·b 1

2p+
⌅f(pf )|J+(0)|N(p)⇧ = (17)

=

⌅
d2q

(2⇤)2
d2bNd2bf e�iq·(b+ 1

2bN+ 1
2bf ) (4⇤)

2

2p+
⌅f(p+, bf )|J+(0)|N(p+, bN )⇧ = AfN (b)

The expansion (15) shows that AfN (b) gets contributions from LF Fock states that are common to the initial and
final states (localized at bN = bf = 0) which have a quark or antiquark at transverse position bk = b. The range of
AfN (b) in b thus reflects the transverse size of the transition process.

The above analysis has previously been applied to elastic and transition electromagnetic form factors [9–11]. The
Fock expansion (11) is, however, completely general and applies also to states |f⇧ that consist of several hadrons. This
makes it possible to measure the transverse shape of the hadronic states that contribute to �⇥ + i ⇤ f transitions,
for any states i and f .

III. TWO-BODY FINAL STATES

The momentum pf = p + q of the final state f varies with q in the Fourier transform (17), hence the dependence
of the Fock amplitudes on the parent momentum pf must be known. As seen from (11) the LF wave functions
depend only on the relative coordinates of the constituents, not on the total momentum of the state. Final states
|f⇧ = |h1, . . . , hn⇧ consisting of several hadrons may be regarded as a particular type of hadronic state, where we are
free to specify the relative momenta of the hadrons, each one of which has its own (non-perturbative) Fock expansion.
The multi-hadron Fock amplitudes must conform with the general LF rules to ensure the frame independence of the
state |f⇧. In this Section we specify the LF Fock expansion and the Fourier transform for a two-body (⇤N) state, and
illustrate it with a tree-level QED amplitude. The multi-hadron case is considered in Section IV, where we discuss
the Fourier transform of the cross section.

5 In the case of GPD’s this condition implies an extrapolation from the experimentally accessible kinematic region. For form factors it
amounts to a choice of frame.

6 Due to the anti-commutation of the d-operators the charge ek in (15) has opposite sign for quarks and antiquarks.
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7

where b = |b|. The first term in (33) arises from the Feynman diagram where the virtual photon vertex is before
the real photon vertex on the muon line, i.e., the exchanged photon interacts with the initial muon. As expected, it
contributes to (34) at the initial impact parameter b = 0. In the second term the virtual photon interacts with the
muon after the emission of the real photon, and the b-dependence reflects the impact parameter distribution of the
final state muon.

The amplitude (34) is in fact given precisely by the overlap (15) of the LF Fock amplitudes of the initial (µ) and
final (µ�) states. According to (32) the wave function �(x,k) which describes the final state as in (24) is a ⇥-function
in x and k. In impact parameter space (30) gives

�(x⌅, b) = ⇥(x⌅ � x)
�
x(1� x) exp

⇧
i
k · b
1� x

⌃
(35)

The first term in (33) corresponds in (15) to the single particle (n = 1, initial muon) Fock state contribution, which
has x = 1 and bµ = 0. The coe⇥cient of ⇥2(b) in (33) must therefore be the c.c. of the single muon wave function in the
µ� final state, ⌅⇥(µ� ⇤ µ), which is the same as ⌅(µ ⇤ µ�) (with reversed sign due to the LF energy denominator).
Multiplying the µ ⇤ µ� LF wave function given in, e.g., [12],

� ⌅⇤
+ 1

2+1
(x,k) =

2e⌃
1� x

e� · k
(1� x)2m2 + k2 (36)

by �⇥(x⌅, b) and integrating over x⌅ indeed reproduces the coe⇥cient of the first term in (33). The second term in
(33) arises from the n = 2 (µ�) Fock state contribution in (15). It is readily seen to be the product of 4⇤/(1�x)2 due
to the integrations in (15), the final state amplitude �⇥(x⌅, b) and the µ ⇤ µ� LF wave function in impact parameter
space [13],

⌅⇤
+ 1

2+1
(x, b) = � i

4
⌃
2⇤2

em
⌃
1� xe�i⇥bK1(mb) (37)

Given the explicit expression for the QED amplitude (32) we may also consider µ� final states with fixed impact
parameter b⌅µ of the final muon. Choosing

�(x⌅, b⌅) = ⇥(x⌅ � x)
�
x(1� x)

(1� x)2

4⇤
⇥2(b⌅ � b⌅µ) (38)

we find from (30)

�(x⌅,k) = ⇥(x⌅ � x)
�

x(1� x) exp
⇤
� i

k · b⌅µ
1� x

⌅
(39)

Integrating over the relative momentum k of the final state with weight �⇥(x⌅,k) according to (24),

Aµ�
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2+1
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d2k

16⇤3
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µ

�
(40)

The Fourier transform (17) in q then gives

Aµ�
+ 1

2+1
(b;x, b⌅µ) =

�
x(1� x)⌅⇤

+ 1
2+1

(x, b⌅µ)

⌥
�⇥(2)(b) + ⇥(2)(b� b⌅µ)

�
(41)

Thus the virtual photon interacts either with the initial muon at b = 0 or the final muon at b = b⌅µ. In accordance
with (15) the distribution is determined by the LF wave function (37) for µ ⇤ µ� (with the sign change noted above).

IV. CROSS SECTIONS IN IMPACT PARAMETER SPACE

The superposition (24) and Fourier transform (17) discussed above require a knowledge of the phase of the scattering
amplitude ⌅f(pf )|J+(0)|N(p)⇧. Since a partial wave analysis is practical only for a limited subset of all amplitudes it

Choosing

corresponds to fixing the impact parameter bµ´ of the final muon. Then

7

where b = |b|. The first term in (33) arises from the Feynman diagram where the virtual photon vertex is before
the real photon vertex on the muon line, i.e., the exchanged photon interacts with the initial muon. As expected, it
contributes to (34) at the initial impact parameter b = 0. In the second term the virtual photon interacts with the
muon after the emission of the real photon, and the b-dependence reflects the impact parameter distribution of the
final state muon.

The amplitude (34) is in fact given precisely by the overlap (15) of the LF Fock amplitudes of the initial (µ) and
final (µ�) states. According to (32) the wave function �(x,k) which describes the final state as in (24) is a ⇥-function
in x and k. In impact parameter space (30) gives

�(x⌅, b) = ⇥(x⌅ � x)
�
x(1� x) exp

⇧
i
k · b
1� x

⌃
(35)

The first term in (33) corresponds in (15) to the single particle (n = 1, initial muon) Fock state contribution, which
has x = 1 and bµ = 0. The coe⇥cient of ⇥2(b) in (33) must therefore be the c.c. of the single muon wave function in the
µ� final state, ⌅⇥(µ� ⇤ µ), which is the same as ⌅(µ ⇤ µ�) (with reversed sign due to the LF energy denominator).
Multiplying the µ ⇤ µ� LF wave function given in, e.g., [12],

� ⌅⇤
+ 1

2+1
(x,k) =

2e⌃
1� x

e� · k
(1� x)2m2 + k2 (36)

by �⇥(x⌅, b) and integrating over x⌅ indeed reproduces the coe⇥cient of the first term in (33). The second term in
(33) arises from the n = 2 (µ�) Fock state contribution in (15). It is readily seen to be the product of 4⇤/(1�x)2 due
to the integrations in (15), the final state amplitude �⇥(x⌅, b) and the µ ⇤ µ� LF wave function in impact parameter
space [13],

⌅⇤
+ 1

2+1
(x, b) = � i

4
⌃
2⇤2

em
⌃
1� xe�i⇥bK1(mb) (37)

Given the explicit expression for the QED amplitude (32) we may also consider µ� final states with fixed impact
parameter b⌅µ of the final muon. Choosing

�(x⌅, b⌅) = ⇥(x⌅ � x)
�
x(1� x)

(1� x)2

4⇤
⇥2(b⌅ � b⌅µ) (38)

we find from (30)

�(x⌅,k) = ⇥(x⌅ � x)
�

x(1� x) exp
⇤
� i

k · b⌅µ
1� x

⌅
(39)

Integrating over the relative momentum k of the final state with weight �⇥(x⌅,k) according to (24),

Aµ�
+ 1

2+1
(q;x, b⌅µ) ⇥

↵
d2k

16⇤3
exp

 
i
k · b⌅µ
1� x

⌦
Aµ�

+ 1
2+1

(q;x,k)

= � i

4
⌃
2⇤2

em
⌃
x(1� x) e

�i⇥b�µ K1

�
mb⌅µ

⇥⌥
�1 + eiq·b

�
µ

�
(40)

The Fourier transform (17) in q then gives

Aµ�
+ 1

2+1
(b;x, b⌅µ) =

�
x(1� x)⌅⇤

+ 1
2+1

(x, b⌅µ)

⌥
�⇥(2)(b) + ⇥(2)(b� b⌅µ)

�
(41)

Thus the virtual photon interacts either with the initial muon at b = 0 or the final muon at b = b⌅µ. In accordance
with (15) the distribution is determined by the LF wave function (37) for µ ⇤ µ� (with the sign change noted above).

IV. CROSS SECTIONS IN IMPACT PARAMETER SPACE

The superposition (24) and Fourier transform (17) discussed above require a knowledge of the phase of the scattering
amplitude ⌅f(pf )|J+(0)|N(p)⇧. Since a partial wave analysis is practical only for a limited subset of all amplitudes it

which again conforms with the general overlap expression of LF Fock 
state wave functions.

Illustration (2): γ*+ µ → µ + γ 
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Fourier transform of the cross section

The γ*+N → f  amplitudes have dynamical phases (resonances,...). 
⇒ Calculating their Fourier transforms requires an amplitude analysis.

However, one can Fourier transform the measured cross section itself. 
Then the b-distribution reflects the difference between the impact parameters 
of the photon vertex in the amplitude and its complex conjugate:

8

is interesting to ask whether information about the transverse structure of the scattering process can be obtained from
a Fourier transform of the measured cross section. As we next discuss, this gives the distribution of the transverse
distance between the photon interaction vertices in the amplitude and its complex conjugate.

As in the case of the amplitude (5) we need to isolate the contribution of the J+ current. Here we again consider
the high energy limit s ⌅ ⌃�p+ ⇤ ⇧ at fixed momentum transfer q = ⌃� ⌃⇤. The Lorentz invariant cross section can
then be expressed as

⌃�
d⇧(⌃N ⇤ ⌃⇤f)

dq� d2q
⌅ 2�2

⌅

s

q4

⌥
d�f

����
1

2p+
⌃f(pf )|J+(0)|N(p)⌥

����
2

(42)

where d�f is the phase space element of the hadrons in f . The frame (16) can be reached from the ⌃N CM by
a rotation ⇥⇤ ⌅ |q/|⌃� around the normal to the lepton scattering plane. In the ⌃� ⇤ ⇧ limit the rotation is
infinitesimal and does not a⇤ect the finite momentum transfer q. Then the Fourier transformation below can be done
directly in the ⌃N CM.

For a state f with n hadrons of momenta pi,

d�f (n) =

⇥
n⌃

i=1

dp+i d2pi

(2⌅)32p+i

⇤
(2⌅)4⇥4(p+ q �

⇧

i

pi) (43)

With a LF parametrization as in (20),

p+i = xip
+
f pi = xipf + ki (44)

where pf =
⌅

i pi, we obtain

d�f (n) =
2(2⌅)4

p+f

⇥
n⌃

i=1

dxi d2ki

(2⌅)32xi

⇤
⇥(1�

⇧

i

xi) ⇥
2(
⇧

i

ki) ⇥(p
� + q� � p�f ) (45)

The initial nucleon N and final state f in the matrix element of (42) may be Fourier transformed (10) in the frame
(16), where pf = �p = 1

2q and q+ = 0. According to (14) the matrix element is diagonal in impact parameter. Thus

⌥
d2q

(2⌅)2
e�iq·b

����
1

2p+
⌃f(pf )|J+(0)|N(p)⌥

����
2

=

⌥
d2bq AfN (bq)A⇥

fN (bq � b) (46)

Altogether we get for the Fourier transformed cross section,

SfN (b) ⇥
⌥

d2q

(2⌅)2
e�iq·b q4 d⇧(⌃N ⇤ ⌃⇤f)

d2q
(47)

= (4⌅)3�2
⇧

n

⌥
d2bq AfN (bq)A⇥

fN (bq � b)

⇥
n⌃

i=1

⌥
dxi d2ki

(2⌅)32xi

⇤
⇥(1�

⇧

i

xi) ⇥
2(
⇧

i

ki)

As indicated, the cross section may include several final states with di⇤erent multiplicities n. The amplitudes AfN (bq)
defined by (17) can according to (15) be expanded in terms of Fock states common to N and f . With the states
located at zero impact parameter the struck quark is at impact parameter bq. Hence SfN (b) gives the distribution
in transverse distance b between the quark struck in the amplitude and in its complex conjugate. It has a real part
that is even under b ⇤ �b and an imaginary part that is odd. In an unpolarized cross section the latter reflects
correlations between the lepton scattering plane (defined by the beam and q) and the transverse momenta ki of the
hadrons in f .

The final phase space integral in (47) refers to the internal momenta of f , and depends on the definition of the
final state f . E.g., in the particular case of |f⌥ = |⌅(p1)N(p2)⌥, with p1 and p2 defined by (20) and the hadronic wave
function ⇥f (x,k) chosen to be a ⇥-function in x and k as in (35),

SfN (b;x,k) =

⌥
d2q

(2⌅)2
e�iq·b q4 d⇧(⌃N ⇤ ⌃⇤⌅N)

d2q dx d2k
=

�2

4⌅3

1

x(1� x)

⌥
d2bq AfN (bq;x,k)A⇥

fN (bq � b;x,k) (48)

Thus the impact parameter distribution may be considered for fully exclusive (as well as fully inclusive) cross-sections.
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26Remarks

In heavy quark production:

9

The impact parameter amplitude Aµ�(b;x,k) is given by (34) in the case of the µ ⌅ µ� example considered in
Section III B. The corresponding expression for Sµ�(b;x,k) is most easily found by substituting the expression (33)
for Aµ�

+ 1
2+1

(q;x,k) on the lhs. of (46) and Fourier transforming its square,

Sµ�
+ 1

2+1
(b;x,k) = 4e2x

⇤
k2/2

[(1� x)2m2 + k2]2
⇥(2)(b) � |k| cos(⌃b � ⌃k)

(1� x)2m2 + k2

im

2⌅

exp
�
� i k·b

1�x

⇥

1� x
K1(mb)

+
1
4⌅

exp
�
� i k·b

1�x

⇥

(1� x)2
⌃
K0(mb)� 1

2mb K1(mb)
⌥⌅

(49)

The three terms correspond, respectively, to the virtual photon interacting (i) with the initial muon in both Aµ� and
Aµ�⇥, (ii) once with the intial and once with the final muon, and (iii) only with the final muon. The imaginary part
can be seen to arise from the angular correlation between the lepton scattering plane (defined by b) and the relative
transverse momentum k in the final state. This correlation a⇤ects the real part as well.

V. DISCUSSION

The impact parameter analysis of virtual photon induced transition amplitudes and cross-sections appears to open
a new window on hadron dynamics. It is complementary to parton distributions in longitudinal momentum, and more
economical in using data at all q2, not being restricted to the leading twist (q2 ⌅ ⌃) contribution. The analysis
can be applied to any final (and initial) state, allowing to study systematic dependencies on, e.g., the mass, relative
momenta and flavor content of the state. The J+ component of the electromagnetic current needs to be isolated for
a simple Fock state picture.

Only Fock states that are common to the initial and final states contribute to the transition amplitudes (17), which
are determined (15) by the overlap of the corresponding wave functions. This interpretation requires [4, 5] a frame
like (16) with q+ = 0 , where the photon does not create or destroy quark pairs. This is analogous to DIS, where a
parton model interpretation is possible only in “infinite momentum” frames with q+ ⇤ 0.

The momentum pf = p + q of the final state depends on the photon momentum q. Relativistic invariance requires
that the momenta of all hadrons in f be parametrized as in (44), with the relative momentum variables xi,ki being
independent of q. It is possible to form superpositions of final states through weighted integrals over the xi and ki. In
the case of two-particle (⌅N) final states we may thus consider states of the form (24) with photon matrix elements

⌥⌅N(pf ;⇥f )|J+(0)|N(p)� ⇥
⇧ 1

0

dx�
x(1� x)

⇧
d2k

16⌅3
⇥f ⇥(x,k)⌥⌅(p1)N(p2)|J+(0)|N(p)� (50)

The pion and nucleon momenta are defined by (20) and we may freely choose the hadronic wave function ⇥f (x,k).
The Fourier transformed amplitudes (17) get contributions only from quarks at bq = b, with the initial nucleon
and final ⌅N states localized at zero impact parameter. The Fourier transform of the squared amplitude (46) gives
the distribution of the impact parameter di⇤erence between the photon interaction vertices in the amplitude and its
complex conjugate.

The transverse shape of the contributing Fock states reflects only the distribution of the quark struck by the photon,
not that of the other partons. For example, both compact valence (Brodsky-Lepage [14]) Fock states and non-compact
(Feynman [15, 16]) states may contribute to the elastic form factors of the nucleon at large photon virtualities |q|.
Both types of states will contribute at small bq, since the photon interacts only with the x ⌅ 1 quark of the Feynman
states, whose impact parameter is close to the transverse center-of-momentum (bN = 0) of the nucleon.

The impact parameter distribution in �⇥N ⌅ ⌅N should contract as a function of the relative transverse momentum
k between the final pion and nucleon. Only compact initial nucleons would be expected to have an overlap with ⌅N
states with high k, in analogy to the observed color transparency of high energy pions dissociating into exclusive jets
with high relative momentum [17].

Large angle photo-production cross-sections are consistent with constituent counting rules [18, 19] at surprisingly
low energies. Thus ⇧(�p ⌅ ⌅+n) [20] and ⇧(�p ⌅ K+�) [21] are both found to be ⇧ E�14

CM at ⇤CM = 90⇤. Even
⇧(�D ⌅ pn) [22] and ⇧(� 3He ⌅ pp(n)) [23] obey the rules, scaling as E�22

CM . The simplest theoretical prediction is
based on perturbative QCD, which requires that only transversally compact Fock states contribute at large angles.
Data on electro-production at large angles would allow to to measure the actual width of the impact parameter
distribution.

According to the present analysis all contributing Fock states are common to the initial and final states. However,
this does not require a heavy quark QQ̄ pair to be present in the initial nucleon in processes such as �⇥N ⌅ K� and

10

��N � D�c, since the final states have Fock components without heavy quarks. There are thus contributions from
light quarks, ��q � q, multiplied by the ⇥�(QQ̄ q � q) Fock amplitude of the final state. Nevertheless, the measured
distribution in impact parameter should contract with increasing quark mass, since the light quark q would be at short
transverse distance from the heavy quarks, which in turn would be expected to be close to the center-of-momentum
of the nucleon.

Di⇥ractive events, characterized by a rapidity gap or a leading proton, are observed in high energy ep collisions [24].
If di⇥raction occurs preferentially in peripheral scattering one might expect these events to have a broader distribution
in impact parameter, as compared to events without a gap.

The above are just some examples of how information on the impact parameter distribution may shed new light
on observed phenomena. Correlations between the lepton scattering plane and transverse momenta in the final state
will also be informative, as will the dependence on the polarization of the target and the final state hadrons.
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the b-distribution should narrow with the quark mass if the photon couples 
directly to the heavy quarks.

In γ*N → πN , expect the b-distribution to narrow with the relative 
transverse momentum k between the π and the N.

σ(γD → pn) ∝ E–22 at large 
angles, suggesting compact 
states. A measurement of the q2-
dependence would allow a direct 
measurement of the transverse 
size.

with K the number of elementary fields (quarks, photons, leptons, etc.) among / inside the initial and

final particles.

For example, in the case of the deuteron break-up by a photon, γ + D → p + n, we have K =
1 + 6 + 6 = 13 (a photon and 6 quarks inside the initial deuteron and another 6 in the final proton and

neutron). So, the differential cross section is expected to fall with s, asymptotically, as s−11 = E−22
c.m. .

The key word asymptotically always provided an excuse for unnerved HEP theorists in their encounters

with angered experimenters. The JLAB plot in Fig. 1 which I borrowed from Paul Hoyer’s talk [27]

seems to be telling us that this standard excuse is unnecessary here. However, it is again unnerving but

for precisely opposite reason, if you take my meaning. Indeed, it is very difficult to digest how the naive

asymptotic regime manage to settle that early! The lab. energy 1GeV of the incident photon, where the

scaling behaviour starts, is just too low.

The “counting rules” invite us to view a

fast deuteron as a system of six comoving

valence quarks. One of them is punched

by the photon. The other five we have

to properly push ourselves so as to make

them fit into two outgoing nucleons. This

is done by exchanging five gluons be-

tween the quarks in the scattering am-

plitude so that the cross section acquires

the factor α10
s . The picture makes sense

as long as 1) the deuteron is indeed fast

and 2) typical momentum transfers q2 be-

tween quarks are large enough to allow us

to use the concept of gluon exchange and

of the QCD{1} coupling αs(q2) for that

E  (GeV)γ

E    –– (γd   pn) / kb GeVdσ
dt

22
←

20

CM

Fig. 1: Large angle γ-disintegration of a deuteron [28].

matters. None of these conditions holds for Eγ ≃ 1GeV.

Nonetheless we would have had every right to feel happy about Fig. 1 provided we could con-

vincingly answer but one question: why is such precocious scaling not seen for simpler systems and in

particular for the simplest of them all – the electromagnetic form factor of a pion?

Too smooth?

HERA measurements of the DIS proton structure

function F2(x,Q2) in a wide range of photon vir-

tualities,

0.1GeV2 < Q2 < 35GeV2,

are compiled in Fig. 2. The data are plotted as a

function of the simple variable

ξ = log
0.04

x
log

(
1 +

Q2

0.5GeV2

)

proposed by Dieter Haidt [29].

Being surprisingly smooth, they show no sign of a

“phase transition” when going from large virtualities

(perturbative{1} regime) downto very small scales

where non-perturbative{1} physics should dominate. ξ
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Fig. 2: F2 for x ≤ 10−3, Q2 ≥ 0.1GeV2 [29].



Paul Hoyer IU 2015

27
Summary (1)

Intuitively, the q -dependence of a virtual photon interaction gives information 
about the charge distribution in space.

The target is illuminated “instantaneously” only when the charge carriers are 
non-relativistic. This is the case in standard electron microscopy.

Quarks move inside hadrons with ≈ velocity of light.  
The photon phase is constant at fixed Light-Front time  x+ = t + z

In the IMF ≈ LF formulation, transverse quark velocities are non-relativistic 

2-dim. FT’s of form factors describe charge densities in transverse space

Unlike pdf’s, no “leading twist” limit is implied. 
The resolution in impact parameter is expected to be   Δb ∼ 1/Qmax
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Summary (2)

The formulation can be generalised to transition form factors γ*N → N* 
and to any (multi-hadron) final (and initial) state:  γ*A → f

FT of the cross section σ(γ*N → f) gives the distribution in the transverse 
distance b between the photon vertex in T(γ*N → f) and [T(γ*N → f)]*

Comparisons of b-distributions in different processes can give  
insights into the scattering dynamics in transverse space.

The impact parameter distribution of the quarks with which the photon  
interacts is measured at an instant of x+.

In color transparency measurements of eN → eN the nucleon size is  
measured later, through rescattering in the surrounding nucleus.  

Furthermore, CT measures the transverse size of the entire state,  
including spectator quarks and gluons.
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Scoop?!

You could be the first one  
to apply the impact parameter analysis 
to data on inelastic electroproduction*!

*Try also hadroproduction: γ*  →  Reggeon/Pomeron 


