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A general principle of hadron interactions

Duality is observed in both soft and hard processes

• Hadron scattering: πN → πN,...

• Reggeon-hadron scattering

• e+e– → hadrons

• DIS  eN → e X

• Semi-inclusive eN → e h X

• ...

Duality implies that hadron and parton descriptions are equivalent.

It is a guideline in developing our understanding of hadron dynamics

and of relativistic bound states. 
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s channel r esonances
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Igi (1962),  Dolen, Horn, Schmidt (1968)

“finite energy sum rules”

σπ
+ p − σπ

− p

s-channel 
resonances

t-channel 
“Regge” poles

Duality in hadron-hadron scattering
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W. Melnitchouk (2010)
https://www.jlab.org/conferences/HiX2010/program.html

Lectures by
D. Horn,…

https://www.jlab.org/conferences/HiX2010/program.html
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Analytic example: Dual amplitudes

G. Veneziano, Nuovo Cim. 57A (1968) 190 
C. Lovelace,  Phys. Lett. 28B (1968) 264

In 1968, Veneziano found a simple analytic function with many of the 
properties required for scattering amplitudes, including duality.
Lovelace applied this idea to the π+π– → π+π– scattering amplitude

π+ π+

π– π–
s →

→ t
A(⇡+⇡� ! ⇡+⇡�) =

�(1� ↵s)�(1� ↵t)

�(1� ↵s � ↵t)

↵s ⌘ ↵(s) = 1
2 + s (↵0 ⌘ 1)

Thus the pole at αs = n is a superposition of bound states with J = 1, ... , n

lim
s!1

A(s, t) = �(1� ↵t)e
�i⇡↵ts↵t Regge behavior

The amplitude has poles at α = 1, 2, ... : the ρ, ω, f, ... resonances.
The residues are polynomials of degree α = n in cosϴ = 1+2t/s (mπ=0)

Lectures by Szczepaniak
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The π+π– → π+π– dual amplitude A(s,t)
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A(s, t) =
Rn(↵t)

↵s � n
+ ...

Resonance contributions 
smeared over αs ± 0.5

Resonances vs Regge 
in forward scattering
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u = – 0.5

Backward scattering in π+π– → π+π–

Resonance contributions average to zero by alternating in sign 
(“superconvergence relation”)

The asymptotic dual amplitude is real in the backward (fixed u) direction.

An exchanged particle would have to be doubly charged (exotic).

2 3 4 5

- 0.2

0.2

0.4

Rn

αs
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Angular distribution in π+π– → π+π– : αs=2
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αs = 2

A(s, t) =
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+ ...
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Regge:

Residue: Rn(αt)
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Angular distribution in π+π– → π+π– : αs=5

A(s, t) =
Rn(↵t)

↵s � n
+ ...

↵↵t
s

�(↵t)
Regge:

αs = 5

cosθ

Residue: Rn(αt)
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Positivity in π+π– → RnJ → π+π– : n,J=1,…,20

π+ π+

π– π–

n,J
/

⇣
gnJ⇡⇡

⌘2
PJ(cos ✓) g2 > 0: Positive coefficients!

By chance(?), all the 230 coefficients for n,J ≤ 20 are in fact positive.

n=1

n=20
J = 0, … ,n

⇣
gnJ⇡⇡

⌘2



Paul Hoyer IU 2015

10Exercise 1.1

Verify the positivity of the coefficients of Pℓ(cosθ) in the residues of the 
poles at αs = 1 and αs = 2 of the dual amplitude

A(⇡+⇡� ! ⇡+⇡�) =
�(1� ↵s)�(1� ↵t)

�(1� ↵s � ↵t)

↵s ⌘ ↵(s) = 1
2 + sUse and set  mπ = 0 .
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11Duality in  e+e– → hadrons

ECM GeV Ezhela et al, hep-ph/0312114
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Figure 2: (continued) Threshold regions in the e+ e− hadroproduction: u, d, s -, c- and b-flavour onset.
Note the consistency between the exclusive and inclusive da ta at

√
2 � 2 GeV.
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12Exercise 1.2
The J/ψ resonance contribution to σ(e+e– → hadrons), averaged over some 
interval ΔE in the CM energy, is by duality expected to equal the perturbative 
quark cross section σ(e+e– → q qbar). Give an estimate of  ΔE. Consider  
whether your result agrees roughly with what is expected.

The expression for the J/ψ contribution is
Z
�(e+e� ! J/ ! hadrons) dE

CM

=
6⇡2�

e

�
h

M

2
J/ 

�
tot

where Γe , Γh and Γtot are the J/ψ decay widths into e+e–, hadrons and the total  
width, respectively, are given by the PDG. For reference, 

�(e+e� ! µ+µ�) =
4⇡↵2

3E2
CM
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Final state evolves in 
(proper) time τ with 
decreasing virtuality
and decreasing energy 
uncertainty ΔE 

Evolution is unitary:
Measured cross section in 
energy interval ECM ± ΔE 
must average to (parton) 
cross section at τ ~ 1/ΔE

Time evolution in  e+e– → of hadrons

Q2

Δ τ ∼ 1/Q
e– 

  

e+

q

q
_

Δ τ ∼ 1/GeV ~ 0.2 fm

Δ τ ∼ 1 fm

Local duality tells us that parton picture
and PQCD are valid down to Q ~ 1 GeV
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14Lecture II (5/43)

Parton Cascades
Hump-backed plateau

First confronted with
theory in e+e− → h+X .

CDF (Tevatron)

pp → 2 jets

Charged hadron yield as
a function of ln(1/x) for
different values of jet
hardness, versus (MLLA)

QCD prediction.

One free parameter –
overall normalization
(the number of final π’s
per extra gluon)

ξ = ln(1/x)

dN/dξ

CDF

MJJ=390 GeV

Dokshitzer (Les Houches 2008)

x = Eh/EJ

pp → h(x) + X



Paul Hoyer IU 2015
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Parton Cascades
Hump (continued)
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CDF Data Fit:

Qeff=223   20  MeV+_

Mjj sin( c) GeV/c2

ξ 0
=

lo
g
(1

/x
0
)

CDF, c =0.28

CDF, c =0.47
CDF, c =0.36
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ep Data, c =1.57
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Position of the Hump as
a function of
Q = Mjj sinΘc

(hardness of the jet)

is the parameter-free
QCD prediction.

Yet another calculable –
CIS – quantity.

Mark Universality:
same behaviour seen
in e+e−, DIS (ep),
hadron–hadron coll.

Dokshitzer (Les Houches 2008)
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Lecture II (7/43)

LPHD Soft Confinement

So, the ratios of particle flows between jets (intERjet radiophysics),
as well as the shape of the inclusive energy spectra of secondary particles
(intRAjet cascades) turn out to be formally calculable (CIS) quantities.
Moreover, these perturbative QCD predictions actually work.
The strange thing is, these phenomena reveal themselves at present-day
experiments via hadrons (pions) with extremely small momenta k⊥, where
we were expecting to hit the non-perturbative domain — large coupling
αs(k⊥) — and potential failure of the quark–gluon language as such.

The fact that the underlying physics of colour is being impressed upon
“junky” pions with 100–300 MeV momenta, could not be a priori expected.
At the same time, it sends us a powerful message: confinement –
transformation of quarks and gluons into hadrons – has a non-violent
nature: there is no visible reshuffling of energy–momentum at the
hadronization stage. Known under the name of the Local Parton-Hadron
Duality hypothesis (LPHD), explaining this phenomenon remains
a challenge for the future quantitative theory of colour confinement.

Dokshitzer (Les Houches 2008)
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17Inclusive vs Exclusive Hard Lepton Scattering

Inclusive DIS d�(ep ! eX)

dQ

2
dxB

/
X

q

fq(xB)
e

2
q

Q

4

fq(xB): Prob. to find q with pq = xB pN

eq2 : Incoherent scattering on each q

1/Q4 : Dimensional analysis: Scaling

Exclusive p → N*

Soft spectator scattering  at large Q2

� moderate values of Q2 : Q⇤ ⇠ m2
N hard-collinear scale is not large

⇤ ' 0.3GeV

Q2 = 9� 25GeV2

Q⇤ ' 0.9� 1.5GeV2

F1(Q) = +
p p’

H

H

f1

soft spectators hard spectators
dominates at
moderate Q2

(space like (SL) scattering)

26

p

p

N*

Q2

d�(ep ! eN⇤)

dQ2
/

hX

q

eqF
q
p!N⇤(Q2)

i2 1

Q4

p → N* form factor for quark q
          = 1 for pointlike p and N*

F q
p!N⇤(Q2) :

XxBp

Q2γ*

γ*

1/Q4 : Dimension for poinlike hadrons

r⊥ ≈ 1 fm

r⊥ ≈ 1/Q
γ* scatters coherently on quarks

X

q

[eq · · · ]2
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18Q2-dependence of form factors: Data

              

P1: ARS/dat P2: ARK/vks QC: MBL/abe T1: MBL

September 29, 1997 16:41 Annual Reviews AR043-06

228 STERMAN & STOLER

Figure 11 The quantity GT/Gdipole versus Q2 for the elastic form factor (a), and for transitions to
the first (b), second (c) and third (d) resonances respectively, with Gdipole =

2.79
(1+Q2/.71 GeV2)�2

in
(a) and 3(1 + Q2/.71GeV2)�2 in (b–d). The first resonance (b) is the 1(1232) [the P33(1232)].
The second resonance (c) at Q2 above about 3 GeV2 is dominated by the S12(1535). The third
resonance at low Q2 is dominated by the F15(1680). The fits for GT were based on inclusive data
referenced in (92, 93) and selected data from (95). The elastic proton form factor GMp is shown in
(a). Also shown at lower Q2, denoted by (⇥ ), are form factors derived from amplitudes obtained
from exclusive (e, e0, p)⇡0 and (e, e0, p)⌘ data. The dashed curves are the result of the local duality
sum rule calculations of (43) and (44) for the elastic and 1(1232) transitions respectively. The
solid curve in (a) is the GMp result of the PQCD sum rule calculation of (57) employing �CZ. The
solid lines at the lower right in (b) and (c) are the result of the PQCD calculation of (39) using �CZ
for the 1(1232) and S12(1535), respectively.
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Data on p → N* FF’s, scaled by 
Dipole FF:

G
Dipole

/
⇣ 1

1 +Q2/0.71 GeV2

⌘2

To the extent that F q
p!N⇤(Q2) / 1

Q4

d�(ep ! eN⇤)

dQ2
/

hX

q

eqF
q
p!N⇤(Q2)

i2 1

Q4

we get:

, whereas for DIS: 

d�(ep ! eX)

dQ

2
dxB

/
X

q

fq(xB)
e

2
q

Q

4

/ 1

Q12

/ 1

Q4

G. Sterman and P. Stoler, Annu. Rev. Nucl. Part Sci. 47 (1997) 193
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19Dependence on the quark charges eq

DIS:

proton

X

q

e2q
X

q

eq

neutron

FF:

2 · 4
9
+

1

9
= 1

4

9
+ 2 · 1

9
=

2

3

2

3
� 2 · 1

3
= 0

2 · 2
3
� 1

3
= 1

Local duality between resonances (FF) and structure functions (DIS) 
cannot hold for both the proton and the neutron?
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n

relative contribution
of resonance region
to n-th moment

Resonances & higher twists

14

            

 

n

relative contribution
of resonance region
to n-th moment

Resonances & higher twists

14

At Q2 = 1 GeV2, ~ 70% 
of lowest moment of 
F2(ep → eX) comes 
from W < 2 GeV

W. Melnitchouk (2010)
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2) =

Z 1

0
dx x

n�2
F2(x,Q

2)
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Bloom-Gilman Duality

W. Melnitchouk (2010)

  

JLab Hall C

*

*

xB

F2(ep ! eX)

Resonances average scaling (large Q2) curve. This holds at all Q2 ≧ 1 GeV2

TMC = Target Mass Correction Bloom & Gilman (1970)



22Resonances slide on the scaling curve

ξ≈xB

Jlab Hall CQ2 = 0.07    0.20     0.45     0.85    1.4      2.4  3.1 GeV2

1.2 < W2 < 1.9 GeV2

1.9 < W2 < 2.5 GeV2

W

2 = M

2
N⇤ = M

2
N +

(1� xB)Q2

xB

C.S. Armstrong et al, 
PRD 63 (2005) 094008

Solid curve: Large Q2

“Δ”

“S11”

⇠ =
2xB

1 +
q
1 + 4M2

px
2
B/Q

2



23Exercise 1.3

Show that this behavior is implied by the requirement that all constituents of  
both the initial and final h should be within the virtual photon resolution 1/Q  
of each other in transverse space.

r⊥ ∼ 1/Q
r⊥ ∼ 1/Q

Fh(Q
2 ! 1) / (1/Q2)p

The contribution to a hadron h form factor Fh(Q2) from a Fock state with p+1 
constituents is expected to behave as



24Exercise 1.4
The Drell-Yan-West relation links the power behaviors of hadron form  
factors Fh(Q2) measured in e+h → e+h with the F2(xB) structure function 
measured in e+h → e+X as follows:

corresponds to

In the duality limit where the mass of the hadronic system X is fixed we  
have 1– xB ∝ 1/Q2 . Since the inclusive cross section is

d�

dQ

2
dxB

⇠ F2(xB) we have d�

dQ

2
⇠ F2(xB)d(1� xB) ⇠ F2(xB)

dM

2
X

Q

2

F2(xB ! 1) / (1� xB)
2p�1Fh(Q

2 ! 1) / (1/Q2)p

Show that this implies the DYW relation between hadron form factors 
at large Q2 and the behavior of the structure function for xB → 1.
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I. Niculescu, et al, 1501.02203

The neutron to proton M2(Q2) ratio:
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1.4   second

]2 [GeV2Q
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1.3 ≤ W 2 ≤ 1.9 GeV2 1.9 ≤ W 2 ≤ 2.5 GeV2 

2.5 ≤ W 2 ≤ 3.1 GeV2 1.3 ≤ W 2 ≤ 4.0 GeV2 

X

q

e2q test
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π π

Q2

π π

Q2

Form Factor Dynamics implied by duality
The quark scatters on a single quark, which carries xB → 1 of the momentum

⇒

M

2
N⇤ �M

2
N =

(1� xB)Q2

xB

x → 1x ≃ 1–x

γ* scatters coherently 
on all valence quarks 

γ* scatters on a single quark 
carrying nearly all momentum 

x =
Q2

Q2 + M 2
X

M 2
X =

Q2(1� x)

x

⌅ ⌅
�

q

e2
q

�s(Q
2) =

12⇤

(33� 2nf) log(Q2/�2
QCD)

|p⌃ =

⇥
d[pi] [⇧uud|uud⌃+ ⇧uudg|uudg⌃+ . . . + ⇧uudqq̄|uudqq̄⌃+ . . .]

q⇧ =
⇤

1� yQ

r⇧ ⇤ 1/Q

xB =
Q2

2p · q
=

Q2

2m⇥

� /
⇣X

q

eq
⌘2

“End-point” or “Feynman” mechanism 
DIS dynamics“Brodsky-Lepage” mechanism

The dominance of the end-point mechanism is supported also by PQCD.
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27Applications of duality

W

2 = M

2
N +

(1� xB)Q2

xB
Data at high xB is kinematically constrained to low

To the extent that the resonance region W 2 ' M2
N⇤ agrees, on average,

with the scaling, high W2 structure function, parton distributions can be 
determined for xB  → 1.

• “EMC effect” in the nuclear structure functions shows up both in 
resonance and continuum data.

Examples:

• The longitudinal structure function FL

• γ*p helicity cross sections

Conversely, resonance parameters are determined from dispersion integrals, 
e.g., in Light Cone Sum Rules Anikin et al, arXiv:1505.05759
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Duality and the EMC Effect

Red = resonance region 
data
Blue, purple, green = 
deep inelastic data from 
SLAC, EMC
Medium modifications 
to the structure 
functions are the same 
in the resonance region 
as in the DIS
Cross-over can be 
studied with new data 

C/D

Fe/D

Au/D

J. Arrington, et al., nucl-ex/0307012 Cynthia Keppel (2005)
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29Implications of duality

• Resonances build scattering: the two must be considered together. 

• The masses, spins and couplings of all bound states are related. 

• Unitarity causes local adjustments (decay widths, thresholds,…)

• Hadrons are highly relativistic bound states:  ΔM2 ∼ M2 . 

• One quark can carry nearly all momentum (form factors). 

• It is important to consider the frame dependence of bound states. 

• Dual diagrams are relevant.

Kopeliovich et al, arXiv:0811.2024

~


