Principles of the S-matrix

- Unitarity
- Structure of the T-matrix for complex energies
- Analyticity
- Crossing symmetry
- Dispersive representations
[Gribov]: V.N. Gribov, Strong interactions of Hadrons at High Energies, Cambridge University Press, 2008, ISBN 978-0-521-85609-6
[Peskin-Schroeder]: M.E. Peskin, D.V. Schroeder, An Introduction to Quantum field Theory, Perseus Books, 1995, ISBN 0-201-50397-2

Particles like the electron (fermions, spin $1 / 2$)	Leptons		Strong interaction		
			Quarks (each in 3 "colors")		
	e 0.511 MeV	$\begin{gathered} \nu_{e} \\ <0.00003 \\ \hline \end{gathered}$	d 7	u 3	
	${ }_{106}^{\mu}$	$\begin{gathered} \nu_{\mu} \\ -0.2 \\ \hline \end{gathered}$	S 120	$\begin{gathered} c \\ c \\ 1200 \end{gathered}$	
	$\underset{1777}{\tau}$	$\begin{gathered} \nu_{\tau} \\ <20 \end{gathered}$	$\underset{4300}{ }$	t	
	-1		-1/3	2/3	\leftarrow charge

(Gravity is negligible.)

- Q: How many quarks or gluons have ever been directly observed?

$$
\text { A: } 0 \text { (zero) }
$$

- Q: The mass of a down quark is 5 MeV and that of an up quark is 2.3 MeV Then, the mass of the proton (uud) should be $m_{P} \sim 10 \mathrm{MeV}$, right?

$$
\mathrm{A}: m_{P}=938.272 \mathrm{MeV}
$$

- It is obviously a long way from our "periodic table" of quarks and gluons to matter and its properties as we know them.

Quark-gluon interaction: QCD

Remember from Mechanics:
L=T-V
describes your physical system [T : Kinetic energy, V : potential energy]

e.g.: $G_{\mu \nu}^{a}=\partial_{\mu} G_{\nu}^{a}-\partial_{\nu} G_{\mu}^{a}+\mathrm{g} f^{a b c} G_{\mu}^{b} G_{\nu}^{c}$

One fundamental coupling strength $\alpha_{S}=\frac{g^{2}}{4 \pi} \ll 1$.
For small α_{S}, one can solve QCD in a controlled way (perturbation theory).

Deur, Burkert, Chen, Korsch, PLB665 (2008)

No easy solution of QCD at lower energies!

The full complexity: Parton shower and hadronization

Only colorless final states \leftrightarrow confinement

- Simulate the complexity of QCD at low energies with the help of supercomputers
- Ab-initio approach: QCD \rightarrow hadron masses
- Discretization in space and time, in a finite volume, to make the problem numerically treatable

The baryon spectrum: N^{*} and Δ resonances

- Many resonances predicted in lattice calculations
[Edwards et al., Phys.Rev. D84 (2011)]:

$m_{\pi}=396 \mathrm{MeV}(!)$
- Search for these states in dedicated experimental programs

Photoproduction experiments: Jefferson Lab , MAMI, ELSA,...

Examples

Fit of Photoproduction Data (from Jlab, VA; MAMI, GE; ELSA, GE)

Photoproduction cross sections

[data: JLab, ELSA, MAMI]

Photoproduction

Reaction type
Observable:
Differential cross section $\frac{d \sigma}{d \Omega}[\mu b / s r]$

Data from different experiments

Models from different analysis groups (GW-based and others)

Excluded regions

large variations
~ 2 orders of magnitude

Fig. 2. High-energy behavior in the reaction $\gamma p \rightarrow \pi^{0} p$ (left) and $\gamma p \rightarrow \pi^{+} n$ (right). Solid (red) line: fit 2; dash-dotted (black) line: GWU/SAID CM12 [3]; dashed (green) line: BonnGatchina [119]. Data $\pi^{0} p$: CR11 [120], BA05 [126], DU07 [127], BU68 [128]. Data $\pi^{+} n$: BO71 [129], EK72 [130], AL70 [131], BU66 [132], BU67 [133], DU09 [134]. The regions excluded in our fit are shown as shaded areas.

Differential cross section $\gamma p \rightarrow n \pi^{+}$

[CLAS measurements, PRC 79 (2009); Solid (dashed) lines: SAID (MAID) analysis; filled: CLAS, triangles: MAMI

Photon: Spin 1
Nucleon: Spin $1 / 2$

- Single, double, triple polarization observables
- Order principle in the chaos:

Conserved quantum numbers, e.g.,
J^{P} : Total angular momentum ${ }^{\text {Parity }}$

Partial wave analysis

Decompose experimental data with respect to conserved quantum numbers.
Resonances have a certain, conserved J^{P}.

The S-matrix

- Transition from some initial state a to some final state b :

$$
S=\mathrm{I}+i T ; \quad S_{a b}=\delta_{a b}+i T_{a b}
$$

- With incoming particle i and outgoing particles j :

$$
T_{a b}=(2 \pi)^{4} \delta^{4}\left(\sum_{i \in a} p_{i}-\sum_{j \in b} k_{j}\right) \prod_{i \in a} \frac{1}{\sqrt{2 p_{0 i}}} \prod_{j \in b} \frac{1}{\sqrt{2 k_{0 j}}} \cdot \mathcal{M}_{a b}
$$

- energy momentum conservation
- wave function renormalization: factors of $1 / \sqrt{2 p_{0}}$
- "T"-matrix and Lorentz invariant amplitude $\mathcal{M}_{a b}$
- Reaction probability: square T !

2--> 2 Scattering and the Mandelstam plane

- On-mass-shell external particles:

$$
p_{i}^{2}=m_{i}^{2}
$$

- Two independent kinematical
variables (e.g., scattering angle and energy):
Three four-vectors (12 components)
Four on-mass-shell conditions

- p

Three rotations and three Lorentz boosts. Altogether: 12-4-3-3=2
Two independent kinematic variables to characterize the invariant amplitude in 2--> 2 scattering

- Similarly: for a $2 \rightarrow 3$ process, 5 independent kinematic variables

Symmetries of the strong interaction

- Electric charge Q
- Baryon charge (baryon number conservation)
+1 for $p, n, \Lambda, \Sigma, \Xi, \ldots$
-1 for anti-particles
0 for mesons ($\pi, K, \rho, \omega, \varphi, \ldots$)
- Isotopic spin (isospin) I approximately

$$
\frac{m_{n}-m_{p}}{m_{p}} \sim \frac{m_{\pi^{0}}-m_{\pi^{+}}}{m_{\pi^{+}}} \sim \alpha \simeq \frac{1}{137}
$$

- Strangeness S: Lambda's and Kaons always produced together:

$$
\pi^{-}+p \rightarrow \Lambda+\bar{K}^{0}
$$

but never observed: $\pi^{-}+p \rightarrow n+K^{0}$, or $\pi^{-}+p \rightarrow \Lambda+\pi^{0}$
Gell-Mann-Nishijima

$$
Q=I_{3}+\frac{B}{2}+\frac{S}{2} . \quad+\mathrm{SU}(3) \text { symmetry }+\ldots
$$

Mandelstam variables

- Characterize kinematics through Mandelstam variables:

$$
\begin{aligned}
s & =\left(p_{1}+p_{2}\right)^{2}=\left(p_{3}+p_{4}\right)^{2} \\
t & =\left(p_{1}-p_{3}\right)^{2}=\left(p_{2}-p_{4}\right)^{2} \\
u & =\left(p_{1}-p_{4}\right)^{2}=\left(p_{2}-p_{3}\right)^{2}
\end{aligned}
$$

- Using on-mass-shell condition, one gets immediately

$$
s+t+u=\sum_{i=1}^{4} m_{i}^{2}
$$

- Can be visualized in the Mandelstam plane:

Meaning of Mandelstam variables

- Choose center-of-mass (cm) frame: $\mathbf{p}_{1}+\mathbf{p}_{2}=0$
$s=\left(p_{1 \mu}+p_{2 \mu}\right)^{2} \equiv\left(p_{10}+p_{20}\right)^{2}-\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right)^{2}=\left(E_{1 c}+E_{2 c}\right)^{2}=E_{c}^{2}$

Square of the energy of total energy of colliding particles

- Express t and u through scattering angle:

$$
\begin{aligned}
& t=\left(p_{3 \mu}-p_{1 \mu}\right)^{2} \equiv\left(E_{3}-E_{1}\right)^{2}-\left(\mathbf{p}_{3}-\mathbf{p}_{1}\right)^{2} \\
&=\left(E_{3}-E_{1}\right)^{2}-\left(\mathrm{p}_{3}-\mathrm{p}_{1}\right)^{2}-2 \mathrm{p}_{1} \mathrm{p}_{3}(1-\cos \Theta) \\
& \cos \Theta=\frac{\mathbf{p}_{1} \cdot \mathbf{p}_{3}}{\mathrm{p}_{1} \mathrm{p}_{3}} \quad \mathrm{p}_{i}=\left|\mathbf{p}_{i}\right| \\
& \mathrm{p}_{1}=\mathrm{p}_{2}=p_{c} \quad \mathrm{p}_{3}=\mathrm{p}_{4}=p_{c}^{\prime}
\end{aligned}
$$

(continued)

- Set all masses equal (eg: pion-pion scattering). Then:

$$
t=-2 p_{c}^{2}\left(1-\cos \Theta_{c}\right) \quad u=-2 p_{c}^{2}\left(1+\cos \Theta_{c}\right)
$$

physical region of scattering

- Physical scattering amplitude is complex.
- Can we see this from a Feynman diagram?

Unitarity

Calculation of 1-loop $\pi \pi$ scattering

$$
\begin{aligned}
& \\
& \\
& i G \equiv \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{\leftarrow \mathrm{q}}{(P+q)^{2}-m_{1}^{2}+i \epsilon} \frac{i}{q^{2}-m_{2}^{2}+i \epsilon} \\
&=i \int \frac{d^{3} \vec{q}}{(2 \pi)^{3}} \frac{\omega_{1}+\omega_{2}}{2 \omega_{1} \omega_{2}} \frac{1}{s-\left(\omega_{1}+\omega_{2}\right)^{2}+i \epsilon}
\end{aligned}
$$

(blackboard)

A typical coupled-channel problem

- Pion-nucleon scattering

Table 11. Angular momentum structure of the coupled channels in isospin $I=1 / 2$ up to $J=9 / 2$. The $I=3 / 2$ sector is similar up to obvious isospin selection rules.

μ	$J^{P}=$		$\frac{1}{2}^{-}$	$\frac{1}{2}^{+}$	$\frac{3}{2}^{+}$	$\frac{3}{2}^{-}$	$\frac{5}{2}^{-}$	$\frac{5}{2}^{+}$	$\frac{7}{2}^{+}$	$\frac{7}{2}^{-}$	$\frac{9}{2}^{-}$	$\frac{9}{2}^{+}$
1	πN	S_{11}	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}	
2	$\rho N(S=1 / 2)$											
3	$\rho N(S=3 / 2,\|J-L\|=1 / 2)$	S_{11}	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}	
4	$\rho N(S=3 / 2,\|J-L\|=3 / 2)$	D_{11}	-	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}	
5	ηN	G_{15}	P_{15}	H_{17}	D_{17}	I_{19}	F_{19}					
6	$\pi \Delta(\|J-L\|=1 / 2)$											
7	$\pi \Delta(\|J-L\|=3 / 2)$	S_{11}	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}	
8	σN	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}		
9	$K \Lambda$	D_{11}	-	F_{13}	S_{13}	G_{15}	P_{15}	H_{17}	D_{17}	I_{19}	F_{19}	
10	$K \Sigma$	P_{11}	S_{11}	D_{13}	P_{13}	F_{15}	D_{15}	G_{17}	F_{17}	H_{19}	G_{19}	

[D. Ronchen, M. Doring et al., EPJA 49, 44 (2013)]

Partial wave projection

- Resonances are characterized by a full set of quantum numbers; this full set depends on the participating particles. E.g.: Baryon resonances: J^{P} (total angular momentum and parity) plus isospin.
- The easiest case is the scattering of two spinless mesons. quantum numbers are: orbital angular momentum L=J and isospin. With $S=e^{2 i \delta}$ ("phase shift"):

Partial-wave decomposition

$$
T_{l}^{I}(s)=\frac{1}{64 \pi} \int_{-1}^{1} \mathrm{~d}(\cos \theta) P_{l}(\cos \theta) T^{I}(s, t, u) \quad T^{I}=\sum_{l=0}^{\infty}(2 l+1) T_{l}^{I} P_{l}(\cos \theta)
$$

phase shift: $\quad T_{l}^{I}=\left(\frac{s}{s-4 m_{\pi}^{2}}\right)^{\frac{1}{2}} e^{i \delta_{l}^{I}} \sin \delta_{l}^{I}$

$$
\begin{aligned}
& \delta_{l}^{I}=\frac{1}{2} \arccos \left[\operatorname{Re}\left(1+\frac{2 i T_{l}^{I}}{\sqrt{\frac{s}{s-4 m_{\pi}^{2}}}}\right)\right] \\
& \delta_{l}^{I}=\frac{1}{2} \arcsin \left[\operatorname{Im}\left(1+\frac{2 i T_{l}^{I}}{\sqrt{\frac{s}{s-4 m_{\pi}^{2}}}}\right)\right]
\end{aligned}
$$

Summary: Unitarity

- The S-matrix is unitary (additional explications on blackboard):

$$
S S^{\dagger}=1 \quad \Longrightarrow \quad T_{a b}-T_{a b}^{\dagger}=i\left(T T^{\dagger}\right)_{a b}
$$

- In matrix notation:

$$
\frac{1}{i}\left(T_{a b}-T_{b a}^{*}\right)=\sum_{c} T_{a c} T_{c b}^{*}
$$

Intermediate states c: Sum over all possible quantum numbers, momenta, and even particle species
\rightarrow Concept of coupled channels (blackboard)

- Time reversal invariance: $T_{a b}=T_{b a}$

$$
\frac{1}{i}\left(T_{a b}-T_{a b}^{*}\right)=2 \operatorname{Im} T_{a b}=\sum_{c} T_{a c} T_{b c}^{*}
$$

Analytic Structure: Riemann sheets

- For a pedagogical introduction, see, e.g. Nuclear Physics A 829 (2009) 170-209
- Consider the loop function:

$$
\Pi_{\sigma}(z, k)=\int_{0}^{\infty} q^{2} d q \frac{\left(v^{\sigma \pi \pi}(q, k)\right)^{2}}{z-2 \sqrt{q^{2}+m_{\pi}^{2}}+i \epsilon}
$$

Integration paths

- Imaginary part: $\operatorname{Im} \Pi_{\sigma}=-\frac{\pi q_{\text {on }}^{>} E_{\mathrm{on}}^{(1)} E_{\mathrm{on}}^{(2)}}{z} v^{2}\left(q_{\mathrm{on}}^{>}, k\right)$
- pole in the integrand at

$$
q_{\mathrm{on}}=\frac{1}{2 z} \sqrt{\left(z^{2}-\left(m_{1}-m_{2}\right)^{2}\right)\left(z^{2}-\left(m_{1}+m_{2}\right)^{2}\right)}
$$

- Integratior paths for

$\operatorname{Im} z>0,=0,<0$

(a), (b), (c)

Analytic continuation

- Obviously, the loop has a discontinuity at Im z=0 starting at $z=m_{1}+m_{2}$
- We can analytically continue (avoiding the discontinuity) by path deformation; equivalent to adding the imaginary part twice; latter given by residue (check)!
- Resulting structure: Two Riemann sheets and one branch point at threshold:

The rho pole in the complex plane

Alternative definition of the coupling constant g through the pole residue:

$$
\begin{aligned}
& g_{\text {meson-meson }}^{2}=-16 \pi \lim _{s \rightarrow s_{\text {pole }}}\left(s-s_{\text {pole }}\right) T(s) \frac{3}{4 Q^{2}} \\
& g_{\text {meson-meson }}=5.99392-0.792795 i,\left|g_{\text {meson-meson }}\right|=6.04612
\end{aligned}
$$

compared to g from Lagrangian: $g=5.81118$

3-particles: Unitarity

$$
T_{f i}-T_{f i}^{\dagger}=i \sum_{n} d \Omega_{n} T_{f n} T_{n i}^{\dagger}
$$

(c)

(d)

Figure 1: (a) Unitarity relation for three particles [right-hand side of Eq. (1)]. The elementary particles (e.g., pions) are shown with the dashed lines, the auxiliary fields/isobars (e.g., ρ) are represented by the solid lines. (b) There are two distinct ways to combine the three particles in the sum. This leads to resummed self-energy contributions and exchange processes in the amplitude. (c) Amplitude at one loop (only one term of the resummed self-energy is indicated). (d) Contact interactions c can be added without spoiling three-body unitarity.

3-particles: Branch points

- (Derivation: blackboard)
- Test:

Fit with a model A with only poles but without ρN branch points (solid lines)
to an amplitude \mathbf{B} with ONLY ρN branch points (dashed lines)

- Model A "finds" a pole at $1698-130 \mathrm{i} \mathrm{MeV}$
- Implementation of correct analytic structure crucial
[PRC 84, 015205]

$$
z_{b 1}=M_{N}+m_{p}-i \Gamma / 2
$$

O-

A typical coupled-channel problem

- Pion-nucleon scattering

Table 11. Angular momentum structure of the coupled channels in isospin $I=1 / 2$ up to $J=9 / 2$. The $I=3 / 2$ sector is similar up to obvious isospin selection rules.

μ	$J^{P}=$		$\frac{1}{2}^{-}$	$\frac{1}{2}^{+}$	$\frac{3}{2}^{+}$	$\frac{3}{2}^{-}$	$\frac{5}{2}^{-}$	$\frac{5}{2}^{+}$	$\frac{7}{2}^{+}$	$\frac{7}{2}^{-}$	$\frac{9}{2}^{-}$	$\frac{9}{2}^{+}$
1	πN	S_{11}	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}	
2	$\rho N(S=1 / 2)$											
3	$\rho N(S=3 / 2,\|J-L\|=1 / 2)$	S_{11}	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}	
4	$\rho N(S=3 / 2,\|J-L\|=3 / 2)$	D_{11}	-	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}	
5	ηN	G_{15}	P_{15}	H_{17}	D_{17}	I_{19}	F_{19}					
6	$\pi \Delta(\|J-L\|=1 / 2)$											
7	$\pi \Delta(\|J-L\|=3 / 2)$	S_{11}	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}	
8	σN	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}		
9	$K \Lambda$	D_{11}	-	F_{13}	S_{13}	G_{15}	P_{15}	H_{17}	D_{17}	I_{19}	F_{19}	
10	$K \Sigma$	P_{11}	S_{11}	D_{13}	P_{13}	F_{15}	D_{15}	G_{17}	F_{17}	H_{19}	G_{19}	

[D. Ronchen, M. Doring et al., EPJA 49, 44 (2013)]

Amplitude structure - Partial waves in πN

- This structure translates from the loop function/self energy to the entire amplitude T; but V in $T=V+V G T$ has also nonanalyticities; general structure is complicated, e.g. pion-nucleon scattering: channel openings:
branch points
circular cut, short nucleon cut: Consequences of partial wave projection, NOT present in full amplitude

Branch points of unstable particles lie on second sheet!

Causality and Analyticity

- 4-point Green function $A\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)$

- $D(y-x)$: free particle propagation

$$
D\left(y_{\mu}-x_{\mu}\right)=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \int \frac{d p_{0}}{2 \pi i} \frac{\exp \left\{-i p^{\mu}(y-x)_{\mu}\right\}}{m^{2}-p^{2}-i \epsilon}
$$

solve 0-integration

- As $y_{0}>x_{0}$, pole at $p_{0}=\sqrt{m^{2}+\mathbf{p}^{2}}$

$$
\begin{aligned}
D\left(y_{\mu}-x_{\mu}\right) & =\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{\exp \left\{-i p^{\mu}(y-x)_{\mu}\right\}}{2 p_{0}} \\
& =\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \psi_{\mathbf{p}}(y) \cdot \psi_{\mathbf{p}}^{*}(x), \quad y_{0}>x_{0}
\end{aligned}
$$

- while for final state $x_{03}>y_{03}, x_{04}>y_{04}$

$$
D\left(y_{\mu}-x_{\mu}\right)=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \psi_{\mathbf{p}}(x) \cdot \psi_{\mathbf{p}}^{*}(y), \quad x_{0}>y_{0}
$$

- Truncates amplitude f gets multiplied by product of wave functions.

Amplitude in momentum space

- Fourier transform of f :

$$
\mathcal{M}\left(p_{i}\right)=\int f\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \mathrm{e}^{-i\left(p_{1} y_{1}+p_{2} y_{2}\right)+i\left(p_{3} y_{3}+p_{4} y_{4}\right)} \prod d^{4} y_{i}
$$

- Make it simple:
- forward scattering $p_{1} \approx p_{3}, p_{2} \approx p_{4}$
- Solve some integrals \rightarrow only dependence on relative positions, here $y_{13}=y_{1}-y_{3}$ chosen:

$$
\mathcal{M} \Longrightarrow(2 \pi)^{4} \delta\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \int \mathrm{e}^{i p_{1}\left(y_{3}-y_{1}\right)} f\left(y_{13} ; p_{2}\right) d^{4} y_{13}
$$

- Forward scattering \rightarrow Only dependence on one variable

(continued)

- The amplitude is proportional to the absorption of a particle in y_{1} and creation in y_{3} (and reversely for anti-particle):

$$
\begin{aligned}
f\left(y_{3}, y_{1}\right) & \propto\left\langle T \psi\left(y_{3}\right) \bar{\psi}\left(y_{1}\right)\right\rangle \quad \Delta y^{\mu}=y_{3}^{\mu}-y_{1}^{\mu} \\
& \equiv \vartheta\left(\Delta y_{0}\right) \cdot \psi\left(y_{3}\right) \bar{\psi}\left(y_{1}\right) \pm \vartheta\left(-\Delta y_{0}\right) \cdot \bar{\psi}\left(y_{1}\right) \psi\left(y_{3}\right) \\
& =\vartheta\left(\Delta y_{0}\right)\left[\psi\left(y_{3}\right) \bar{\psi}\left(y_{1}\right) \mp \bar{\psi}\left(y_{1}\right) \psi\left(y_{3}\right)\right] \pm \bar{\psi}\left(y_{1}\right) \psi\left(y_{3}\right)
\end{aligned}
$$

(compare to the time evolution operator U in QM which is a time-ordered product; the S-matrix is actually a time-evolution operator)

- Consider now a space-like interval $(\Delta y)^{2}<0$.
- The operators $\psi\left(y_{3}\right) \bar{\psi}\left(y_{1}\right)$ have to commute; otherwise a person at y_{3} could tell what was measured at $y_{1} \rightarrow$ Causality!
- Then: $\quad f\left(y_{3}, y_{1}\right) \propto \vartheta\left(\Delta y_{0}\right) \vartheta\left((\Delta y)^{2}\right) \cdot f_{1} \pm \bar{\psi}\left(y_{1}\right) \psi\left(y_{3}\right)$
- Insert unity in the last term:

$$
\langle 0| \bar{\psi}\left(y_{1}\right) \psi\left(y_{3}\right)|0\rangle=\sum_{n}\langle 0| \bar{\psi}\left(y_{1}\right)|n\rangle \cdot\langle n| \psi\left(y_{3}\right)|0\rangle=\sum_{n}\left|C_{n}\right|^{2} \mathrm{e}^{-i P_{n}\left(y_{1}-y_{3}\right)}
$$

(continued)

- We still have to integrate over y to get M (see previous slides):

$$
\sum_{n}\left|C_{n}^{2}\right| \int d^{4} y_{31} \mathrm{e}^{i p_{1} y_{31}} \cdot \mathrm{e}^{i P_{n} y_{31}} \propto \delta\left(p_{0,1}+P_{0, n}\right)=0
$$

- This has to be zero because all incoming, outgoing, intermediate particles have positive energy, e.g., $P_{0, n}>0$
- Finally, as $p_{1} y \equiv E_{1} t-\mathbf{p}_{1} \cdot \mathbf{y}=E_{1} \cdot\left(t-v_{1} z\right)$

$$
\mathcal{M}\left(E_{1}\right)=\int d^{4} y f_{1}(y) \cdot \vartheta\left(y_{0}\right) \vartheta\left(y_{\mu}^{2}\right) \mathrm{e}^{i p_{1} y}=\int d^{3} \mathbf{y} \int_{\sqrt{\mathbf{y}^{2}}}^{\infty} d t \mathrm{e}^{i E_{1}\left(t-v_{1} z\right)} f_{1}(y)
$$

- Make use of all delta-functions \rightarrow

$$
t>0, \quad t>\sqrt{z^{2}+\rho_{\perp}^{2}} \geq|z|>\left|v_{1} z\right| \Longrightarrow\left(t-v_{1} z\right)>0
$$

- If $\operatorname{Im} E_{1}>0$ and f increases less than expon., M converges in the upper half plane.

(continued)

- Implies the so-called polynomial boundary for $M(s)$

$$
|\mathcal{M}(s)|<|s|^{N}
$$

- Absolut converging integral \rightarrow Integration and differentiation can be interchanged.
- Cauchy relations:

$$
u=u(x, y), v=v(x, y), z=x+i y \rightarrow \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

- hold in the upper half plane with

$$
u=\operatorname{Re} \mathcal{M}, v=\operatorname{Im} \mathcal{M}, z=E_{1}
$$

- Cauchy relations fulfilled \leftrightarrow function analytic.

Crossing Symmetry

- Consider another process by turning the scattering around:

$12 \rightarrow 34$

$1 \overline{3} \rightarrow \overline{2} 4$
- negative 0-components appear: $p_{30} \leq-m_{3}$ and $p_{20} \leq-m_{2}$
- interpretation of crossed process: anti-particle with $\bar{p}_{3}=-p_{3}$
- Crossed diagram describes another process; so called t channel reaction:

$$
t=\left(p_{1}-p_{3}\right)^{2}=\left(p_{1}+\bar{p}_{3}\right)^{2} \geq\left(m_{1}+m_{3}\right)^{2}
$$

Crossed processes in λ^{3}

- s, t, and u-channel processes in λ^{3} theory:

$$
\=\frac{\lambda^{2}}{m^{2}-s},
$$

u-channel reactions

- Analogously, if $p_{40} \leq-m_{4}, p_{20} \leq-m_{2}: \quad 1+\overline{4} \rightarrow 3+\overline{2}$

$$
u=\left(p_{1}-p_{4}\right)^{2}=\left(p_{1}+\bar{p}_{4}\right)^{2} \geq\left(m_{1}+m_{4}\right)^{2}
$$

- In summary:

$$
\begin{array}{lll}
s \text {-channel : } & 1+2 \rightarrow 3+4, & s=\left(p_{1}+p_{2}\right)^{2} \geq\left(m_{1}+m_{2}\right)^{2} ; \\
t \text {-channel : } & 1+\overline{3} \rightarrow \overline{2}+4, & t=\left(p_{1}+\bar{p}_{3}\right)^{2} \geq\left(m_{1}+m_{3}\right)^{2} ; \\
u \text {-channel : } & 1+\overline{4} \rightarrow 3+\overline{2}, & u=\left(p_{1}+\bar{p}_{4}\right)^{2} \geq\left(m_{1}+m_{4}\right)^{2} .
\end{array}
$$

- There are 3 unitarity relations:
- s-channel unitarity
- t-channel unitarity

- u-channel unitarity

Analytic structure in the Mandelstam plane

- Again, s-, t-, and u-channel processes:

$$
\=\frac{\lambda^{2}}{m^{2}-s},
$$

- Induce poles in the amplitude, at position of physical particle mass (which is NOT m).

Amplitude real inside dotted triangle

Physical regions

Now:
fix t and consider amplitude as $f(s)$

Left- and right-hand cut

- The only non-analyticities on the first Riemann sheet:

Dispersive representation of the amplitude

- Cauchy's Theorem:

$$
\begin{aligned}
& \quad \int_{\mathcal{C}} \frac{d z}{2 \pi i} \frac{A(z)}{z-s}=A(s) \\
& \lambda^{2} /\left(m^{2}-t\right) \text { does not fall with } \mathrm{s} \rightarrow \text { once-subtracted dispersion relation: } \\
& A(s)-A(0)=\int_{\mathcal{C}} \frac{d z}{2 \pi i}\left[\frac{A(z)}{z-s}-\frac{A(z)}{z}\right]=\frac{s}{\pi} \int_{\mathcal{C}} \frac{d z}{2 i} \frac{A(z)}{z(z-s)} \\
& \operatorname{Im}_{s} A \equiv \frac{1}{2 i}[A(s+i 0, t)-A(s-i 0, t)], \quad s>4 m^{2}, \\
& \operatorname{Im}_{u} A \equiv \frac{1}{2 i}[A(u+i 0, t)-A(u-i 0, t)], \quad u>4 m^{2} . \\
& \rightarrow \text { Simplify the expression! }
\end{aligned}
$$

Example: Pion-nucleon scattering

- forward scattering $t=0$:

$$
\begin{aligned}
& s=(p+k)^{2}=M^{2}+\mu^{2}+2 M \nu, \\
& u=\left(p-k^{\prime}\right)^{2}=M^{2}+\mu^{2}-2 M \nu=2\left(M^{2}+\mu^{2}\right)-s
\end{aligned}
$$

ν Energy of the pion in nucleon rest frame

$$
\begin{aligned}
\nu= & \frac{s-u}{2 M}=\frac{s-\left(M^{2}+\mu^{2}\right)}{M} \\
f(\nu)= & \frac{r}{\nu_{0}-\nu}+\frac{1}{\pi} \int_{\mu}^{\infty} \frac{d \nu^{\prime} \operatorname{Im} f\left(\nu^{\prime}\right)}{\nu^{\prime}-\nu} \quad-v_{0}
\end{aligned}
$$

As $f(-\nu)=f(\nu)$
for $f=f_{+} \rightarrow$

$$
f(\nu)=f(0)+\frac{2 r}{\nu_{0}} \frac{\nu^{2}}{\nu_{0}^{2}-\nu^{2}}+\frac{\nu^{2}}{\pi} \int_{\mu}^{\infty} \frac{d \nu^{\prime 2}}{\nu^{\prime 2}} \frac{\operatorname{Im} f\left(\nu^{\prime}\right)}{\left(\nu^{\prime 2}-\nu^{2}\right)}
$$

END

Pion-Pion Scattering via the rho-Meson

Ingredients

$$
\begin{aligned}
& \rho_{\mu \nu}=\partial_{\mu} \rho_{\nu}-\partial_{\nu} \rho_{\mu} \\
& \rho=\sum_{i=1}^{3} \rho_{i} \tau_{i}=\left(\begin{array}{cc}
\rho_{\mu}^{3} & \rho_{\mu}^{1}-i \rho_{\mu}^{2} \\
\rho_{\mu}^{1}+i \rho_{\mu}^{2} & -\rho_{\mu}^{3}
\end{array}\right) \\
& \mathscr{L}=\frac{1}{4} \operatorname{Tr}\left(D_{\mu} \pi D^{\mu} \pi-m_{\pi}^{2} \pi^{2}\right)-\frac{1}{8} \operatorname{Tr}\left(\rho_{\mu \nu} \rho^{\mu \nu}\right)+\frac{1}{4} m_{\rho}^{2} \operatorname{Tr}\left(\rho_{\mu} \rho^{\mu}\right) \\
& =\mathscr{L}_{0}+\mathscr{L}_{\mathrm{int}} \quad D_{\mu} \pi=\partial_{\mu} \pi-i \frac{g}{2}\left[\rho_{\mu}, \pi\right] \\
& \mathscr{L}_{0}=\frac{1}{4} \operatorname{Tr}\left(\partial_{\mu} \pi \partial^{\mu} \pi-m_{\pi}^{2} \pi^{2}\right)-\frac{1}{8} \operatorname{Tr}\left(\rho_{\mu \nu} \rho^{\mu \nu}\right)+\frac{1}{4} m_{\rho}^{2} \operatorname{Tr}\left(\rho_{\mu} \rho^{\mu}\right) \\
& \mathscr{L}_{\text {int }}=\frac{i g}{4} \operatorname{Tr}\left(\rho_{\mu}\left[\partial^{\mu} \pi, \pi\right]\right)-\frac{g^{2}}{16} \operatorname{Tr}\left(\left[\rho_{\mu}, \pi\right]\left[\rho^{\mu}, \pi\right]\right) \\
& \mathscr{L}_{\rho \pi \pi}=\frac{i g}{4} \operatorname{Tr}\left(\rho_{\mu}\left[\partial^{\mu} \pi, \pi\right]\right) \\
& =i g\left[\rho_{\mu}^{0}\left(\left(\partial^{\mu} \pi^{+}\right) \pi^{-}-\left(\partial^{\mu} \pi^{-}\right) \pi^{+}\right)+\rho_{\mu}^{-}\left(\left(\partial^{\mu} \pi^{0}\right) \pi^{+}-\left(\partial^{\mu} \pi^{+}\right) \pi^{0}\right)\right. \\
& \left.+\rho_{\mu}^{+}\left(\left(\partial^{\mu} \pi^{-}\right) \pi^{0}-\left(\partial^{\mu} \pi^{0}\right) \pi^{-}\right)\right]
\end{aligned}
$$

Feynman Rules

$$
\begin{gathered}
\mathscr{L}_{\rho \rho \pi \pi}:-\frac{g^{2}}{2} \pi^{+} \rho_{\mu}^{-} \pi^{+}\left(\rho^{-}\right)^{\mu},-\frac{g^{2}}{2} \pi^{-} \rho_{\mu}^{+} \pi^{-}\left(\rho^{+}\right)^{\mu}, \frac{g^{2}}{2} \pi^{0} \rho_{\mu}^{+} \pi^{0}\left(\rho^{-}\right)^{\mu} \frac{g^{2}}{2} \pi^{0} \rho_{\mu}^{-} \pi^{0}\left(\rho^{+}\right)^{\mu} \\
\text { AND }==\Rightarrow \geq \geq=i g^{\mu \nu}
\end{gathered}
$$

Self Energy

$$
\begin{aligned}
& \stackrel{k}{4}
\end{aligned}
$$

$$
\begin{aligned}
& i \Pi^{\mu \nu}(q)=(-i g)^{2} \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}}(2 k+q)^{\mu} \frac{i}{k^{2}-m_{\pi}^{2}} \frac{i}{(k+q)^{2}-m_{\pi}^{2}}(2 k+q)^{\nu}+2 i g \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} \frac{i g^{\mu \nu}}{k^{2}-m_{\pi}^{2}} \\
& =g^{2} \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} \frac{(2 k+q)^{\mu}(2 k+q)^{\nu}-2 g^{\mu \nu}\left[(k+q)^{2}-m_{\pi}^{2}\right]}{\left(k^{2}-m_{\pi}^{2}\right)\left[(k+q)^{2}-m_{\pi}^{2}\right]} \\
& =g^{2} \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} \int_{0}^{1} \mathrm{~d} x \frac{(2 k+q)^{\mu}(2 k+q)^{\nu}-2 g^{\mu \nu}\left[(k+q)^{2}-m_{\pi}^{2}\right]}{\left\{\left(k^{2}-m_{\pi}^{2}\right)(1-x)+\left[(k+q)^{2}-m_{\pi}^{2}\right] x\right\}^{2}} \\
& =g^{2} \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} \int_{0}^{1} \mathrm{~d} x \frac{(2 k+q)^{\mu}(2 k+q)^{\nu}-2 g^{\mu \nu}\left[(k+q)^{2}-m_{\pi}^{2}\right]}{\left[k^{2}-m_{\pi}^{2}+2 k q x+q^{2} x\right]^{2}} \\
& =g^{2} \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} \int_{0}^{1} \mathrm{~d} x \frac{(2 k+q)^{\mu}(2 k+q)^{\nu}-2 g^{\mu \nu}\left[(k+q)^{2}-m_{\pi}^{2}\right]}{\left[(k+x q)^{2}-x(x-1) q^{2}-m_{\pi}^{2}\right]^{2}} \\
& =g^{2} \int \frac{\mathrm{~d}^{4} l}{(2 \pi)^{4}} \int_{0}^{1} \mathrm{~d} x \frac{(2 l-2 x q+q)^{\mu}(2 l-2 x q+q)^{\nu}-2 g^{\mu \nu}\left[(l+(1-x) q)^{2}-m_{\pi}^{2}\right]}{\left(l^{2}-\Delta\right)^{2}}
\end{aligned}
$$

where we suppose $l=k+x q, \Delta=x(x-1) q^{2}+m_{\pi}^{2}$.

Self energy (continued)

- Wick rotation:

$$
\begin{aligned}
l^{0}=i l_{E}^{0}, \vec{l}= & \vec{l}_{E} \\
i \Pi^{\mu \nu}(q)= & g^{2} \int \frac{\mathrm{~d}^{d} l}{(2 \pi)^{d}} \int_{0}^{1} \mathrm{~d} x \frac{4 l^{\mu} l^{\nu}+(1-2 x)^{2} q^{\mu} q^{\nu}-2 g^{\mu \nu}\left[l^{2}+(1-x)^{2} q^{2}-m_{\pi}^{2}\right]}{\left(l^{2}-\Delta\right)^{2}} \\
= & g^{2} \int_{0}^{1} \mathrm{~d} x \int \frac{\mathrm{~d}^{d} l_{E}}{(2 \pi)^{d}} i \frac{\frac{4}{d}\left(-l_{E}^{2}\right) g^{\mu \nu}+(1-2 x)^{2} q^{\mu} q^{\nu}-2 g^{\mu \nu}\left[-l_{E}^{2}+(1-x)^{2} q^{2}-m_{\pi}^{2}\right]}{(-1)^{2}\left(l_{E}^{2}+\Delta\right)^{2}} \\
= & g^{2} \int_{0}^{1} \mathrm{~d} x \int \frac{\mathrm{~d}^{d} l_{E}}{(2 \pi)^{d}} i \frac{\left(-\frac{4}{d}+2\right) l_{E}^{2} g^{\mu \nu}+(1-2 x)^{2} q^{\mu} q^{\nu}-2 g^{\mu \nu}(1-x)^{2} q^{2}+2 g^{\mu \nu} m_{\pi}^{2}}{\left(l_{E}^{2}+\Delta\right)^{2}} \\
= & i g^{2} \int_{0}^{1} \mathrm{~d} x\left\{\frac{1}{(4 \pi)^{\frac{d}{2}}} \frac{d}{2} \frac{\Gamma\left(1-\frac{d}{2}\right)}{\Gamma(2)} \frac{\left(2-\frac{4}{d}\right) g^{\mu \nu}}{\Delta^{1-\frac{d}{2}}}\right. \\
& \left.+\frac{1}{(4 \pi)^{\frac{d}{2}}} \frac{\Gamma\left(2-\frac{d}{2}\right)}{\Gamma(2)} \frac{1}{\Delta^{2-\frac{d}{2}}}\left[(1-2 x)^{2} q^{\mu} q^{\nu}-2 g^{\mu \nu}(1-x)^{2} q^{2}+2 g^{\mu \nu} m_{\pi}^{2}\right]\right\} \\
= & i g^{2} \int_{0}^{1} \mathrm{~d} x \frac{1}{(4 \pi)^{\frac{d}{2}}} \frac{\Gamma\left(2-\frac{d}{2}\right)}{\Delta^{2-\frac{d}{2}}}\left[-2 \Delta g^{\mu \nu}+(1-2 x)^{2} q^{\mu} q^{\nu}-2 g^{\mu \nu}(1-x)^{2} q^{2}+2 g^{\mu \nu} m_{\pi}^{2}\right]
\end{aligned}
$$

Self energy - final result

Chosen (off-shell) renormalization: $\quad \hat{\Pi}(0)=0$

$$
\begin{aligned}
\hat{\Pi}\left(q^{2}\right) & =-g^{2} \int_{0}^{1} \mathrm{~d} x \frac{1}{(4 \pi)^{2}}\left(\log \Delta-\log \left(m_{\pi}^{2}\right)\right)(1-2 x)^{2} \\
& =-\frac{g^{2}}{(4 \pi)^{2}}\left(-\frac{8}{9}+\frac{8}{3} \frac{m_{\pi}^{2}}{q^{2}}-\frac{2}{3} \sqrt{\left(\frac{4 m_{\pi}^{2}-q^{2}}{q^{2}}\right)^{3}} \arctan \sqrt{\frac{q^{2}}{4 m_{\pi}^{2}-q^{2}}}\right)
\end{aligned}
$$

Workflow

- Calculation of self energy --- Done
- Isospin factors (not done here)
- Calculation of Isospin=1 amplitude
- Partial-wave projection to P-wave
- Result: Scattering amplitude for the quantum numbers of the rhomeson:
- Isospin I,
- G parity,

$$
\rho(770): I^{G}\left(J^{P C}\right)=1^{+}\left(1^{--}\right)
$$

- total angular momentum J
(=orbital angular momentum L for spinles particles)
- Parity P
- C-parity C

One remarks about isospin

Consider this process in the lab frame, the total angular momentum of ρ^{0} is 1 since its spin is 1 and its space angular momentum is 0 . On the other side, boson system $\pi^{0} \pi^{0}$ is symmetrical under exchange which requires the space momentum must be even: $l=0,2,4 \ldots$ (parity transform $\left.\boldsymbol{P} Y(r, \theta, \phi)=\boldsymbol{P} R(r) Y_{L}^{m}(\theta, \phi)=(-1)^{L} R(r) Y_{L}^{m}(\theta, \phi)\right)$. However, the spin of π is 0 , the total angular momentum of $\pi^{0} \pi^{0}$ system cannot equal 1. Therefore, $\rho^{0} \pi^{0} \pi^{0}$ is 0 .

Isospin eigenstates

$$
\begin{aligned}
T^{I=1} & =\left\langle I=1, I_{3}=1\right| T\left|I=1, I_{3}=1\right\rangle \\
& =\frac{1}{2}\left\langle\pi^{+} \pi^{0}\right| T\left|\pi^{+} \pi^{0}\right\rangle-\frac{1}{2}\left\langle\pi^{0} \pi^{+}\right| T\left|\pi^{+} \pi^{0}\right\rangle-\frac{1}{2}\left\langle\pi^{+} \pi^{0}\right| T\left|\pi^{0} \pi^{+}\right\rangle+\frac{1}{2}\left\langle\pi^{0} \pi^{+}\right| T\left|\pi^{0} \pi^{+}\right\rangle
\end{aligned}
$$

u - channel

S-channel rho-exchange

$$
\begin{aligned}
& i \mathscr{M}_{s}=(-i g)(k-p)_{\mu}\left[\frac{-i\left(g^{\mu \nu}-q^{\mu} q^{\nu} / q^{2}\right)}{q^{2}-m_{\rho}^{2}} \frac{1}{1-\Pi^{\prime}\left(q^{2}\right)}+\frac{i q^{\mu} q^{\nu}\left(1 / m_{\rho}^{2}-1 / q^{2}\right)}{q^{2}-m_{\rho}^{2}}\right](-i g)\left(k^{\prime}-p^{\prime}\right)_{\nu} \\
&=-i g^{2}\left[\frac{-(k-p) \cdot\left(k^{\prime}-p^{\prime}\right)+\frac{\left(k^{2}-p^{2}\right)\left(k^{\prime 2}-p^{\prime 2}\right)}{q^{2}}}{\left(q^{2}-m_{\rho}^{2}\right)\left(1-\Pi^{\prime}\left(q^{2}\right)\right)}+\frac{\left(k^{2}-p^{2}\right)\left(k^{\prime 2}-p^{\prime 2}\right)\left(1 / m_{\rho}^{2}-1 / q^{2}\right)}{q^{2}-m_{\rho}^{2}}\right] \\
&=i g^{2} \frac{k \cdot k^{\prime}+p \cdot p^{\prime}-k \cdot p^{\prime}-p \cdot k^{\prime}}{\left(q^{2}-m_{\rho}^{2}\right)\left(1-\Pi^{\prime}\left(q^{2}\right)\right)} \\
&=i g^{2} \frac{\frac{u}{2}-m_{\pi}^{2}+\frac{u}{2}-m_{\pi}^{2}-\frac{t}{2}+m_{\pi}^{2}-\frac{t}{2}+m_{\pi}^{2}}{\left(s-m_{\rho}^{2}\right)\left(1-\Pi^{\prime}(s)\right)} \\
&=i g^{2} \frac{u-t}{\left(s-m_{\rho}^{2}\right)\left(1-\frac{s}{s-m_{\rho}^{2}} \Pi(s)\right)} \\
&=i g^{2} \frac{u-t}{s-m_{\rho}^{2}-s \Pi(s)} \\
& \text { where } q=k+p=k^{\prime}+p^{\prime}=\sqrt{s} \text { for s-channel. } \\
& \begin{array}{l}
\text { Ignore u-channel rho-exchange: } \\
\text { give up crossing symmetry in favor of } \\
\text { unitarity! }
\end{array}
\end{aligned}
$$

Pion-pion scattering with rho:

Messages to take home

- General workflow:
- write down Lagrangian, derive Feynman rules
- Construct a (s-channel) unitary amplitude by first calculating the self energy and then resum it.
- As the rho field was included by minimal substitution into the pion kinetic term, $\rho \pi \pi$ AND $\rho \rho \pi \pi$ vertices appear \rightarrow An additional tadpole self-energy diagram appears, needed to provide the correct Lorentz structure!
- Project to isospin and total angular momentum
- Fit free constants (coupling constant and bare mass) to experimental phase shifts
- Extract poles (=resonance mass and width) and residues (= branching ratio) from the pole on the second Riemann sheet.

(continued)

- Poles are on the second (hidden) Riemann sheet. The first sheet is free of poles (see: Analyticity from Causality).
- The amplitude we constructed contained the rho in the schannel and u-channel. To maintain s-channel unitarity, the u channel term needs to be neglected (see: Mandelstam plane). u-channel unitarity violated. Crossing symmetry violated.
- More sophisticated schemes exist to simultaneously guarantee unitarity and crossing symmetry (Roy-Steiner equations).

Nuclear effective force - finite range

in analogy to

$$
D_{\pi}(q)=\frac{1}{\mu^{2}-q^{2}}
$$

$1 / q^{2}$
\rightarrow Scattering amplitude: $A=\frac{g^{2}}{\mu^{2}-q^{2}}$
What is this in the non-relativistic picture?
$f=-\frac{2 m}{4 \pi} \int \mathrm{e}^{i \mathbf{k}^{\prime} \cdot \mathbf{r}} V(r) \psi(\mathbf{r}) d^{3} r \quad \begin{aligned} & \text { Born } \\ & \text { approximation }\end{aligned} f_{B}=-\frac{2 m}{4 \pi} \int \mathrm{e}^{i \mathbf{q} \cdot \mathbf{r}} V(r) d^{3} r$
\mathbf{q} is the momentum transfer, $\mathbf{q}=\mathbf{k}^{\prime}-\mathbf{k} \quad E=\mathbf{k}^{2} / 2 m$
$\left|q_{0}\right| \sim \mathbf{q}^{2} / m \ll|\mathbf{q}|, \quad$ so that $q^{2}=q_{0}^{2}-\mathbf{q}^{2} \simeq-\mathbf{q}^{2} . \rightarrow A \simeq \frac{g^{2}}{\mu^{2}+\mathbf{q}^{2}}$
position space: $\quad V(r)=-\frac{4 \pi}{2 m} \int \mathrm{e}^{-i \mathbf{q r}} \frac{g^{2}}{\mu^{2}+\mathbf{q}^{2}} \frac{d^{3} q}{(2 \pi)^{3}}=\frac{g^{2}}{2 m} \cdot \frac{\mathrm{e}^{-\mu r}}{r}$
Effective interaction characterized by a finite radius $r_{0}=1 / \mu$ EVEN with point-like interactions

$$
\begin{aligned}
& d \sigma(a \rightarrow b) \equiv \frac{1}{J}\left|\mathcal{M}_{a b}\right|^{2}(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-\sum_{j \in b} k_{j}\right) \cdot \frac{1}{[n!]} \prod_{j \in b} d \Gamma\left(k_{j}\right) \\
& d \Gamma_{j}=\left(\frac{1}{\sqrt{2 k_{0 j}}}\right)^{2} \frac{d^{3} \mathbf{k}_{j}}{(2 \pi)^{3}}=\frac{d^{3} \mathbf{k}_{j}}{2(2 \pi)^{3} k_{0 j}}=\frac{d^{4} k_{j}}{(2 \pi)^{4}} \cdot 2 \pi \delta_{+}\left(k_{j}^{2}-m_{j}^{2}\right)
\end{aligned}
$$

- Lorentz invariant flux $J=4 p_{c}(s) \sqrt{s}$
- 2 particles incoming, $\mathbf{p}_{1}=-\mathbf{p}_{2}=\left(0,0, p_{c}\right)$

$$
p_{c}=p_{c}(s)=\frac{\sqrt{\left(s-\left(m_{1}+m_{2}\right)^{2}\right)\left(s-\left(m_{1}-m_{2}\right)^{2}\right)}}{2 \sqrt{s}}
$$

- Eliminate multiple counting of physically indistinguishable configuration produced by permutation of identical particles; If in the final state there are n_{s} particles of type s,

$$
\frac{1}{[n!]} \equiv \prod_{s} \frac{1}{n_{s}!}, \quad \sum_{s} n_{s}=n
$$

- This slide is merely for your information and not derived in detail. More details: Gribov, Sec. 1.7, Peskin Schroeder Sec. 4.5

