Scattering Theory and Light-Front QCD

$$
\begin{gathered}
\text { Fixed } \tau=t+z / c \\
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
\end{gathered}
$$

x

AdS/QCD : Light-Front Holography

2015 International Summer Workshop on Reactio $i^{1.5}$ Theory

June 12, 2015
ЏT indiana university Jefferson Lab

Thomas Jefferson National Accelerator Facility

Bound States in Relativistic Quantum Field Theory:

Light-Front Wavefunctions Dirac's Front Form: Fixed $\tau=t+z / c$

Fixed $\tau=t+z / c$

$$
\psi\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad x_{i}=\frac{k_{i}^{+}}{P^{+}}
$$

Invariant under boosts. Independent of $\mathrm{P}^{\boldsymbol{\mu}}$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Direct connection to QCD Lagrangian
Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Light-Front Wavefunctions: rigorous representation of composite

 systems in quantum field theoryEigenstate of LF Hamiltonian: Off-shell in Invariant Mass

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

$$
\text { Fixed } \tau=t+z / c
$$

Fixed LF time

$$
P^{+}, \vec{P}_{\perp}
$$

$$
\psi_{n}\left(x_{i}, \vec{k}_{\perp_{i}}, \lambda_{i}\right)
$$

$$
\left|p, J_{z}>=\sum \psi_{n}\left(x_{i}, \vec{k}_{\mid i}, \lambda_{i}\right)\right| n ; x_{i}, \stackrel{\rightharpoonup}{k}_{\mid i}, \lambda_{i}>\quad \sum_{i}^{n} x_{i}=1
$$

$$
\overline{n=3}
$$

$$
\sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}
$$

$$
\text { Invariant under boosts! Independent of } P^{\mu}
$$

Causal, Frame-independent. Creation Operators on Simple Vacuum, Current Matrix Elements are Overlaps of LFWFS

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

> Intrinsic heavy quarks $\boldsymbol{s}(\boldsymbol{x}), \boldsymbol{c}(\boldsymbol{x}), \boldsymbol{b}(\boldsymbol{x})$ at high $\boldsymbol{x}!\bar{u}(x) \neq \bar{d}(x)$
> $\bar{s}(x) \neq s(x)$
$\bar{u}(x) \neq \bar{d}(x)$

\qquad

Evolution of 5 color-singlet Fock states

5×5 Matrix Evolution Equation for deuteron distribution amplitude

Hidden Color of Deuteron

Deuteron six-quark state has five color - singlet configurations, only one of which is $n-p$.

Asymptotic Solution has Expansion

$$
\psi_{[6]\{33\}}=\left(\frac{1}{9}\right)^{1 / 2} \psi_{N N}+\left(\frac{4}{45}\right)^{1 / 2} \psi_{\Delta \Delta}+\left(\frac{4}{5}\right)^{1 / 2} \psi_{C C}
$$

Look for transition to Delta-Delta

Test of Hidden Color in Deuteron Photodisintegration

$$
R=\frac{\frac{d \sigma}{d t}\left(\gamma d \rightarrow \Delta^{++} \Delta^{--}\right)}{\frac{d \sigma}{d t}(\gamma d \rightarrow p n)}
$$

Ratio predicted to approach 2:5

Ratio should grow with transverse momentum as the hidden color component of the deuteron grows in strength.

Possible contribution from pion charge exchange at small t.

Stan Brodsky
$Q^{2}=5 \mathrm{GeV}^{2}$

Is Antishadowing in DIS

 Non-Universal, Flavor-Dependent?

Look for Charge Asymmetries from Odderon-Pomeron Interference

Merino, Rathsman, sjb

Odderon-Pomeron Interference leads to $\mathrm{K}^{+} \mathrm{K}^{-}, \mathrm{D}^{+} \mathrm{D}^{-}$and $\mathrm{B}^{+} \mathrm{B}^{-}$ charge and angular asymmetries

Odderon at amplitude level

> Strong enhancement at heavy-quark pair threshold from QCD Sakharov-Schwinger-Sommerfeld effect

Merino, Rathsman, sjb

$$
\frac{\pi \alpha_{s}\left(\beta^{2} s\right)}{\beta}
$$

Hoang, Kuhn, sjb
single-spin
asymmetries

$$
\begin{aligned}
& \quad{ }^{\text {i }} \vec{S}_{p} \cdot \vec{q} \times \vec{p}_{q} \\
& \text { Pseudo-T-Odd } \\
& \begin{array}{c}
\text { QED: } \\
\text { Lensing } \\
\text { involves soft } \\
\text { scales }
\end{array}
\end{aligned}
$$

Leading Twist Sivers Effect

Hwang, Schmidt, sjb

"Lensing Effect"

Leading-Twist Rescattering Violates PQCD Factorization!
sign reversal in DY!

DIS
Attractive, opposite-sign rescattering potential

DY
Repulsive, same-sign scattering potential

- Square of Target LFWFs
- NoWilson Line
- Probability Distributions
- Process-Independent
- T-even Observables
- No Shadowing, Anti-Shadowing
- Sum Rules: Momentum and J
- DGLAP Evolution; mod. at large x
- No Diffractive DIS

Modified by Rescattering: ISI \& FSI
Contains Wilson Line, Phases
No Probabilistic Interpretation
Process-Dependent - From Collision
T-Odd (Sivers, Boer-Mulders, etc.)
Shadowing, Anti-Shadowing, Saturation
Sum Rules Not Proven

DGLAP Evolution
Hard Pomeron and Odderon Diffractive DIS

Hwang, Schmidt, sjb,

Mulders, Boer
Qiu, Sterman
Collins, Qiu
Pasquini, Xiao, Yuan, sjb

Liuti, sjb

Need a First Approximation to QCD

$$
\begin{gathered}
\text { Comparable in simplicity to } \\
\text { Schrödinger Theory in Atomic Physics }
\end{gathered}
$$

Relativistic, Frame-Independent, Color-Confining

QCD Lagrangian

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}}<\bar{\Psi}_{f} \Psi_{f}
$$

$$
i D^{\mu}=i \partial^{\mu}-g A^{\mu} \quad G^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}-g\left[A^{\mu}, A^{\nu}\right]
$$

Classical Chiral Lagrangian is Conformally Invariant Where does the $\mathbf{Q C D}$ Mass Scale Λ_{QCD} come from?

How does color confinement arise?

- de Alfaro, Fubini, Furlan:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!
Unique confinement potential!

Goal: An analytic first approximation to QCD

- As Simple as Schrödinger Theory in Atomic Physics
\bullet Relativistic, Frame-Independent, Color-Confining
- Confinement in QCD -- What is the analytic form of the confining interaction?
- What sets the QCD mass scale?
- QCD Running Coupling at all scales
- Hadron Spectroscopy-Regge Trajectories
- Light-Front Wavefunctions
- Form Factors, Structure Functions, Hadronic Observables
- Constituent Counting Rules
- Hadronization at the Amplitude Level
- Insights into QCD Condensates

Atomic Physics from First Principles

Light-Front QCD

Fixed $\tau=t+z / c$

$$
\left(H_{L F}^{0}+H_{L F}^{I}\right)\left|\Psi>=M^{2}\right| \Psi>
$$

Coupled Fock states
Eliminate higher Fock states and retarded interactions

Effective two-particle equation

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

AdS/QCD:

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Semiclassical fürst approximation to QCD

Azimuthat Basis

$$
\begin{gathered}
\zeta, \phi \\
m_{q}=0
\end{gathered}
$$

Confining AdS/QCD potential!
Sums an infinite \# diagrams

Fixed $\tau=t+z / c$

ζ^{2} conjugate to $\frac{k_{\perp}^{2}}{x(1-x)}=\left(p_{q}+p_{\bar{q}}\right)^{2}=\mathcal{M}_{q+\bar{q}}^{2}$

$$
\int d k^{-} \Psi_{B S}(P, k) \rightarrow \psi_{L F}\left(x, \vec{k}_{\perp}\right)
$$

Derivation of the Light-Front Radial Schrodinger Equation directly from LF QCD

$$
\begin{aligned}
\mathcal{M}^{2} & =\int_{0}^{1} d x \int \frac{d^{2} \vec{k}_{\perp}}{16 \pi^{3}} \frac{\vec{k}_{\perp}^{2}}{x(1-x)}\left|\psi\left(x, \vec{k}_{\perp}\right)\right|^{2}+\text { interactions } \\
& =\int_{0}^{1} \frac{d x}{x(1-x)} \int d^{2} \vec{b}_{\perp} \psi^{*}\left(x, \vec{b}_{\perp}\right)\left(-\vec{\nabla}_{\vec{b}_{\perp \ell}}^{2}\right) \psi\left(x, \vec{b}_{\perp}\right)+\text { interactions }
\end{aligned}
$$

$$
\text { Change variables }(\vec{\zeta}, \varphi), \vec{\zeta}=\sqrt{x(1-x)} \vec{b}_{\perp}: \quad \nabla^{2}=\frac{1}{\zeta} \frac{d}{d \zeta}\left(\zeta \frac{d}{d \zeta}\right)+\frac{1}{\zeta^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}
$$

$$
\begin{aligned}
\mathcal{M}^{2}= & \int d \zeta \phi^{*}(\zeta) \sqrt{\zeta}\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1}{\zeta} \frac{d}{d \zeta}+\frac{L^{2}}{\zeta^{2}}\right) \frac{\phi(\zeta)}{\sqrt{\zeta}} \\
& +\int d \zeta \phi^{*}(\zeta) U(\zeta) \phi(\zeta) \\
= & \int d \zeta \phi^{*}(\zeta)\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right) \phi(\zeta)
\end{aligned}
$$

Light-Front Schrödinger Equation

G. de Teramond, sjb

Relativistic LF single-variable radial equation for $Q C D$ \& $Q E D$

Frame Independent!
$\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{m^{2}}{x(1-x)}+\frac{-1+4 L^{2}}{\zeta^{2}}+U(\zeta, S, L)\right] \psi_{L F}(\zeta)=M^{2} \psi_{L F}(\zeta)$
$m_{q} \sim 0$
$\zeta^{2}=x(1-x) \mathrm{b}_{\perp}^{2}$.

AdS/QCD:

$$
U(\zeta, S, L)=\kappa^{2} \zeta^{2}+\kappa^{2}(L+S-1 / 2)
$$

U is the exact QCD potential Conjecture: 'H'-diagrams generate U?

Heavy Quark Potential is IR Divergent in QCD

$$
\begin{aligned}
V\left(Q^{2}\right)= & -\frac{(4 \pi)^{2} C_{F}}{Q^{2}} a\left(Q^{2}\right)\left[1+\left(c_{2,0}+c_{2,1} N_{f}\right) a\left(Q^{2}\right)+\left(c_{3,0}+c_{3,1} N_{f}+c_{3,2} N_{f}^{2}\right) a\left(Q^{2}\right)^{2}\right. \\
& \left.+\left(c_{4,0}+c_{4,1} N_{f}+c_{4,2} N_{f}^{2}+c_{4,3} N_{f}^{3}\right) a\left(Q^{2}\right)^{3}+8 \pi^{2} C_{A}^{3} \ln \frac{\mu_{I R}^{2}}{Q^{2}} a\left(Q^{2}\right)^{3}\right]
\end{aligned}
$$

$$
\log \kappa^{2} \zeta^{2}
$$

Summation of H graphs: confining potential
Confinement eliminates IR divergences Self-consistent mass scale κ

Light-Front Schrödinger Equation

G. de Teramond, sjb

Relativistic LF single-variable radial equation for QCD \& QED

Frame Independent!
$\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{m^{2}}{x(1-x)}+\frac{-1+4 L^{2}}{4 \zeta^{2}}+U(\zeta, S, L)\right] \psi_{L F}(\zeta)=M^{2} \psi_{L F}(\zeta)$

$$
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}
$$

$$
\overbrace{\vec{b}_{\perp}}=\begin{gathered}
x \\
(1-x)
\end{gathered}
$$

U is the confining QCD potential Conjecture: 'H'-diagrams generate

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

$$
A d S / Q C D
$$

Soft-Wall Model

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Unique

Confinement Potential!
Preserves Conformal Symmetry of the action

Confinement scale:

$$
\kappa \simeq 0.6 \mathrm{GeV}
$$

$$
1 / \kappa \simeq 1 / 3 \mathrm{fm}
$$

de Alfaro, Fubini, Furlan:
Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

$$
m_{u}=m_{d}=0
$$

Applications of AdS/CFT to QCD

Changes in physical length scale mapped to evolution in the 5th dimension z

Light-Front Holography and Non-Perturbative QCD

Goal:
Use AdS/QCD duality to construct a first approximation to QCD

Hadron Spectrum
Light-Front Wavefunctions, Form Factors, DVCS, etc

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

in collaboration with Guy de Teramond and H. Guenter Dosch

AdS/CFT

- Isomorphism of $S O(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right), \quad \text { invariant measure }
$$

$x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$
x^{2} \rightarrow \lambda^{2} x^{2}, \quad z \rightarrow \lambda z
$$

$x^{2}=x_{\mu} x^{\mu}$: invariant separation between quarks

- The AdS boundary at $z \rightarrow 0$ correspond to the $Q \rightarrow \infty$, UV zero separation limit.

Changes in physical length scale mapped to evolution in the 5th dimension z

- Truncated AdS/CFT (Hard-Wall) model: cut-off at $z_{0}=1 / \Lambda_{\mathrm{QCD}}$ breaks conformal invariance and allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).
- Smooth cutoff: introduction of a background dilaton field $\varphi(z)$ - usual linear Regge dependence can be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

Bosonic Solutions: Hard Wall Model

- Conformal metric: $d s^{2}=g_{\ell m} d x^{\ell} d x^{m} . x^{\ell}=\left(x^{\mu}, z\right), g_{\ell m} \rightarrow\left(R^{2} / z^{2}\right) \eta_{\ell m}$.
- Action for massive scalar modes on AdS_{d+1} :

$$
S[\Phi]=\frac{1}{2} \int d^{d+1} x \sqrt{g} \frac{1}{2}\left[g^{\ell m} \partial_{\ell} \Phi \partial_{m} \Phi-\mu^{2} \Phi^{2}\right], \quad \sqrt{g} \rightarrow(R / z)^{d+1} .
$$

- Equation of motion

$$
\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{\ell}}\left(\sqrt{g} g^{\ell m} \frac{\partial}{\partial x^{m}} \Phi\right)+\mu^{2} \Phi=0 .
$$

- Factor out dependence along x^{μ}-coordinates, $\Phi_{P}(x, z)=e^{-i P \cdot x} \Phi(z), P_{\mu} P^{\mu}=\mathcal{M}^{2}$:

$$
\left[z^{2} \partial_{z}^{2}-(d-1) z \partial_{z}+z^{2} \mathcal{M}^{2}-(\mu R)^{2}\right] \Phi(z)=0 .
$$

- Solution: $\Phi(z) \rightarrow z^{\Delta}$ as $z \rightarrow 0$,

$$
\begin{array}{cc}
\Phi(z)=C z^{d / 2} J_{\Delta-d / 2}(z \mathcal{M}) & \Delta=\frac{1}{2}\left(d+\sqrt{d^{2}+4 \mu^{2} R^{2}}\right) . \\
\Delta=2+L \quad d=4 & (\mu R)^{2}=L^{2}-4
\end{array}
$$

Dülaton-Modified AdS/QCD

$$
d s^{2}=e^{\varphi(z)} \frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} x^{\mu} x^{\nu}-d z^{2}\right)
$$

- Soft-wall dilaton profile breaks conformal invariance $\quad e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}$
- Color Confinement
- Introduces confinement scale κ
- Uses AdS $_{5}$ as template for conformal theory

Introduce "Dilaton" to simulate confinement analytically \downarrow

- Nonconformal metric dual to a confining gauge theory

$$
d s^{2}=\frac{R^{2}}{z^{2}} e^{\varphi(z)}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right)
$$

where $\varphi(z) \longrightarrow 0$ at small z for geometries which are asymptotically AdS_{5}

- Gravitational potential energy for object of mass m

$$
V=m c^{2} \sqrt{g_{00}}=m c^{2} R \frac{e^{\varphi(z) / 2}}{z}
$$

- Consider warp factor $\exp \left(\pm \kappa^{2} z^{2}\right)$
- Plus solution: $V(z)$ increases exponentially confining any object in modified AdS metrics to distances $\langle z\rangle \sim 1 / \kappa$

Klebanov and Maldacena

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

- de Teramond, sjb

General-Spin Hadrons

- Obtain spin- J mode $\Phi_{\mu_{1} \cdots \mu_{J}}$ with all indices along 3+1 coordinates from Φ by shifting dimensions

$$
\Phi_{J}(z)=\left(\frac{z}{R}\right)^{-J} \Phi(z) \quad\left(e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}\right.
$$

- Substituting in the AdS scalar wave equation for Φ

$$
\left[z^{2} \partial_{z}^{2}-\left(3-2 J-2 \kappa^{2} z^{2}\right) z \partial_{z}+z^{2} \mathcal{M}^{2}-(\mu R)^{2}\right] \Phi_{J}=0
$$

- Upon substitution $z \rightarrow \zeta$

$$
\phi_{J}(\zeta) \sim \zeta^{-3 / 2+J} e^{\kappa^{2} \zeta^{2} / 2} \Phi_{J}(\zeta)
$$

we find the LF wave equation

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)\right) \phi_{\mu_{1} \cdots \mu_{J}}=\mathcal{M}^{2} \phi_{\mu_{1} \cdots \mu_{J}}
$$

with $(\mu R)^{2}=-(2-J)^{2}+L^{2}$

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}} \quad \text { Positive-sign dilaton }
$$

- Dosch, de Teramond, sjb

AdS Soft-Wall Schrodinger Equation for bound state of two scalar constituents:

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d z^{2}}-\frac{1-4 L^{2}}{4 z^{2}}+U(z)\right] \Phi(z)=\mathcal{M}^{2} \Phi(z)} \\
U(z)=\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

Derived from variation of Action for Dilaton-Modified $A d S_{5}$

Identical to Light-Front Bound State Equation!

$$
z \longmapsto \zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

Fig: Orbital and radial AdS modes in the soft wall model for $\kappa=0.6 \mathrm{GeV}$.
Same slope in n and L !

Soft Wall Model

Light meson orbital (a) and radial (b) spectrum for $\kappa=0.6 \mathrm{GeV}$.

Light-Front Holograpphic Dictionary

$$
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

z

$$
\begin{gathered}
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta) \\
(\mu R)^{2}=L^{2}-(J-2)^{2}
\end{gathered}
$$

Light-Front Holography: Unique mapping derived from equality of LF and AdS formula for EM and gravitational current matrix elements and identical equations of motion

Meson Spectrum in Soft Wall Model

Pion: Negative term for $J=0$ cancels positive terms from LFKE and potential

- Effective potential: $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)$
- LF WE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)^{2}=1$

$$
\phi_{n, L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

G. de Teramond, H. G. Dosch, sjb

AdS5: Conformal Template for QCD

- Light-Front Holography
with Guy de Teramond and Hans Guenter Dosch

Fixed $\tau=t+z / c$

Duality of AdS ${ }_{5}$ with LF Hamiltonian Theory

- Light Front Wavefunctions:

Light-Front Schrödinger Equation Spectroscopy and Dynamics

AdS/QCD
Soft-Wall Model

Semi-Classical Approximation to QCD

 Relativistic, frame-independent Unique color-confining potential Zero mass pion for massless quarks Regge trajectories with equal slopes in n and LLight-Front Wavefunctions

Light-Front Schrödinger Equation
Conformal symmetry of the action

$$
A d S / Q C D
$$

Soft-Wall Model

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Unique

Confinement Potential!
Preserves Conformal Symmetry of the action

Confinement scale:

$$
\kappa \simeq 0.6 \mathrm{GeV}
$$

$$
1 / \kappa \simeq 1 / 3 \mathrm{fm}
$$

de Alfaro, Fubini, Furlan:
Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

$$
m_{u}=m_{d}=0
$$

Stan Brodsky
오ㄴㅡㅡ를

- Results easily extended to light quarks masses (Ex: K-mesons)
- First order perturbation in the quark masses

$$
\Delta M^{2}=\langle\psi| \sum_{a} m_{a}^{2} / x_{a}|\psi\rangle
$$

- Holographic LFWF with quark masses

$$
\psi(x, \zeta) \sim \sqrt{x(1-x)} e^{-\frac{1}{2 \lambda}\left(\frac{m_{q}^{2}}{x}+\frac{m_{q}^{2}}{1-x}\right)} e^{-\frac{1}{2} \lambda \zeta^{2}} \quad \lambda \equiv \kappa^{2}
$$

- Ex: Description of diffractive vector meson production at HERA
[J. R. Forshaw and R. Sandapen, PRL 109, 081601 (2012)]
- For the K^{*}

$$
M_{n, L, S}^{2}=M_{K^{ \pm}}^{2}+4 \lambda\left(n+\frac{J+L}{2}\right)
$$

- Effective quark masses from reduction of higher Fock states as functionals of the valence state:

$$
m_{u}=m_{d}=46 \mathrm{MeV}, \quad m_{s}=357 \mathrm{MeV}
$$

De Tèramond, Dosch, sib

$$
m_{u}=m_{d}=46 \mathrm{MeV}, \quad m_{s}=357 \mathrm{MeV}
$$

$$
M^{2}=M_{0}^{2}+\langle X| \frac{m_{q}^{2}}{x}|X\rangle+\langle X| \frac{m_{\bar{q}}^{2}}{1-x}|X\rangle
$$

Prediction from AdS/QCD: Meson LFWF
$e^{\varphi(z)}=e^{+\kappa^{2} z}$
x
$0.8^{0.6^{0.40 .2}}$

Note coupling

$$
k_{\perp}^{2}, x
$$

de Teramond, Cao, sjb
"Soft Wall" model
massless quarks

$$
\begin{array}{cc}
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k^{2}}{2 \kappa^{2} x(1-x)}} & \underbrace{\phi_{\pi}(x)=\frac{4}{\sqrt{3} \pi} f_{\pi} \sqrt{x(1-x)}}_{\text {Same as DSE! }} \\
f_{\pi}=\sqrt{P_{q \bar{q}}} \frac{\sqrt{3}}{8} \kappa=92.4 \mathrm{MeV} &
\end{array}
$$

Provides Connection of Confinement to Hadron Structure

Soft-Wall Model

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

Single scheme-independent fundamental mass scale

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

$$
\begin{gathered}
\text { Light-Front Schrödinger Equation } \\
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

Unique

Confinement Potential!
Preserves Conformal Symmetry of the action

Confinement scale:

$$
\begin{array}{ll}
\kappa \simeq 0.6 \mathrm{GeV} & \\
1 / \kappa \simeq 1 / 3 \mathrm{fm} & m_{q}=0
\end{array}
$$

de Alfaro, Fubini, Furlan:
Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Some Features of AdS/QCD

- Regge spectroscopy-same slope in n,Lfor mesons,
- Chiral features for $m_{q}=0: \boldsymbol{m}_{\boldsymbol{\pi}}=\mathbf{o}$, chiral-invariant proton
- Hadronic LFWFs
- Counting Rules
- Connection between hadron masses and $\Lambda \overline{M S}$

Superconformal AdS Light-Front Holographic OCD (LFHOCD)

Meson-Baryon Mass Degeneracy for $L_{M}=L_{B}+1$

Scattering Theory, AdS/QCD, and LF Quantization

AdS/QCD and Light-Front Holography

- A first, semi-classical approximation to nonpertubative QCD
- Hadron Spectroscopy and LF Dynamics
- Color Confinement Potential

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

- Running QCD Coupling $\alpha\left(\mathrm{Q}^{2}\right)$ at All Scales Q^{2}
- What sets the QCD Mass Scale?
- Connection of Hadron Masses to $\Lambda_{\overline{M S}}$

Prediction from AdS/QCD

$$
\mathbf{m}^{2}\left(\mathrm{GeV}^{2}\right) \quad n=3 \quad n=2 \quad n=1 \quad n=0
$$

De Tèramond, Dosch, sib

$$
m_{u}=m_{d}=46 \mathrm{MeV}, \quad m_{s}=357 \mathrm{MeV}
$$

$$
M^{2}=M_{0}^{2}+\langle X| \frac{m_{q}^{2}}{x}|X\rangle+\langle X| \frac{m_{\bar{q}}^{2}}{1-x}|X\rangle
$$

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1) \quad e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

- $\boldsymbol{\zeta}_{2}$ confinement potential and dilaton profile unique!
- Linear Regge trajectories in n and L: same slope!
- Massless pion in chiral limit! No vacuum condensate!
- Conformally invariant action for massless quarks retained despite mass scale
- Same principle, equation of motion as de Alfaro, Furlan, Fubini, Conformal Invariance in Quantum Mechanics Nuovo Cim. A34 (1976) 569

Uniqueness of Dilaton

$$
\varphi_{p}(z)=\kappa^{p} z^{p}
$$

- Dosch, de Tèramond, sjb

Hadron Form Factors from AdS/QCD

Propagation of external perturbation suppressed inside AdS.

$$
\begin{gathered}
J(Q, z)=z Q K_{1}(z Q) \\
F\left(Q^{2}\right)_{I \rightarrow F}=\int \frac{d z}{z^{3}} \Phi_{F}(z) J(Q, z) \Phi_{I}(z)
\end{gathered}
$$

High Q ${ }^{2}$ from small z ~1/Q

$$
\operatorname{high} Q^{2 \xrightarrow[1]{2} \overbrace{\mathrm{z}^{4}}}
$$

Polchinski, Strassler de Teramond, sjb

Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small $z, \Phi^{(n)}$ scales as $\Phi^{(n)} \sim z^{\Delta_{n}}$. Thus:

$$
F\left(Q^{2}\right) \rightarrow\left[\frac{1}{Q^{2}}\right]^{\tau-1},
$$

Dimensional Quark Counting Rules:
General result from
AdS/CFT and Conformal Invariance
where $\tau=\Delta_{n}-\sigma_{n}, \sigma_{n}=\sum_{i=1}^{n} \sigma_{i}$.

$$
\text { Twist } \tau=n+L
$$

Holographic Mapping of AdS Modes to QCD LFWFs

Drell-Yan-West: Form Factors are

- Integrate Soper formula over angles: Convolution of LFWFs

$$
F\left(q^{2}\right)=2 \pi \int_{0}^{1} d x \frac{(1-x)}{x} \int \zeta d \zeta J_{0}\left(\zeta q \sqrt{\frac{1-x}{x}}\right) \tilde{\rho}(x, \zeta)
$$

with $\widetilde{\rho}(x, \zeta)$ QCD effective transverse charge density.

- Transversality variable

$$
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

- Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

$$
\int_{0}^{1} d x J_{0}\left(\zeta Q \sqrt{\frac{1-x}{x}}\right)=\zeta Q K_{1}(\zeta Q)
$$

the solution for $J(Q, \zeta)=\zeta Q K_{1}(\zeta Q)$! de Teramond, sjb

Identical to Polchinski-Strassler Convolution of AdS Amplitudes

$$
\begin{gathered}
\psi\left(x, \vec{b}_{\perp}\right) \\
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}} \phi(z) \\
\tau=t+z / c \\
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta)
\end{gathered}
$$

Light-Front Holography: Unique mapping derived from equality of LF and AdS formula for EM and gravitational current matrix elements and identical equations of motion

$$
e^{\varphi(z)}=e^{+\kappa^{2} z}
$$

- Propagation of external current inside AdS space described by the AdS wave equation

$$
\left[z^{2} \partial_{z}^{2}-z\left(1+2 \kappa^{2} z^{2}\right) \partial_{z}-Q^{2} z^{2}\right] J_{\kappa}(Q, z)=0
$$

- Solution bulk-to-boundary propagator

$$
J_{\kappa}(Q, z)=\Gamma\left(1+\frac{Q^{2}}{4 \kappa^{2}}\right) U\left(\frac{Q^{2}}{4 \kappa^{2}}, 0, \kappa^{2} z^{2}\right)
$$

Dressed
Current
in Soft-Wall Model

$$
\Gamma(a) U(a, b, z)=\int_{0}^{\infty} e^{-z t} t^{a-1}(1+t)^{b-a-1} d t
$$

- Form factor in presence of the dilaton background $\varphi=\kappa^{2} z^{2}$

$$
F\left(Q^{2}\right)=R^{3} \int \frac{d z}{z^{3}} e^{-\kappa^{2} z^{2}} \Phi(z) J_{\kappa}(Q, z) \Phi(z)
$$

- For large $Q^{2} \gg 4 \kappa^{2}$

$$
J_{\kappa}(Q, z) \rightarrow z Q K_{1}(z Q)=J(Q, z)
$$

the external current decouples from the dilaton field.

Dressed soft-wall current brings in higher Fock states and more vector meson poles

Timelike Pion Form Factor from AdS/QCD and Light-Front Holography

Pion Form Factor from AdS/QCD and Light-Front Holography

Remarkable Features of Light-Front Schrödinger Equation

\bullet Relativistic, frame-independent

- QCD scale appears - unique LF potential
- Reproduces spectroscopy and dynamics of light-quark hadrons with one parameter
- Zero-mass pion for zero mass quarks!
- Regge slope same for n and L-- not usual HO
- Splitting in L persists to high mass -- contradicts conventional wisdom based on breakdown of chiral symmetry
- Phenomenology: LFWFs, Form factors, electroproduction
- Extension to heavy quarks

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Light-Front Holographic QCD and Emerging Confinement

Stanley J. Brodsky
SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA

Guy F. de Téramond
Universidad de Costa Rica, San José, Costa Rica
Hans Günter Dosch
Institut für Theoretische Physik, Philosophenweg 16, D-6900 Heidelberg, Germany

Joshua Erlich
College of William and Mary, Williamsburg, VA 23187, USA

Superconformal Baryon-Meson Symmetry and Light-Front Holographic QCD

Hans Günter Dosch
Institut für Theoretische Physik, Philosophenweg 16, D-6900 Heidelberg, Germany ${ }^{1}$
Guy F. de Téramond
Universidad de Costa Rica, San José, Costa Rica ${ }^{2}$
Stanley J. Brodsky
SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA

$$
\begin{aligned}
& \left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}\left(L_{B}+1\right)+\frac{4 L_{B}^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{+}=M^{2} \psi_{J}^{+} \quad \mathbf{G}_{22} \\
& \left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2} L_{B}+\frac{4\left(L_{B}+1\right)^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{-}=M^{2} \psi_{J}^{-} \quad G_{\| ।} \\
& M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) \quad \mathrm{s}=\mathrm{I} / 2, \mathrm{P}=+
\end{aligned}
$$

both chiralities

Meson Equation

$\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)+\frac{4 L_{M}^{2}-1}{4 \zeta^{2}}\right) \phi_{J}=M^{2} \phi_{J}$

$$
M^{2}\left(n, L_{M}\right)=4 \kappa^{2}\left(n+L_{M}\right) \quad \text { Same } \kappa!
$$

$\mathbf{S = 0 , I = I}$ Meson is superpartner of $S=I / 2$, $I=\mid$ Baryon
Meson-Baryon Degeneracy for $L_{M}=L_{B}+1$

Superconformal Algebra

$$
\frac{M^{2}}{4 \kappa^{2}}
$$

$$
M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) N \frac{7^{-}}{2}
$$

Same slope

Superconformal AdS Light-Front Holographic QCD (LFHQCD): Identical meson and baryon spectra!

Meson-Baryon Mass Degeneracy for $L_{M}=L_{B}+1$
$S=0, I=I$ Meson is superpartner of $S=I / 2$, I=I Baryon

Dosch, de Teramond, sjb

Features of Supersymmetric Equations

- J =L+S baryon simultaneously satisfies both equations of G with $L, L+1$ for same mass eigenvalue
- $J^{z}=L^{z}+1 / 2=\left(L^{z}+1\right)-1 / 2$

$$
S^{z}= \pm 1 / 2
$$

- Baryon spin carried by quark orbital angular momentum: < ${ }^{\text {z/ }}>=\mathrm{L}^{\text {² }}+1 / 2$
- Mass-degenerate meson "superpartner" with $\mathrm{L}_{\mathrm{m}}=\mathrm{L}_{\mathrm{B}}+1$. "Shifted meson-baryon Duality" Meson and baryon have same κ !

Counting Rules Obeyed

Fermionic Modes and Baryon Spectrum

[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]
[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

- Nucleon LF modes

$$
\begin{aligned}
\psi_{+}(\zeta)_{n, L} & =\kappa^{2+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{3 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+1}\left(\kappa^{2} \zeta^{2}\right) \\
\psi_{-}(\zeta)_{n, L} & =\kappa^{3+L} \frac{1}{\sqrt{n+L+2}} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{5 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+2}\left(\kappa^{2} \zeta^{2}\right)
\end{aligned}
$$

- Normalization

$$
\int d \zeta \psi_{+}^{2}(\zeta)=\int d \zeta \psi_{-}^{2}(\zeta)=1
$$

Chiral Symmetry of Eigenstate!

- Eigenvalues

$$
\mathcal{M}_{n, L, S=1 / 2}^{2}=4 \kappa^{2}(n+L+1)
$$

- "Chiral partners"

$$
\frac{\mathcal{M}_{N(1535)}}{\mathcal{M}_{N(940)}}=\sqrt{2}
$$

Chiral Features of Soft-Wall AdS/

 QCD Model- Boost Invariant
- Trivial LF vacuum! No condensates, but consistent with GMOR
- Massless Pion
- Hadron Eigenstates (even the pion) have LF Fock components of different L^{z}
- Proton: equal probability $\quad S^{z}=+1 / 2, L^{z}=0 ; S^{z}=-1 / 2, L^{z}=+1$

$$
J^{z}=+1 / 2:<L^{z}>=1 / 2,<S_{q}^{z}>=0
$$

- Self-Dual Massive Eigenstates: Proton is its own chiral partner.
- Label State by minimum L as in Atomic Physics
- Minimum L dominates at short distances
- AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=o.

Some Features of AdS/QCD

- Regge spectroscopy-same slope in n,Lfor mesons,
- Chiralfeaturesfor $m_{q}=\boldsymbol{0}$: $\boldsymbol{m}_{\pi=0}$, chiral-invariant proton
- Hadronic LFWFs : Single dynamical LF radial variable ζ
- Counting Rules
- Connection between hadron masses and $\Lambda_{\overline{M S}}$

Superconformal AdS Light-Front Holographic QCD (LFHQCD) Meson-Baryon Mass Degeneracy for $L_{M}=L_{B}+1$

- Compute Dirac proton form factor using SU(6) flavor symmetry

$$
F_{1}^{p}\left(Q^{2}\right)=R^{4} \int \frac{d z}{z^{4}} V(Q, z) \Psi_{+}^{2}(z)
$$

- Nucleon AdS wave function

$$
\Psi_{+}(z)=\frac{\kappa^{2+L}}{R^{2}} \sqrt{\frac{2 n!}{(n+L)!}} z^{7 / 2+L} L_{n}^{L+1}\left(\kappa^{2} z^{2}\right) e^{-\kappa^{2} z^{2} / 2}
$$

- Normalization $\quad\left(F_{1}{ }^{p}(0)=1, \quad V(Q=0, z)=1\right)$

$$
R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{2}(z)=1
$$

- Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

$$
V(Q, z)=\kappa^{2} z^{2} \int_{0}^{1} \frac{d x}{(1-x)^{2}} x^{\frac{Q^{2}}{4 \kappa^{2}}} e^{-\kappa^{2} z^{2} x /(1-x)}
$$

- Find

$$
F_{1}^{p}\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)}
$$

with $\mathcal{M}_{\rho_{n}}^{2} \rightarrow 4 \kappa^{2}(n+1 / 2)$

Using $S U(6)$ flavor symmetry and normalization to static quantities

Spacelike Pauli Form Factor

From overlap of $L=1$ and $L=0$ LFWFs

Stan Brodsky SLAC

$$
F_{1}{ }_{N \rightarrow N^{*}}^{p}\left(Q^{2}\right)=\frac{2 \sqrt{2}}{3} \frac{\frac{Q^{2}}{M_{P}^{2}}}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime \prime}}^{2}}\right)}
$$

with $\mathcal{M}_{\rho_{n}}^{2} \rightarrow 4 \kappa^{2}(n+1 / 2)$

Predictions from AdS Holographic QCD
Dosch, Deur, de Teramond,

- Zero-Mass pion for zero quark mass sjb
- Regge Spectroscopy

$$
M_{\pi}^{2}(n, L)=4 \kappa^{2}(n+L)
$$

- Same slope in n, L
- LFWFs, Distribution Amplitudes

$$
\phi_{\pi}(x) \propto f_{\pi} \sqrt{x(1-x)}
$$

- Form Factors, Structure Functions, GPDs
- Non-perturbative running coupling

$$
\alpha_{s}\left(Q^{2}\right) \propto e^{-\frac{Q^{2}}{4 \kappa^{2}}}
$$

- Meson-Baryon Supersymmetry for $\mathrm{L}_{\mathrm{M}}=\mathrm{L}_{\mathrm{B}+\mathrm{I}}$

$$
\lambda=\kappa^{2}
$$

Interpretation of Mass Scale κ

- Does not affect conformal symmetry of QCD action
- Self-consistent regularization of IR divergences
- Determines all mass and length scales for zero quark mass
- Compute scheme-dependent $\Lambda_{\overline{M S}}$ determined in terms of κ
- Value of K itself not determined -- place holder
- Need external constraint such as f_{π}

QCD Lagrangian

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}}<\bar{\Psi}_{f} \Psi_{f}
$$

$$
i D^{\mu}=i \partial^{\mu}-g A^{\mu} \quad G^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}-g\left[A^{\mu}, A^{\nu}\right]
$$

Classical Chiral Lagrangian is Conformally Invariant Where does the $\mathbf{Q C D}$ Mass Scale Λ_{QCD} come from?

How does color confinement arise?

- de Alfaro, Fubini, Furlan:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!
Unique confinement potential!

$$
\begin{gathered}
G\left|\psi(\tau)>=i \frac{\partial}{\partial \tau}\right| \psi(\tau)> \\
G=u H+v D+w K \\
G=H_{\tau}=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+\frac{g}{x^{2}}+\frac{4 u w-v^{2}}{4} x^{2}\right)
\end{gathered}
$$

Retains conformal invariance of action despite mass scale!

$$
4 u w-v^{2}=\kappa^{4}=[M]^{4}
$$

Identical to LF Hamiltonian with unique potential and dilaton!

- Dosch, de Teramond, sjb

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)} \\
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

- Mass scale does not appear in the QCD Lagrangian (massless quarks)
- Dimensional Transmutation? Requires external constraint such as $\alpha_{s}\left(M_{Z}\right)$
- dAFF: Confinement Scale k appears spontaneously via the Hamiltonian: $G=u H+v D+w K \quad 4 u w-v^{2}=\kappa^{4}=[M]^{4}$
- The confinement scale regulates infrared divergences, connects $\Lambda_{\text {QCD }}$ to the confinement scale K
- Only dimensionless mass ratios (and M times R) predicted
- Mass and time units $[\mathrm{GeV}]$ and $[\mathrm{sec}]$ from physics external to QCD
- New feature: bounded frame-independent relative time

dAFF: New Time Variable

$\tau=\frac{2}{\sqrt{4 u w-v^{2}}} \arctan \left(\frac{2 t w+v}{\sqrt{4 u w-v^{2}}}\right)$,

- Identify with difference of LF time $\Delta \mathbf{x}^{+} / \mathbf{P}^{+}$ between constituents
- Finite range
- Measure in Double-Parton Processes
$A d S / Q C D$
Soft-Wall Model

Light-Front Holography

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Unique
Confinement Potential!
Conformal symmetry of the action

Confinement scale:

$$
\kappa \simeq 0.6 \mathrm{GeV}
$$

$$
1 / \kappa \simeq 1 / 3 \mathrm{fm}
$$

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

AdS/QCD
Soft-Wall Model

Semi-Classical Approximation to QCD

 Relativistic, frame-independent Unique color-confining potential Zero mass pion for massless quarks Regge trajectories with equal slopes in n and LLight-Front Wavefunctions

Light-Front Schrödinger Equation
Conformal symmetry of the action

AdS/QCD and Light-Front Holography

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

- Zero mass pion for $\mathbf{m}_{q}=\mathbf{o} \quad(\mathbf{n}=\mathbf{J}=\mathbf{L}=\mathbf{o})$
- Regge trajectories: equal slope in n and L
- Form Factors at high Q^{2} : Dimensional counting

$$
\left[Q^{2}\right]^{n-1} F\left(Q^{2}\right) \rightarrow \text { const }
$$

- Space-like and Time-like Meson and Baryon Form Factors
- Running Coupling for NPQCD

$$
\begin{aligned}
& \alpha_{s}\left(Q^{2}\right) \propto e^{-\frac{Q^{2}}{4 \kappa^{2}}} \\
& \phi_{\pi}(x) \propto f_{\pi} \sqrt{x(1-x)}
\end{aligned}
$$

- Meson Distribution Amplitude

Connecting the Hadron Mass Scale to the Fundamental Mass Scale of Quantum Chromodynamics

Alexandre Deur
Thomas Jefferson National Accelerator Facility, Neuport News, VA 23606, USA ${ }^{1}$
Stanley J. Brodsky
SLAC National Accelerator Laboratory, Stanfond University, Stanford, CA 94309, USA ${ }^{2}$
Guy F. de Téramond
Universidad de Costa Rica, 11501 San José, Costa Rica ${ }^{3}$

Grunberg

Bjorken sum rule defines effective charge

$$
\alpha_{g 1}\left(Q^{2}\right)
$$

$$
\int_{0}^{1} d x\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] \equiv \frac{g_{a}}{6}\left[1-\frac{\alpha_{g 1}\left(Q^{2}\right)}{\pi}\right]
$$

- Can be used as standard QCD coupling
- Well measured
- Asymptotic freedom at large $\mathbf{Q}^{\mathbf{2}}$
- Computable at large $\mathbf{Q}^{\mathbf{2}}$ in any $\mathbf{P Q C D}$ scheme
- Universal $\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{\text {I }}$

$$
\left.\alpha_{s}^{A d S}(Q) / \pi=e^{-Q^{2} / 4 \kappa^{2}}\right)
$$

Stan Brodsky

Running Coupling from Light-Front Holography and AdS/QCD
Analytic, defined at all scales, IR Fixed Point

AdS/QCD dilaton captures the higher twist corrections to effective charges for $Q<\mathbf{I G e V}$

$$
e^{\varphi}=e^{+\kappa^{2} z^{2}}
$$

Deur, de Teramond, sjb

- Consider five-dim gauge fields propagating in AdS_{5} space in dilaton background $\varphi(z)=\kappa^{2} z^{2}$

$$
S=-\frac{1}{4} \int d^{4} x d z \sqrt{g} e^{\varphi(z)} \frac{1}{g_{5}^{2}} G^{2}
$$

- Flow equation

$$
\frac{1}{g_{5}^{2}(z)}=e^{\varphi(z)} \frac{1}{g_{5}^{2}(0)} \quad \text { or } \quad g_{5}^{2}(z)=e^{-\kappa^{2} z^{2}} g_{5}^{2}(0)
$$

where the coupling $g_{5}(z)$ incorporates the non-conformal dynamics of confinement

- YM coupling $\alpha_{s}(\zeta)=g_{Y M}^{2}(\zeta) / 4 \pi$ is the five dim coupling up to a factor: $g_{5}(z) \rightarrow g_{Y M}(\zeta)$
- Coupling measured at momentum scale Q

$$
\alpha_{s}^{A d S}(Q) \sim \int_{0}^{\infty} \zeta d \zeta J_{0}(\zeta Q) \alpha_{s}^{A d S}(\zeta)
$$

- Solution

$$
\alpha_{s}^{A d S}\left(Q^{2}\right)=\alpha_{s}^{A d S}(0) e^{-Q^{2} / 4 \kappa^{2}}
$$

where the coupling $\alpha_{s}^{A d S}$ incorporates the non-conformal dynamics of confinement

$$
m_{\rho}=\sqrt{2} \kappa
$$

All-Scale QCD Coupling

Deur, de Tèramond, sjb

Tests of AdS/QCD and LF Holography at JLab 12 GeV

- Compare Spacelike-Transition Form Factors, Counting Rules

$$
F_{\pi \rightarrow b_{1}}\left(Q^{2}\right) \quad \text { vs. } \quad F_{p \rightarrow N^{*}}\left(Q^{2}\right)
$$

- Supersymmetric QCD Relations: Spectra, Dynamics
- Baryons: q+diquark: $[q]_{3 C}[q q]_{\overline{3}} C$
- Pentaquarks: diquark-antidiquark?: $[q q]_{\overline{3} C}[\bar{q} \bar{q}]_{3 C}$

New Dírections: AdS/QCD and LF Holography

- Hadronization at Amplitude Level: Calculate Fragmentation Functions from LFWFs
- Higher-Fock States of Proton: Intrinsic Heavy Quarks; $\mathbf{s}(\mathbf{x}) \overline{\mathrm{vs}} . \mathbf{s}(\mathbf{x})$ asymmetry
- Hidden Color of Deuteron
- Predict Spectrum of Tetraquarks, Exotic Hadrons
$p A \rightarrow$ Jet $[$ Jet Jet $] A^{\prime} \rightarrow p A \rightarrow$ Jet Jet Jet A^{\prime}

Four-Quark Hadrons: an Updated Review

A. ESPOSITOA, L. GUERRIERI, F. PICCININI, A. PILLONI and A. POLOSA

arXiv:1411.5997v2

State	$M(\mathrm{MeV})$	$\Gamma(\mathrm{MeV})$	$J^{P C}$	Process (mode)	Experiment (\#)
X (3823)	3823.1 ± 1.9	<24	??-	$B \rightarrow K\left(\chi_{c 1} \gamma\right)$	Belle ${ }^{23}$ (4.0)
X (3872)	3871.68 ± 0.17	<1.2	1^{++}	$B \rightarrow K\left(\pi^{+} \pi^{-} J / \psi\right)$	Belle ${ }^{24,25}$ (>10), BABAR ${ }^{26}$ (8.6)
				$p \bar{p} \rightarrow\left(\pi^{+} \pi^{-} J / \psi\right) \ldots$	$\mathrm{CDF}^{27,28}$ (11.6), D^{29} (5.2)
				$p p \rightarrow\left(\pi^{+} \pi^{-} J / \psi\right) \ldots$	$\mathrm{LHCb}^{30,31}(\mathrm{np})$
				$B \rightarrow K\left(\pi^{+} \pi^{-} \pi^{0} J / \psi\right)$	$\text { Belle }^{32}(4.3), \text { BABAR }^{33} \text { (4.0) }$
				$B \rightarrow K(\gamma J / \psi)$	$\text { Belle }^{34} \text { (5.5), } \text { BABAR }^{35} \text { (3.5) }$
					$\mathrm{LHCb}^{36}(>10)$
				$B \rightarrow K(\gamma \psi(2 S))$	$\begin{gathered} \text { BABAR }^{35}(3.6), \text { Belle }^{34}(0.2) \\ \text { LHCb }^{36}(4.4) \end{gathered}$
				$B \rightarrow K\left(D \bar{D}^{*}\right)$	$\text { Belle }^{37} \text { (6.4), } \text { BABAR }^{38} \text { (4.9) }$
$Z_{c}(3900)^{+}$	3888.7 ± 3.4	35 ± 7	1^{+-}	$Y(4260) \rightarrow \pi^{-}\left(D \bar{D}^{*}\right)^{+}$	BES III ${ }^{39}$ (np)
				$Y(4260) \rightarrow \pi^{-}\left(\pi^{+} J / \psi\right)$	$\operatorname{BES~III}^{40}(8), \text { Belle }^{41}(5.2)$
					$\text { CLEO data }{ }^{42}(>5)$
$Z_{c}(4020){ }^{+}$	4023.9 ± 2.4	10 ± 6	1^{+-}	$Y(4260) \rightarrow \pi^{-}\left(\pi^{+} h_{c}\right)$	BES III ${ }^{43}$ (8.9)
				$Y(4260) \rightarrow \pi^{-}\left(D^{*} \bar{D}^{*}\right)^{+}$	BES III ${ }^{44}$ (10)
$Y(3915)$	3918.4 ± 1.9	20 ± 5	0^{++}	$B \rightarrow K(\omega J / \psi)$	$\text { Belle }^{45}(8), B A B A R^{33,46} \text { (19) }$
				$e^{+} e^{-} \rightarrow e^{+} e^{-}(\omega J / \psi)$	$\text { Belle }^{47} \text { (7.7), } \text { BABAR }^{48} \text { (7.6) }$
Z (3930)	3927.2 ± 2.6	24 ± 6	2^{++}	$e^{+} e^{-} \rightarrow e^{+} e^{-}(D \bar{D})$	$\text { Belle }^{49}(5.3), \text { BABAR }^{50}(5.8)$
X (3940)	3942_{-8}^{+9}	37_{-17}^{+27}	? ${ }^{+}$	$e^{+} e^{-} \rightarrow J / \psi\left(D \bar{D}^{*}\right)$	$\text { Belle }{ }^{51,52}(6)$
$Y(4008)$	3891 ± 42	255 ± 42	$1{ }^{--}$	$e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-} J / \psi\right)$	$\text { Belle }^{41,53} \text { (7.4) }$
$Z(4050)^{+}$	4051_{-43}^{+24}	82_{-55}^{+51}	? ${ }^{+}$	$\bar{B}^{0} \rightarrow K^{-}\left(\pi^{+} \chi_{c 1}\right)$	$\text { Belle }^{54}(5.0), \text { BABAR }^{55} \text { (1.1) }$
$Y(4140)$	4145.6 ± 3.6	14.3 ± 5.9	??+	$B^{+} \rightarrow K^{+}(\phi J / \psi)$	$\operatorname{CDF}^{56,57}(5.0), \text { Belle }^{58}(1.9)$ $\operatorname{LHCb}^{59} \text { (1.4), } \mathrm{CMS}^{60}(>5)$
					$\mathrm{LHCb}^{59}(1.4), \mathrm{CMS}^{60}(>5)$ $\mathrm{D} \varnothing^{61}(3.1)$
$X(4160)$	4156_{-25}^{+29}	139_{-65}^{+113}		$e^{+} e^{-} \rightarrow J / \psi\left(D^{*} \bar{D}^{*}\right)$	$\text { Belle }^{52}(5.5)$
$Z(4200)^{+}$	4196_{-30}^{+35}	370_{-110}^{+99}	1^{+-}	$\bar{B}^{0} \rightarrow K^{-}\left(\pi^{+} J / \psi\right)$	Belle ${ }^{62}$ (7.2)

Belle, BaBar:

$$
\begin{gathered}
\mathcal{B}\left(B^{0} \rightarrow K^{+} Z(4430)^{-}\right) \times \mathcal{B}\left(Z(4430)^{-} \rightarrow \psi(2 S) \pi^{-}\right)=\left(6.0_{-2.0-1.4}^{+1.7+2.5}\right) \times 10^{-5} . \\
\mathcal{B}\left(B^{0} \rightarrow K^{+} Z(4430)^{-}\right) \times \mathcal{B}\left(Z(4430)^{-} \rightarrow J / \psi \pi^{-}\right)=\left(5.4_{-1.0-0.6}^{+4.0+1.1}\right) \times 10^{-6} .
\end{gathered}
$$

Surprising Result:

Dominance of large size $\psi^{\prime}(2 S)$ vs. J / ψ decays

Diquark Anti-diquark Model

Formation of charmonium at large separation:

Dominance of overlap with large-size Ψ^{\prime} vs J / Ψ decays

JLab 12 GeV: An Exotic Charm Factory!

$$
\begin{gathered}
\gamma^{*} p \rightarrow J / \psi+p \text { threshold } \\
\text { at } \sqrt{s} \simeq 4 \mathrm{GeV}, E_{\text {lab }}^{\gamma^{*}} \simeq 7.5 \mathrm{GeV} . \\
\gamma^{*} p \rightarrow X(3872)+p^{\prime} \\
\mid c \bar{c} q \bar{q}>\quad \text { tetraquark }
\end{gathered}
$$

Produce $[J / \psi+p]$ bound state $\mid u u d c \bar{c}>$ pentaquark $\gamma^{*} d \rightarrow J / \psi+d$ threshold at $\sqrt{s} \simeq 5 \mathrm{GeV}, E_{\mathrm{lab}}^{\gamma^{*}} \simeq 6 \mathrm{GeV}$.
Produce $[J / \psi+d]$ nuclear-bound quarkonium state $\mid u u d d d u c \bar{c}>$ octoquark!

Tetraquark Production at Threshold

$$
E_{\text {lab }}^{\gamma}>11.9 \mathrm{GeV}
$$

Open Charm Production at Threshold

Nuclear binding at low relative velocity

$\gamma^{*} d \rightarrow \bar{D}^{0}(\bar{c} u)\left[\Lambda_{c} n\right](c u d u d d)$
Possible charmed $\mathbf{B}=2$ nucleus

open Charm Production at Threshold

Create pentaquark on deuteron at low relative velocity

Octoquark Production at Threshold

$$
M_{\text {octoquark }} \sim 5 \mathrm{GeV}
$$

$\gamma^{*} D \rightarrow \mid u u d u u d c \bar{c}>$
Explains Krisch Effect!

Light-Front Wavefunctions and Heavy-Quark Electroproduction
Fixed $\tau=t+z / c$
$|u u d c \bar{c} d \bar{d}\rangle$

Produce Charged Tetraquarks at JLab!
Coalescence of comovers at threshold produces
Z_{c}^{+}tetraquark resonance

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

> Intrinsic heavy quarks $\boldsymbol{s}(\boldsymbol{x}), \boldsymbol{c}(\boldsymbol{x}), \boldsymbol{b}(\boldsymbol{x})$ at high $\boldsymbol{x}!\bar{u}(x) \neq \bar{d}(x)$
> $\bar{s}(x) \neq s(x)$
$\bar{u}(x) \neq \bar{d}(x)$

\qquad

$$
\bar{d}(x) / \bar{u}(x) \text { for } 0.015 \leq x \leq 0.35
$$

■ E866/NuSea (Drell-Yan)

$$
\bar{d}(x) \neq \bar{u}(x)
$$

Intrinsic glue, sea, heavy quarks

Measure strangeness distribution in Semi-Inclusive DIS at JLab

$$
\text { Is } s(x)=\bar{s}(x) ?
$$

- Non-symmetric strange and antistrange sea?
- Non-perturbative physics; e.g $|u u d s \bar{s}>\simeq| \wedge(u d s) K^{+}(\bar{s} u)>$
- Important for interpreting NuTeV anomaly B. Q. Ma, sjb

Tag struck quark flavor in semi-inclusive DIS $e p \rightarrow e^{\prime} K^{+} X$

Do heavy quarks exist in the proton at high x ?

Conventional wisdom: impossible!

Standard Assumption: Heavy quarks are generated via DGLAP evolution from gluon splitting

$$
s\left(x, \mu_{F}^{2}\right)=c\left(x, \mu_{F}^{2}\right)=b\left(x, \mu_{F}^{2}\right) \equiv 0
$$

at starting scale μ_{F}^{2}
Conventional wisdom is wrong even in QED!

Proton Self Energy from g g to gg scattering QCD predicts Intrinsic Heavy Quarks!

$$
x_{Q} \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2}
$$

Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}}$
Probability $(\mathrm{QCD})^{\propto} \propto \frac{1}{M_{Q}^{2}}$
Collins, Ellis, Gunion, Mueller, sjb
M. Polyakov, et al.

Fixed LF time

Proton 5-quark Fock State : Intrinsic Heavy Quarks

QCD predicts Intrinsic Heavy Quarks at high x

Minimal offshellness

$$
x_{Q} \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2}
$$

Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}} \quad$ Probability $(\mathrm{QCD}) \propto \frac{1}{M_{Q}^{2}}$
Collins, Ellis, Gunion, Mueller, sjb M. Polyakov

DGLAP / Photon-Gluon Fusion: factor of 30 too small
Two Components (separate evolution):
$c\left(x, Q^{2}\right)=c\left(x, Q^{2}\right)_{\text {extrinsic }}+c\left(x, Q^{2}\right)_{\text {intrinsic }}$

Leading Hadron Production

 from Intrinsic Charm

Spectator counting rules

Coalescence of Comoving Charm and Valence Quarks Produce $J / \Psi, \Lambda_{c}$ and other Charm Hadrons at High x_{F}

Barger, Halzen, Keung

Evidence for charm at largex

Maximum fraction of projectile momentum carried by charm quarks!

$$
\left(1-x_{F}\right)^{p}, p=n_{s}-1
$$

- EMC data: $c\left(x, Q^{2}\right)>30 \times$ DGLAP $Q^{2}=75 \mathrm{GeV}^{2}, x=0.42$
- High $x_{F} p p \rightarrow J / \psi X$
- High $x_{F} p p \rightarrow J / \psi J / \psi X$
- High $x_{F} p p \rightarrow \wedge_{c} X$
- High $x_{F} p p \rightarrow \wedge_{b} X$
- High $x_{F} p p \rightarrow$ 三(ccd) X (SELEX)

Critical Measurements at threshold for JLab, PANDA Interesting spin, charge asymmetry, threshold, spectator effects Important corrections to B decays, Quarkonium decays

Production of Two Charmonia at High x_{F}

NA3: All events at bigh $x_{F}=x_{\psi}+x_{\psi}$!

Fig. 3. The $\psi \psi$ pair distributions are shown in (a) and (c) for the pion and proton projectiles. Similarly, the distributions of J / ψ 's from the pairs are shown in (b) and (d). Our calculations are compared with the $\pi^{-} N$ data at 150 and $280 \mathrm{GeV} / c$ [1]. The $x_{\psi \psi}$ distributions are normalized to the number of pairs from both pion beams (a) and the number of pairs from the 400 GeV proton measurement (c). The number of single J / ψ 's is twice the number of pairs.

NA3 Data

Excludes PYTHIA 'color drag' model

$$
\begin{gathered}
\pi A \rightarrow J / \psi J / \psi X \\
R, \text { Vogt, sjb }
\end{gathered}
$$

The probability distribution for a general n-particle intrinsic $c \bar{c}$ Fock state as a function of x and k_{T} is written as

$$
\begin{aligned}
& \frac{d P_{\mathrm{ic}}}{\prod_{i=1}^{n} d x_{i} d^{2} k_{T, i}} \\
& \quad=N_{n} \alpha_{s}^{4}\left(M_{c \bar{c}}\right) \frac{\delta\left(\sum_{i=1}^{n} k_{T, i}\right) \delta\left(1-\sum_{i=1}^{n} x_{i}\right)}{\left(m_{h}^{2}-\sum_{i=1}^{n}\left(m_{T, i}^{2} / x_{i}\right)\right)^{2}}
\end{aligned}
$$

Measurement of $\gamma+\boldsymbol{b}+\boldsymbol{X}$ and $\gamma+\boldsymbol{c}+X$ Production Cross Sections in $p \bar{p}$ Collisions at $\sqrt{s}=1.96 \mathrm{TeV}$

$\frac{\Delta \sigma(\bar{p} p \rightarrow \gamma c X)}{\Delta \sigma(\bar{p} p \rightarrow \gamma b X)}$
Ratio
insensitive to gluon PDF, scales

Signal for significant IC at $x>0.1$

Need COMPASS

Measurement of $c\left(x, Q^{2}\right)$!
P. Jimenez-Delgado, T. J. Hobbs, J. T. Londergan, W. Melnitchouk

EMC Data

Intrinsic Charm Mechanism for Inclusive High-XF Higgs Production

Goldhaber, Soffer,
Also: intrinsic bottom, top Kopeliovich, Schmidt, sjb
Higgs can have 80\% of Proton Momentum!
New search strategy for Higgs AFTER: Higgs production at threshold!

Need High XF Acceptance
Most practical: Higgs to 2 or 4 mwons

Goldhaber, Kopeliovich, Schmidt, Soffer, sjb

Charm at Threshold

- Intrinsic charm Fock state puts 80% of the proton momentum into the electroproduction process
- I/velocity enhancement from FSI
- CLEO datafor quarkonium production at threshold
- Krisch effect shows B=2 resonance
- all particles produced at small relative rapidity-resonance production
- Many exotic hidden and open charm resonances will be produced at JLab (i2 GeV)

QCD Myths

- Anti-Shadowing is Universal
- ISI and FSI are higher twist effects and universal
- High transverse momentum hadrons arise only from jet fragmentation -- baryon anomaly!
- Heavy quarks only from gluon splitting
- Renormalization scale cannot be fixed
- QCD condensates are vacuum effects
- QCD gives Io 42 to the cosmological constant

Electron-Electron Scattering in QED

$$
\begin{aligned}
\mathcal{M}_{e e \rightarrow e e}(++;++) & =\frac{8 \pi s}{t} \alpha(t)+\frac{8 \pi s}{u} \alpha(u) \\
& \\
\alpha(t) & =\frac{\alpha(0)}{1-\Pi(t)}
\end{aligned}
$$

Gell-Mann--Low Effective Charge

$$
C_{F}=\frac{N_{C}^{2}-1}{2 N_{C}}
$$

$\lim N_{C} \rightarrow 0$ at fixed $\alpha=C_{F} \alpha_{s}, n_{\ell}=n_{F} / C_{F}$

QCD \rightarrow Abelian Gauge Theory

Analytic Feature of SU(NC) Gauge Theory
Scale-Setting procedure for QCD must be applicable to QED

Set multiple renormalization scales -Lensing, DGLAP, ERBL Evolution ...

Choose renormalization scheme; e.g. $\alpha_{s}^{R}\left(\mu_{R}^{\text {init }}\right)$

Choose $\mu_{R}^{i n i t}$; arbitrary initial renormalization scale

Result is independent of $\mu_{R}^{\text {init }}$ and scheme at fixed order
Principle of Maximum Conformality

PMC/BLM

No renormalization scale ambiguity!
Result is independent of Renormatization scheme and initial scale!

QED Scale Setting at $\mathbf{N}_{\mathbf{C}=0}$

Eliminates unnecessary systematic uncertainty

Scale fixed at each order
ס-Scheme automatically identifies β-terms!

Xing-Gang Wu, Matin Mojaza Leonardo di Giustino, SyB

Systematic All-Orders Method to Eliminate Renormalization-Scale and Scheme Ambiguities in Perturbative QCD

Matin Mojaza*
CP3-Origins, Danish Institute for Advanced Studies, University of Southern Denmark, DK-5230 Odense, Denmark and SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

Stanley J. Brodsky ${ }^{\dagger}$
SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

Xing-Gang Wu ${ }^{\ddagger}$
Department of Physics, Chongqing University, Chongqing 401331, People's Republic of China (Received 13 January 2013; published 10 May 2013)

We introduce a generalization of the conventional renormalization schemes used in dimensional regularization, which illuminates the renormalization scheme and scale ambiguities of perturbative QCD predictions, exposes the general pattern of nonconformal $\left\{\beta_{i}\right\}$ terms, and reveals a special degeneracy of the terms in the perturbative coefficients. It allows us to systematically determine the argument of the running coupling order by order in perturbative QCD in a form which can be readily automatized. The new method satisfies all of the principles of the renormalization group and eliminates an unnecessary source of systematic error.

DOI: 10.1103/PhysRevLett.110.192001
PACS numbers: $12.38 . \mathrm{Bx}$, 11.10.Gh, 11.15.Bt, 12.38.Aw

δ-Renormalization Scheme (\mathcal{R}_{δ} scheme $)$

In dim. reg. $1 / \epsilon$ poles come in powers of [Bollini \& Gambiagi, 't Hooft \& Veltman, '72]

$$
\ln \frac{\mu^{2}}{\Lambda^{2}}+\frac{1}{\epsilon}+c
$$

In the modified minimal subtraction scheme (MS-bar) one subtracts together with the pole a constant [Bardeen, Buras, Duke, Muta (1978) on DIS results]:

$$
\ln (4 \pi)-\gamma_{E}
$$

This corresponds to a shift in the scale:

$$
\mu_{\overline{\mathrm{MS}}}^{2}=\mu^{2} \exp \left(\ln 4 \pi-\gamma_{E}\right)
$$

A finite subtraction from infinity is arbitrary. Let's make use of this!
Subtract an arbitrary constant and keep it in your calculation: \mathcal{R}_{δ}-scheme

$$
\begin{gathered}
\ln (4 \pi)-\gamma_{E}-\delta \\
\mu_{\delta}^{2}=\mu_{\overline{\mathrm{MS}}}^{2} \exp (-\delta)=\mu^{2} \exp \left(\ln 4 \pi-\gamma_{E}-\delta\right)
\end{gathered}
$$

Exposing the Renormalization Scheme Dependence

Observable in the \mathcal{R}_{δ}-scheme:
$\rho_{\delta}\left(Q^{2}\right)=r_{0}+r_{1} a(\mu)+\left[r_{2}+\beta_{0} r_{1} \delta\right] a(\mu)^{2}+\left[r_{3}+\beta_{1} r_{1} \delta+2 \beta_{0} r_{2} \delta+\beta_{0}^{2} r_{1} \delta^{2}\right] a(\mu)^{3}+\cdots$
$\mathcal{R}_{0}=\overline{\mathrm{MS}}, \quad \mathcal{R}_{\ln 4 \pi-\gamma_{E}}=\mathrm{MS} \quad \mu^{2}=\mu_{\overline{\mathrm{MS}}}^{2} \exp \left(\ln 4 \pi-\gamma_{E}\right), \quad \mu_{\delta_{2}}^{2}=\mu_{\delta_{1}}^{2} \exp \left(\delta_{2}-\delta_{1}\right)$
Note the divergent 'renormalon series' $n!\beta^{n} \alpha_{s}^{n}$
Renormalization Scheme Equation

$$
\frac{d \rho}{d \delta}=-\beta(a) \frac{d \rho}{d a} \stackrel{!}{=} 0 \quad \longrightarrow \mathrm{PMC}
$$

$$
\rho_{\delta}\left(Q^{2}\right)=r_{0}+r_{1} a_{1}\left(\mu_{1}\right)+\left(r_{2}+\beta_{0} r_{1} \delta_{1}\right) a_{2}\left(\mu_{2}\right)^{2}+\left[r_{3}+\beta_{1} r_{1} \delta_{1}+2 \beta_{0} r_{2} \delta_{2}+\beta_{0}^{2} r_{1} \delta_{1}^{2}\right] a_{3}\left(\mu_{3}\right)^{3}
$$

The $\delta_{k}^{p} a^{n}$-term indicates the term associated to a diagram with $1 / \epsilon^{n-k}$ divergence for any p. Grouping the different δ_{k}-terms, one recovers in the $N_{c} \rightarrow 0$ Abelian limit the dressed skeleton expansion.

The Renormalization Scale Ambiguity for Top-Pair Production

 Eliminated Using the 'Principle of Maximum Conformality' (PMC)

Top quark forward-backward asymmetry predicted by pQCD NNLO within I σ of CDF/D0 measurements using PMC/BLM scale setting

Reanalysis of the Higher Order Perturbative QCD corrections to Hadronic Z Decays using the Principle of Maximum Conformality

S-Q Wang, X-G Wu, sjb
P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn, and J. Rittinger, Phys. Rev. Lett. 108, 222003 (2012).

The values of $r_{\mathrm{NS}}^{(n)}=1+\sum_{i=1}^{n} C_{i}^{\mathrm{NS}} a_{s}^{i}$ and their errors $\pm\left|C_{n}^{\mathrm{NS}} a_{s}^{n}\right| \mathrm{MAX}$. The diamonds and the crosses are for conventional (Conv.) and PMC scale settings, respectively. The central values assume the initial scale choice $\mu_{r}^{\text {init }}=M_{Z}$.

Generalized Crewther Relation

$$
\begin{gathered}
{\left[1+\frac{\alpha_{R}\left(s^{*}\right)}{\pi}\right]\left[1-\frac{\alpha_{g_{1}}\left(q^{2}\right)}{\pi}\right]=1} \\
\sqrt{s^{*}} \simeq 0.52 Q
\end{gathered}
$$

Conformal relation true to all orders in

 perturbation theoryNo radiative corrections to axial anomaly
Nonconformal terms set relative scales (BLM)
No renormalization scale ambiguity!
Both observables go through new quark thresholds at commensurate scales!

Princíple of Maximum Conformality (PMC)

- Sets $\mathbf{p Q C D}$ renormalization scale correctly at every finite order
- Predictions are scheme-independent
- Satisfies all principles of the renormalization group
- Agrees with Gell Mann-Low procedure for pQED in Abelian limit
- Shifts all β terms into α_{s}, leaving conformal series
- Automatic procedure: $\mathbf{R}_{\boldsymbol{\delta}}$ scheme
- Number of flavors $\mathbf{n}_{\mathbf{f}}$ set

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}} m_{f} \bar{\Psi}_{f} \Psi_{f}
$$

- Although we know the QCD Lagrangian, we have just begun to understand its remarkable properties.
- Novel Phenomena: Color Confinement, Color Transparency, Intrinsic Heavy Quarks, Hidden Color, Tetraquarks, Octoquarks, Nuclear Bound Quarkonium...
- "Truth is stranger than fiction, because fíction is obliged to stick to possibilities" - Mark Twain

Scattering Theory and Light-Front QCD

AdS/QCD : Light-Front Holography

$$
\text { Fixed } \tau=t+z / c
$$

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

Thanks!!!
x
0.05

2015 International Summer Workshop on Reactio $i^{1.5}$ Theory

June 12, 2015
ЏT indiana university Jefferson Lab

