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AdS/QCD : Light-Front Holography

ABOUT THE SCHOOL

The 2015 International Summer Workshop is dedicated to
theory and phenomenology of scattering theory and its
application to data analysis of modern experiments in strong
interactions physics. As a new frontier in particle and
nuclear physics has opened up with advances in
experimental, theoretical and computational techniques
there is new demand for a qualitatively new level of
sophistication in data analysis never before achieved. These
require deep knowledge of the methods in relativistic
scattering theory. For at least two decades scattering theory
has essentially disappeared from the physics curriculum and
generations of physicists have been educated without this
basic knowledge. Few have working experience with topics

related to the analysis of relativistic reactions that involve aspects of Regge phenomenology, crossing relations and duality, analytic
continuations, dispersion relations, etc., and the phenomenological application of all these concepts.

The Workshop will consist of daily lectures from faculty in the morning, followed
by lab sessions devoted to practical implementation of reaction amplitudes in data
fitting using AmpTools and ROOT. There will also be opportunities for
participants to present their current research. The Workshop is dedicated in
memory of Tullio Regge who passed away on October 23, 2014. He discovered
the role of complex angular momentum singularities. Named after him, Regge
poles and cuts, determine asymptotic behavior of relativistic scattering amplitudes,
and the discovery led to the most successful phenomenology of high energy
collisions.
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HQCD
LF |ψ >=M2|ψ >

Dirac’s Front Form: Fixed τ = t+ z/c

Bound States in Relativistic Quantum Field Theory: 
Light-Front Wavefunctions
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0 < xi < 1

n�

i=1
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Remarkable new insights from AdS/CFT,the duality 
between conformal field theory  and Anti-de Sitter Space 

Invariant under boosts.   Independent of P
μ

Direct connection to QCD Lagrangian
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General remarks about orbital angular mo-
mentum
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Light-Front Wavefunctions:  rigorous representation of composite 
systems in quantum field theory

x =
k+

P+
=
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P 0 + P 3

Causal, Frame-independent.  Creation Operators on Simple Vacuum, "
Current Matrix Elements are Overlaps of LFWFS
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Invariant under boosts!  Independent of P
μ 

Eigenstate of LF Hamiltonian : Off-shell in  Invariant Mass
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Fixed LF time

Sum Rules



|p,Sz>= ∑
n=3
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The Light Front Fock State Wavefunctions

Ψn(xi,~k?i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction
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Fixed LF time
Intrinsic heavy quarks    s̄(x) ⇤= s(x)
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ep⇥ e�+n
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Violation of Gottfried sum rule

ū(x) ⌅= d̄(x)

Does not produce (C = �) J/⇥,�

Produces (C = �) J/⇥,�

Same IC mechanism explains A2/3

s(x), c(x), b(x) at high x !
Hidden ColorMueller:  gluon Fock states     BFKL 

Pomeron



!
Scattering Theory, AdS/QCD, and LF Quantization  Stan BrodskyReaction Theory Workshop!

University of Indiana       !
June 12, 2015

General remarks about orbital angular mo-
mentum
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deuteron

5 X 5  Matrix Evolution Equation  for deuteron 
distribution amplitude

General remarks about orbital angular mo-
mentum
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Lepage, Ji, sjb
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Asymptotic Solution has Expansion

Deuteron six-quark state has five color - singlet configurations, 
only one of which is n-p.

Look for transition to Delta-Delta

Hidden Color of Deuteron
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Shadowing of ⇤q̄M produces shadowing of
nuclear structure function.

�
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d⇤
dt (�d⇥�++���)

d⇤
dt (�d⇥pn)

should be an increasing function of t.

At small t one can generate �++�� from
np by final-state ⇥+ exchange. However, the

Compare

dp ⇤�++��+ p

dp ⇤ p n + p

at high t.

Use deuteron beam

⌅ ⌅

• Measure Elastic Proton-Proton Scattering

Compare

dp ⇤�++��+ p

dp ⇤ p n + p

at high t.

Use deuteron beam

⌅ ⌅

• Measure Elastic Proton-Proton Scattering

Test QCD scaling in hard exclusive nuclear
amplitudes

Manifestations of Hidden Color in Deuteron
Wavefunction
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pp� �c(cud)D0(cu)p

p

⇥(pp� cX)

Total open charm cross section at threshold

⇥(pp� cX) ⇥ 1µb

needed to explain Krisch ANN

Compare with strangeness channels

pp� �(sud)K+(su)p

Compare

dp ⇤�++��+ p

dp ⇤ p n + p

at high t.

Use deuteron beam

⌅ ⌅

• Measure Elastic Proton-Proton Scattering

vs.

Ratio predicted to approach 2:5

Compare

dp ⇥�++��+ p

dp ⇥ p n + p

at high t.

Use deuteron beam

⇤ ⇤

Test of Hidden Color in Deuteron Photodisintegration

Test QCD scaling in hard exclusive nuclear
amplitudes

Manifestations of Hidden Color in Deuteron
Wavefunction

pp� d�+

pd� pd

Shadowing of ⇤q̄M produces shadowing of
nuclear structure function.

�

R =
d⇤
dt (�d⇥�++���)

d⇤
dt (�d⇥pn)

should be an increasing function of t.

At small t one can generate �++�� from
np by final-state ⇥+ exchange. However, the

Shadowing of ⇤q̄M produces shadowing of
nuclear structure function.

�

R =
d⇤
dt (�d⇥�++���)

d⇤
dt (�d⇥pn)

should be an increasing function of t.

At small t one can generate �++�� from
np by final-state ⇥+ exchange. However, the

!
Ratio should grow with transverse momentum as the hidden color 

component of the deuteron  grows in strength. 

!
Possible contribution from pion charge exchange at small t.



Figure 1: Nuclear correction factor R according to Eq. 1
for the differential cross section d2σ/dx dQ2 in charged
current neutrino-Fe scattering at Q2 = 5 GeV2. Results
are shown for the charged current neutrino (solid lines)
and anti-neutrino (dashed lines) scattering from iron.
The upper (lower) pair of curves shows the result of our
analysis with the Base-2 (Base-1) free-proton PDFs.

Figure 2: Predictions (solid and dashed line) for the
structure function ratio F F e

2 /F D
2 using the iron PDFs

extracted from fits to NuTeV neutrino and anti-neutrino
data. The SLAC/NMC parameterization is shown with
the dot-dashed line. The structure function F D

2 in the
denominator has been computed using either the Base-2
(solid line) or the Base-1 (dashed line) PDFs.

(significant) dependence on the energy scale Q, the atomic number A, or the specific observable.
The increasing precision of both the experimental data and the extracted PDFs demand that the
applied nuclear correction factors be equally precise as these contributions play a crucial role in
determining the PDFs. In this study we reexamine the source and size of the nuclear corrections
that enter the PDF global analysis, and quantify the associated uncertainty. Additionally, we
provide the foundation for including the nuclear correction factors as a dynamic component of
the global analysis so that the full correlations between the heavy and light target data can be
exploited.

A recent study 1 analyzed the impact of new data sets from the NuTeV 3, Chorus, and E-
866 Collaborations on the PDFs. This study found that the NuTeV data set (together with the
model used for the nuclear corrections) pulled against several of the other data sets, notably the
E-866, BCDMS and NMC sets. Reducing the nuclear corrections at large values of x reduced
the severity of this pull and resulted in improved χ2 values. These results suggest on a purely
phenomenological level that the appropriate nuclear corrections for ν-DIS may well be smaller
than assumed.

To investigate this question further, we use the high-statistics ν-DIS experiments to perform
a dedicated PDF fit to neutrino–iron data.2 Our methodology for this fit is parallel to that of
the previous global analysis,1 but with the difference we use only Fe data and that no nuclear
corrections are applied to the analyzed data; hence, the resulting PDFs are for a bound proton
in an iron nucleus. Specifically, we determine iron PDFs using the recent NuTeV differential
neutrino (1371 data points) and anti-neutrino (1146 data points) DIS cross section data,3 and
we include NuTeV/CCFR dimuon data (174 points) which are sensitive to the strange quark
content of the nucleon. We impose kinematic cuts of Q2 > 2 GeV and W > 3.5 GeV, and obtain
a good fit with a χ2 of 1.35 per data point.2

2 Nuclear Correction Factors

We now compare our iron PDFs with the free-proton PDFs (appropriately scaled) to infer the
proper heavy target correction which should be applied to relate these quantities. Within the

Extrapolations from  NuTeV

SLAC/NMC data

Q2 = 5 GeV2

Schienbein, Yu, Keppel, Morfin, Olness, Owens

No anti-shadowing in deep inelastic neutrino scattering !

Is Anti-Shadowing Quark Specific?



Is  Antishadowing in DIS  
Non-Universal, Flavor-Dependent?



Odderon  has never been observed!

p
p0

�⇤(q) ⇡0, ⌘, ⌘c, ⌘b

Look for Charge Asymmetries from Odderon-Pomeron 
Interference

Merino, Rathsman, 
sjb



Odderon-Pomeron Interference leads to  K+ K- , D+ D-  and  B+ B- !

charge and angular asymmetries

p
p0

�⇤(q)

p
p0

�⇤(q)
c

c̄

c

c̄
D+

D+

D�
D�

Strong enhancement at heavy-quark 
pair threshold from QCD Sakharov-

Schwinger-Sommerfeld effect

Odderon at amplitude level
⇡↵s(�2s)

�

Merino, Rathsman, 
sjb

Hoang, Kuhn,  
sjb
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 Hwang,  Schmidt, 
sjb

Light-Front Wavefunction   
S and P- Waves!

QCD S- and P- 
Coulomb Phases 

--Wilson Line !
“Lensing Effect”

i

Collins, Burkardt, Ji, Yuan. 
Xiao, Pasquini, ...

Leading-Twist 
Rescattering 
Violates pQCD 
Factorization!

Sign reversal in DY!

QED: 
Lensing 

involves soft 
scales
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DIS DY
Attractive, opposite-sign  
rescattering potential 

Repulsive, same-sign  
scattering potential 
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�⇤

�⇤

!
 	



Dae Sung Hwang, Yuri V. Kovchegov,	


Ivan Schmidt, Matthew D. Sievert, sjb



• Square of Target LFWFs                 Modified by Rescattering: ISI & FSI

• No Wilson Line                             Contains Wilson Line, Phases

• Probability Distributions                 No Probabilistic Interpretation

• Process-Independent                      Process-Dependent - From Collision

• T-even Observables                        T-Odd (Sivers, Boer-Mulders, etc.)

• No Shadowing,  Anti-Shadowing      Shadowing,  Anti-Shadowing, Saturation

• Sum Rules: Momentum and Jz               Sum Rules Not Proven

• DGLAP Evolution; mod. at large x   DGLAP Evolution

• No Diffractive DIS                         Hard Pomeron and Odderon Diffractive DIS

Static                           Dynamic

General remarks about orbital angular mo-
mentum
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Mulders, Boer

Qiu, Sterman

 Pasquini, Xiao,  
Yuan, sjb

Collins, Qiu

Hwang, Schmidt, 
sjb,

Liuti, sjb!

What is measured!



Need a First Approximation to QCD 
!

 Comparable in simplicity to "
Schrödinger Theory in Atomic Physics

Relativistic, Frame-Independent, Color-Confining



QCD Lagrangian

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]

Classical Chiral Lagrangian is Conformally Invariant  

Where does the QCD Mass Scale ΛQCD come from?  

How does color confinement arise?

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	


without affecting conformal invariance of action!

Unique confinement potential!
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Goal: An analytic first approximation to QCD
• As Simple as Schrödinger Theory in Atomic Physics 

• Relativistic, Frame-Independent, Color-Confining 

• Confinement in QCD -- What is the analytic form of the confining interaction?  

• What sets the QCD mass scale? 

• QCD Running Coupling at all scales 

• Hadron Spectroscopy-Regge Trajectories 

• Light-Front Wavefunctions 

• Form Factors, Structure Functions, Hadronic Observables 

• Constituent Counting Rules 

• Hadronization at the Amplitude Level 

• Insights into QCD Condensates 



HQED
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(H0 + Hint) |� >= E |� > Coupled Fock states

Effective two-particle equation

 Spherical Basis r, �,⇥

Coulomb  potential  

Includes Lamb Shift, quantum corrections

Bohr Spectrum

Veff ⇥ VC(r) = ��

r

QED atoms: positronium and 
muonium

Semiclassical first approximation to QED -->  

Eliminate higher Fock states              
and retarded interactions

LQED

Atomic Physics from First Principles



HQED

Coupled Fock states

Effective two-particle equation

 Azimuthal  Basis

Confining AdS/QCD  
potential!  
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QCD
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Light-Front QCD
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separation



Derivation of the Light-Front Radial Schrodinger Equation  directly from 
LF QCD
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U is the exact QCD potential  
Conjecture: ‘H’-diagrams generate U?

Light-Front Schrödinger Equation
�
� d2

d2�
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⇥
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We compute the three-loop corrections to the potential of two heavy quarks. In particular we
consider in this Letter the purely gluonic contribution which provides in combination with the
fermion corrections of Ref. [1] the complete answer at three loops.

PACS numbers: 12.38.Bx, 14.65.Dw, 14.65.Fy, 14.65.Ha

The potential between two heavy quarks constitutes a
fundamental quantity in Quantum Chromodynamics. It
enters in a variety of physical processes like the thresh-
old production of top quark pairs and the description of
charm and bottom quark bound states. Furthermore, it
is crucial for the understanding of fundamental quantities
of QCD, such as confinement. (See Ref. [2] for a recent
review.)
The idea to describe a bound state of heavy coloured

objects in analogy to the well-established hydrogen atom,
goes back to the middle of the 1970s [3]. Shortly after-
wards, about 30 years ago, one-loop radiative corrections
have been evaluated in the works [4, 5]. It took almost 20
years until the next order became available [6–8] which,
at that time, was a heroic enterprize. The two-loop cor-
rections turned out to be numerically quite important
which triggered several investigations to go beyond. End
of last year the fermionic corrections to the three-loop
static potential have been completed [1, 9, 10]. In this
Letter we report about the pure gluonic part which com-
pletes the three-loop corrections to the static potential.
We present our results for the static potential in mo-

mentum space where it takes the form

V (|q⃗ |) =

−
4πCFαs(|q⃗ |)

q⃗ 2

[

1 +
αs(|q⃗ |)

4π
a1 +

(

αs(|q⃗ |)

4π

)2

a2

+

(

αs(|q⃗ |)

4π

)3 (

a3 + 8π2C3
A ln

µ2

q⃗ 2

)

+ · · ·

]

. (1)

Here, CA = Nc and CF = (N2
c − 1)/(2Nc) are the eigen-

values of the quadratic Casimir operators of the adjoint
and fundamental representations of the SU(Nc) colour
gauge group, respectively, and αs denotes the strong cou-
pling in the MS scheme. The one- and two-loop coeffi-
cients a1 [4, 5] and a2 [6–8, 11] are given in Eq. (4) of
Ref. [1] where also the higher order terms in ϵ, necessary
for the three-loop calculation, are presented. In Eq. (1)
we identify the renormalization scale µ2 and the momen-
tum transfer q⃗ 2. The complete dependence on µ can
easily be restored with the help of Eq. (2) of Ref. [1].
A new feature of the three-loop corrections to V (|q⃗ |)

is the appearance of infrared divergences [12] which is

FIG. 1: Sample diagrams contributing to the static potential
at tree-level, one-, two- and three-loop order. Solid and curly
lines represent quarks and gluons, respectively. In the case of
closed loops the quarks are massless; the external quarks are
heavy and treated in the static limit.

represented by the ln(µ2/q⃗ 2) term in Eq. (1). It has
been evaluated for the first time in Refs. [13, 14] (see also
Ref. [15]); in Eq. (1) we adopt the MS scheme which has
been used in Ref. [14]. Let us mention that the infrared
divergence cancels in physical quantities after including
the contribution where so-called ultrasoft gluons inter-
act with the heavy quark anti-quark bound state. An
explicit result can, e.g., be found in Ref. [14] where the
cancellation has been demonstrated in order to arrive at
the measurable energy levels of the heavy-quark system.
We note in passing that higher order logarithmic contri-
butions to the infrared behaviour of the static potential
have been computed in Refs. [16, 17].

Before presenting our results for a3 let us provide some
technical details. We generate the four-point quark anti-
quark amplitudes with the help of QGRAF [18]. Some sam-
ple diagrams up to three-loop order are shown in Fig. 1.
In a next step they are processed further with q2e and
exp [19, 20] where a mapping to the diagrams of Fig. 2 is
achieved. The mapping to two-point functions is possi-
ble since the only dimenionful quantity in our problem is
given by the momentum transfer between the quark and
the anti-quark. Although there is only one mass scale
in our problem technical complications arise from the
simultaneous presence of static lines (zigzag lines) and
relativistic propagators (solid lines) which significantly
increases the complexity of the reduction to master in-
tegrals. For this task we employ the program package
FIRE [21] in order to achieve a reduction to about 100 ba-
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The potential between two heavy quarks constitutes a
fundamental quantity in Quantum Chromodynamics. It
enters in a variety of physical processes like the thresh-
old production of top quark pairs and the description of
charm and bottom quark bound states. Furthermore, it
is crucial for the understanding of fundamental quantities
of QCD, such as confinement. (See Ref. [2] for a recent
review.)
The idea to describe a bound state of heavy coloured

objects in analogy to the well-established hydrogen atom,
goes back to the middle of the 1970s [3]. Shortly after-
wards, about 30 years ago, one-loop radiative corrections
have been evaluated in the works [4, 5]. It took almost 20
years until the next order became available [6–8] which,
at that time, was a heroic enterprize. The two-loop cor-
rections turned out to be numerically quite important
which triggered several investigations to go beyond. End
of last year the fermionic corrections to the three-loop
static potential have been completed [1, 9, 10]. In this
Letter we report about the pure gluonic part which com-
pletes the three-loop corrections to the static potential.
We present our results for the static potential in mo-

mentum space where it takes the form
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Here, CA = Nc and CF = (N2
c − 1)/(2Nc) are the eigen-

values of the quadratic Casimir operators of the adjoint
and fundamental representations of the SU(Nc) colour
gauge group, respectively, and αs denotes the strong cou-
pling in the MS scheme. The one- and two-loop coeffi-
cients a1 [4, 5] and a2 [6–8, 11] are given in Eq. (4) of
Ref. [1] where also the higher order terms in ϵ, necessary
for the three-loop calculation, are presented. In Eq. (1)
we identify the renormalization scale µ2 and the momen-
tum transfer q⃗ 2. The complete dependence on µ can
easily be restored with the help of Eq. (2) of Ref. [1].
A new feature of the three-loop corrections to V (|q⃗ |)

is the appearance of infrared divergences [12] which is

FIG. 1: Sample diagrams contributing to the static potential
at tree-level, one-, two- and three-loop order. Solid and curly
lines represent quarks and gluons, respectively. In the case of
closed loops the quarks are massless; the external quarks are
heavy and treated in the static limit.

represented by the ln(µ2/q⃗ 2) term in Eq. (1). It has
been evaluated for the first time in Refs. [13, 14] (see also
Ref. [15]); in Eq. (1) we adopt the MS scheme which has
been used in Ref. [14]. Let us mention that the infrared
divergence cancels in physical quantities after including
the contribution where so-called ultrasoft gluons inter-
act with the heavy quark anti-quark bound state. An
explicit result can, e.g., be found in Ref. [14] where the
cancellation has been demonstrated in order to arrive at
the measurable energy levels of the heavy-quark system.
We note in passing that higher order logarithmic contri-
butions to the infrared behaviour of the static potential
have been computed in Refs. [16, 17].

Before presenting our results for a3 let us provide some
technical details. We generate the four-point quark anti-
quark amplitudes with the help of QGRAF [18]. Some sam-
ple diagrams up to three-loop order are shown in Fig. 1.
In a next step they are processed further with q2e and
exp [19, 20] where a mapping to the diagrams of Fig. 2 is
achieved. The mapping to two-point functions is possi-
ble since the only dimenionful quantity in our problem is
given by the momentum transfer between the quark and
the anti-quark. Although there is only one mass scale
in our problem technical complications arise from the
simultaneous presence of static lines (zigzag lines) and
relativistic propagators (solid lines) which significantly
increases the complexity of the reduction to master in-
tegrals. For this task we employ the program package
FIRE [21] in order to achieve a reduction to about 100 ba-
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The potential between two heavy quarks constitutes a
fundamental quantity in Quantum Chromodynamics. It
enters in a variety of physical processes like the thresh-
old production of top quark pairs and the description of
charm and bottom quark bound states. Furthermore, it
is crucial for the understanding of fundamental quantities
of QCD, such as confinement. (See Ref. [2] for a recent
review.)
The idea to describe a bound state of heavy coloured

objects in analogy to the well-established hydrogen atom,
goes back to the middle of the 1970s [3]. Shortly after-
wards, about 30 years ago, one-loop radiative corrections
have been evaluated in the works [4, 5]. It took almost 20
years until the next order became available [6–8] which,
at that time, was a heroic enterprize. The two-loop cor-
rections turned out to be numerically quite important
which triggered several investigations to go beyond. End
of last year the fermionic corrections to the three-loop
static potential have been completed [1, 9, 10]. In this
Letter we report about the pure gluonic part which com-
pletes the three-loop corrections to the static potential.
We present our results for the static potential in mo-

mentum space where it takes the form

V (|q⃗ |) =

−
4πCFαs(|q⃗ |)

q⃗ 2

[

1 +
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4π
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Here, CA = Nc and CF = (N2
c − 1)/(2Nc) are the eigen-

values of the quadratic Casimir operators of the adjoint
and fundamental representations of the SU(Nc) colour
gauge group, respectively, and αs denotes the strong cou-
pling in the MS scheme. The one- and two-loop coeffi-
cients a1 [4, 5] and a2 [6–8, 11] are given in Eq. (4) of
Ref. [1] where also the higher order terms in ϵ, necessary
for the three-loop calculation, are presented. In Eq. (1)
we identify the renormalization scale µ2 and the momen-
tum transfer q⃗ 2. The complete dependence on µ can
easily be restored with the help of Eq. (2) of Ref. [1].
A new feature of the three-loop corrections to V (|q⃗ |)

is the appearance of infrared divergences [12] which is

FIG. 1: Sample diagrams contributing to the static potential
at tree-level, one-, two- and three-loop order. Solid and curly
lines represent quarks and gluons, respectively. In the case of
closed loops the quarks are massless; the external quarks are
heavy and treated in the static limit.

represented by the ln(µ2/q⃗ 2) term in Eq. (1). It has
been evaluated for the first time in Refs. [13, 14] (see also
Ref. [15]); in Eq. (1) we adopt the MS scheme which has
been used in Ref. [14]. Let us mention that the infrared
divergence cancels in physical quantities after including
the contribution where so-called ultrasoft gluons inter-
act with the heavy quark anti-quark bound state. An
explicit result can, e.g., be found in Ref. [14] where the
cancellation has been demonstrated in order to arrive at
the measurable energy levels of the heavy-quark system.
We note in passing that higher order logarithmic contri-
butions to the infrared behaviour of the static potential
have been computed in Refs. [16, 17].

Before presenting our results for a3 let us provide some
technical details. We generate the four-point quark anti-
quark amplitudes with the help of QGRAF [18]. Some sam-
ple diagrams up to three-loop order are shown in Fig. 1.
In a next step they are processed further with q2e and
exp [19, 20] where a mapping to the diagrams of Fig. 2 is
achieved. The mapping to two-point functions is possi-
ble since the only dimenionful quantity in our problem is
given by the momentum transfer between the quark and
the anti-quark. Although there is only one mass scale
in our problem technical complications arise from the
simultaneous presence of static lines (zigzag lines) and
relativistic propagators (solid lines) which significantly
increases the complexity of the reduction to master in-
tegrals. For this task we employ the program package
FIRE [21] in order to achieve a reduction to about 100 ba-
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The idea to describe a bound state of heavy coloured

objects in analogy to the well-established hydrogen atom,
goes back to the middle of the 1970s [3]. Shortly after-
wards, about 30 years ago, one-loop radiative corrections
have been evaluated in the works [4, 5]. It took almost 20
years until the next order became available [6–8] which,
at that time, was a heroic enterprize. The two-loop cor-
rections turned out to be numerically quite important
which triggered several investigations to go beyond. End
of last year the fermionic corrections to the three-loop
static potential have been completed [1, 9, 10]. In this
Letter we report about the pure gluonic part which com-
pletes the three-loop corrections to the static potential.
We present our results for the static potential in mo-
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values of the quadratic Casimir operators of the adjoint
and fundamental representations of the SU(Nc) colour
gauge group, respectively, and αs denotes the strong cou-
pling in the MS scheme. The one- and two-loop coeffi-
cients a1 [4, 5] and a2 [6–8, 11] are given in Eq. (4) of
Ref. [1] where also the higher order terms in ϵ, necessary
for the three-loop calculation, are presented. In Eq. (1)
we identify the renormalization scale µ2 and the momen-
tum transfer q⃗ 2. The complete dependence on µ can
easily be restored with the help of Eq. (2) of Ref. [1].
A new feature of the three-loop corrections to V (|q⃗ |)

is the appearance of infrared divergences [12] which is

FIG. 1: Sample diagrams contributing to the static potential
at tree-level, one-, two- and three-loop order. Solid and curly
lines represent quarks and gluons, respectively. In the case of
closed loops the quarks are massless; the external quarks are
heavy and treated in the static limit.

represented by the ln(µ2/q⃗ 2) term in Eq. (1). It has
been evaluated for the first time in Refs. [13, 14] (see also
Ref. [15]); in Eq. (1) we adopt the MS scheme which has
been used in Ref. [14]. Let us mention that the infrared
divergence cancels in physical quantities after including
the contribution where so-called ultrasoft gluons inter-
act with the heavy quark anti-quark bound state. An
explicit result can, e.g., be found in Ref. [14] where the
cancellation has been demonstrated in order to arrive at
the measurable energy levels of the heavy-quark system.
We note in passing that higher order logarithmic contri-
butions to the infrared behaviour of the static potential
have been computed in Refs. [16, 17].

Before presenting our results for a3 let us provide some
technical details. We generate the four-point quark anti-
quark amplitudes with the help of QGRAF [18]. Some sam-
ple diagrams up to three-loop order are shown in Fig. 1.
In a next step they are processed further with q2e and
exp [19, 20] where a mapping to the diagrams of Fig. 2 is
achieved. The mapping to two-point functions is possi-
ble since the only dimenionful quantity in our problem is
given by the momentum transfer between the quark and
the anti-quark. Although there is only one mass scale
in our problem technical complications arise from the
simultaneous presence of static lines (zigzag lines) and
relativistic propagators (solid lines) which significantly
increases the complexity of the reduction to master in-
tegrals. For this task we employ the program package
FIRE [21] in order to achieve a reduction to about 100 ba-
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Heavy Quark Potential is IR Divergent in QCD

Summation of H graphs: confining potential
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Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7
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Applications of AdS/CFT  to QCD  
!!

in collaboration with Guy de Teramond and H. Guenter Dosch

Changes in !
physical!

length scale !
mapped to !

evolution in the !
5th dimension z 
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Light-Front Holography and Non-Perturbative QCD

Goal:   !
Use AdS/QCD duality to construct !

a first approximation to QCD

Hadron Spectrum   
Light-Front Wavefunctions, 

Form Factors, DVCS, etc

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

in collaboration with Guy de Teramond and H. Guenter Dosch



AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(�µ⇥dxµdx⇥ � dz2),

xµ ⇤ ⇥xµ, z ⇤ ⇥z, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 ⇤ ⇥2x2, z ⇤ ⇥z.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z ⇤ 0 correspond to theQ⇤⌅, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 11

invariant measure

AdS/CFT



!
Scattering Theory, AdS/QCD, and LF Quantization  Stan BrodskyReaction Theory Workshop!

University of Indiana       !
June 12, 2015

1 The Holographic Correspondence

• In the “ semi-classical” approximation to QCD with massless quarks and no quantum loops the �

function is zero, and the approximate theory is scale and conformal invariant.

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

ds2 =
R2

z2
(⇥µ⇥dxµdx⇥ � dz2).

• Semi-classical correspondence as a first approximation to QCD (strongly coupled at all scales).

• xµ ⇤ ⇤xµ, z ⇤ ⇤z, maps scale transformations into the holographic coordinate z.

• Different values of z correspond to different scales at which the hadron is examined: AdS boundary at

z ⇤ 0 corresponds to the Q⇤⌅, UV zero separation limit.

• There is a maximum separation of quarks and a maximum value of z at the IR boundary

• Truncated AdS/CFT (Hard-Wall) model: cut-off at z0 = 1/�QCD breaks conformal invariance and

allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).

• Smooth cutoff: introduction of a background dilaton field ⌅(z) – usual linear Regge dependence can

be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

Changes in 
physical

length scale 
mapped to 

evolution in the 
5th dimension z 



2 Bosonic Modes

• Conformal metric: ds2 = g⌅mdx⌅dxm. x⌅ = (xµ, z), g⌅m ⇤
�
R2/z2

⇥
�⌅m .

• Action for massive scalar modes on AdSd+1:

S[⇥] =
1
2

⌥
dd+1x

⇧
g 1

2

�
g⌅m⌃⌅⇥⌃m⇥� µ2⇥2

 
,
⇧

g ⇤ (R/z)d+1.

• Equation of motion
1
⇧

g

⌃

⌃x⌅

�⇧
g g⌅m ⌃

⌃xm
⇥
⇥

+ µ2⇥ = 0.

• Factor out dependence along xµ-coordinates , ⇥P (x, z) = e�iP ·x ⇥(z), PµPµ =M2 :
⇤
z2⌃2

z � (d� 1)z ⌃z + z2M2 � (µR)2
⌅
⇥(z) = 0.

• Solution: ⇥(z)⇤ z� as z ⇤ 0,

⇥(x, z) = Cz
d
2 J�� d

2
(zM) , � = 1

2

⇧
d +

⌦
d2 + 4µ2R2

⌃
.

• Normalization

Rd�1
⌥ ⇥�1

QCD

0

dz

zd�1
⇥2

S=0(z) = 1.

Bosonic Solutions:  Hard Wall Model

� = 2 + L (µR)2 = L2 � 4d = 4
�(z) = Czd/2J��d/2(zM)



!
Scattering Theory, AdS/QCD, and LF Quantization  Stan BrodskyReaction Theory Workshop!

University of Indiana       !
June 12, 2015

•Soft-wall dilaton profile breaks 
conformal invariance	



•Color Confinement	



•Introduces confinement scale	



•Uses AdS5 as template for conformal 
theory

e'(z) = e+2z2

Dilaton-Modified AdS/QCD



• Nonconformal metric dual to a confining gauge theory

ds2 =
R2

z2
e⇤(z)

�
�µ⇥dxµdx⇥ � dz2

⇥

where ⇤(z) ⇧ 0 at small z for geometries which are

asymptotically AdS5

• Gravitational potential energy for object of mass m

V = mc2�g00 = mc2R
e⇤(z)/2

z

• Consider warp factor exp(±⇥2z2)

• Plus solution: V (z) increases exponentially confining

any object in modified AdS metrics to distances ⌃z⌥ ⌅ 1/⇥

KITPC, Beijing, October 19, 2010 Page 9

Klebanov and Maldacena 

Introduce  “Dilaton" to simulate confinement analytically

Positive-sign dilaton • de Teramond, sjbe'(z) = e+2z2



• Obtain spin-J mode �µ1···µJ with all indices along 3+1 coordinates from � by shifting dimensions

�J(z) =
⇧ z

R

⌃�J
�(z)

• Substituting in the AdS scalar wave equation for �
⇤
z2⇧2

z �
�
3�2J � 2⇥2z2

⇥
z ⇧z + z2M2� (µR)2

⌅
�J = 0

• Upon substitution z⌅�

⌅J(�)⇤��3/2+Je⇥2�2/2 �J(�)

we find the LF wave equation

⌥
� d2

d�2
� 1� 4L2

4�2
+ ⇥4�2 + 2⇥2(L + S � 1)

�
⌅µ1···µJ =M2⌅µ1···µJ

with (µR)2 = �(2� J)2 + L2

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 18

General-Spin Hadrons
de Tèramond, Dosch, sjb

e'(z) = e+2z2



AdS Soft-Wall Schrodinger Equation for  
bound state  of  two scalar constituents:

Derived from variation of Action for Dilaton-Modified 
AdS5 

Identical to Light-Front Bound State Equation! 

U(z) = �4z2 + 2�2(L + S � 1)

• Dosch, de Teramond, sjbPositive-sign dilaton

⇥
� d2

dz2
� 1� 4L2

4z2
+ U(z)

⇤
�(z) =M2�(z)

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

e'(z) = e+2z2
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Fig: Orbital and radial AdS modes in the soft wall model for � = 0.6 GeV .

0

2

4

(G
eV

2 )

(a)

0 2 4
8-2007
8694A19

π (140)

b1 (1235)

π2 (1670)

L

(b)

0 2 4

π (140)

π (1300)

π (1800)

n

Light meson orbital (a) and radial (b) spectrum for � = 0.6 GeV.
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S = 0 S = 0

Soft Wall 
Model

Pion mass  
automatically zero!

mq = 0

Quark separation 
increases with L

Pion has 
zero mass!

Same slope in n and L!



⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

LF(3+1)                AdS5

Light-Front Holography: Unique mapping derived from equality of LF and 
AdS  formula for EM and gravitational current matrix elements and 

identical equations of motion

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb

(µR)2 = L2 � (J � 2)2

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Light-Front Holographic Dictionary



G. de Teramond, H. G. Dosch, sjb 

U(⇣2) = 4⇣2 + 22(J � 1)

z ! ⇣

Pion: Negative term  for J=0 cancels 
positive terms from LFKE and potential



Exploring QCD, Cambridge, August 20-24, 2007 Page 9

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1
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• Light Front Wavefunctions:                                   

AdS5:  Conformal Template for QCD

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Duality of AdS5 with LF 
Hamiltonian Theory

•Light-Front Holography

Light-Front Schrödinger Equation
Spectroscopy and Dynamics

with Guy de Teramond and 	


Hans Guenter Dosch



!
Scattering Theory, AdS/QCD, and LF Quantization  Stan BrodskyReaction Theory Workshop!

University of Indiana       !
June 12, 2015

Light-Front Holography  
AdS/QCD 

Soft-Wall  Model 

!
Conformal Symmetry 

of the action  

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Light-Front Schrödinger Equation

de Teramond, Dosch, sjb

Semi-Classical Approximation to QCD 
Relativistic, frame-independent 
Unique color-confining potential 

Zero mass pion for massless quarks 
Regge trajectories with equal slopes in n and L 

Light-Front Wavefunctions



Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

!
Preserves Conformal Symmetry 

of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique "
Confinement Potential!

!
de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	


without affecting conformal invariance of action!• Fubini, Rabinovici:

e'(z) = e+2z2
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Structure of the Vacuum in Light-Front Dynamics

• Results easily extended to light quarks masses (Ex: K-mesons)
[GdT, S. J. Brodsky and H. G.Dosch, arXiv:1405.2451 [hep-ph]]

• First order perturbation in the quark masses

�M2
= h |

X

a

m2
a

/x
a

| i

• Holographic LFWF with quark masses
[S. J. Brodsky and GdT, arXiv:0802.0514 [hep-ph]

 (x, ⇣) ⇠
p

x(1� x) e�
1
2�

�

m

2
q

x

+
m

2
q

1�x

�

e�
1
2� ⇣

2

• Ex: Description of diffractive vector meson production at HERA
[J. R. Forshaw and R. Sandapen, PRL 109, 081601 (2012)]

• For the K⇤

M2
n,L,S

= M2
K

± + 4�

✓

n +

J + L

2

◆

• Effective quark masses from reduction of higher Fock states as functionals of the valence state:

m
u

= m
d

= 46 MeV, m
s

= 357 MeV

Niccolò Cabeo 2014, Ferrara, May 20, 2012
Page 33

� ⌘ 2

De Teramond, Dosch, sjb
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Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7
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Prediction from AdS/QCD: Meson LFWF

�(x, k�)
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5

       “Soft Wall” 
model

�(x, k�)(GeV)

de Teramond, 
Cao, sjb⇥M(x, Q0) ⇥

�
x(1� x)

⇤M(x, k2
⇤)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

massless quarks

Note coupling  

k2
�, x

Provides Connection of Confinement to Hadron Structure

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

x

1� x

�⇡(x) =
4p
3⇡

f⇡

p
x(1� x)

f⇡ =
p

Pqq̄

p
3

8
 = 92.4 MeV Same as DSE!

e'(z) = e+2z



Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

!
Preserves Conformal Symmetry 

of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique "
Confinement Potential!

!
de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	


without affecting conformal invariance of action!• Fubini, Rabinovici:

e'(z) = e+2z2

Single scheme-independent 
fundamental mass scale 

mq = 0



!
Scattering Theory, AdS/QCD, and LF Quantization  Stan BrodskyReaction Theory Workshop!

University of Indiana       !
June 12, 2015 49

Some Features of AdS/QCD

• Regge spectroscopy—same slope in n,L for mesons,"

• Chiral features for mq=0: mπ =0, chiral-invariant proton"

• Hadronic LFWFs"

• Counting Rules"

• Connection between hadron masses and ⇤MS

Superconformal AdS Light-Front Holographic QCD (LFHQCD) 	



Meson-Baryon Mass Degeneracy for LM=LB+1
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• A first, semi-classical approximation to 
nonpertubative QCD$

• Hadron Spectroscopy and LF Dynamics$

• Color Confinement Potential$

• Running QCD Coupling α(Q2) at All Scales Q2$

• What sets the QCD Mass Scale?$

• Connection of Hadron Masses to 

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

AdS/QCD and Light-Front Holography

⇤MS
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M2(n,L, S) = 42(n + L + S/2)

Prediction from AdS/QCD

mu = md = 0
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Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7

42S=1/2, P=+ S=1/2, P=+

S=3/2, P=-

S=1/2, P=- S=1/2, 3/2



Structure of the Vacuum in Light-Front Dynamics

• Results easily extended to light quarks masses (Ex: K-mesons)
[GdT, S. J. Brodsky and H. G.Dosch, arXiv:1405.2451 [hep-ph]]

• First order perturbation in the quark masses

�M2
= h |

X

a

m2
a

/x
a

| i

• Holographic LFWF with quark masses
[S. J. Brodsky and GdT, arXiv:0802.0514 [hep-ph]

 (x, ⇣) ⇠
p

x(1� x) e�
1
2�

�

m

2
q

x

+
m

2
q

1�x

�

e�
1
2� ⇣

2

• Ex: Description of diffractive vector meson production at HERA
[J. R. Forshaw and R. Sandapen, PRL 109, 081601 (2012)]

• For the K⇤

M2
n,L,S

= M2
K

± + 4�

✓

n +

J + L

2

◆

• Effective quark masses from reduction of higher Fock states as functionals of the valence state:

m
u

= m
d

= 46 MeV, m
s

= 357 MeV

Niccolò Cabeo 2014, Ferrara, May 20, 2012
Page 33

De Tèramond, Dosch, sjb



Uniqueness

• ζ2 confinement potential and dilaton profile unique! 

• Linear Regge trajectories in n and L: same slope! 

• Massless pion in chiral limit!   No vacuum condensate! 

•  Conformally invariant action for massless quarks retained 

despite mass scale 

• Same principle, equation of motion as de Alfaro, Furlan, Fubini, 
Conformal Invariance in Quantum Mechanics Nuovo Cim. A34 (1976) 569 

de Tèramond, Dosch, sjb 

U(⇣) = 4⇣2 + 22(L + S � 1) e'(z) = e+2z2

http://inspirehep.net/record/108211


Uniqueness of Dilaton

pion is massless in chiral limit iff 
p=2!

p

m2
⇡/2

'p(z) = pzp

e'(z) = e+2z2

• Dosch, de Tèramond, sjb



Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

• Propagation of external perturbation suppressed inside AdS.

• At large enoughQ ⇤ r/R2, the interaction occurs in the large-r conformal region. Important

contribution to the FF integral from the boundary near z ⇤ 1/Q.

J(Q, z), �(z)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

z

• Consider a specific AdS mode ⇥(n) dual to an n partonic Fock state |n⇧. At small z, ⇥(n)

scales as ⇥(n) ⇤ z�n . Thus:

F (Q2) ⌅
�

1
Q2

⇥��1

,

where ⇥ = �n � �n, �n =
⇤n

i=1 �i. The twist is equal to the number of partons, ⇥ = n.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 22

Dimensional Quark Counting Rules:!
General result from !

AdS/CFT and Conformal Invariance

Hadron Form Factors from AdS/QCD 

Polchinski, Strassler 
de Teramond, sjb

J(Q, z) = zQK1(zQ)

�s(Q2)

⇥(Q2) = d�s(Q2)
d logQ2 � 0

�(Q2)� �
15⇤

Q2

m2

Q2 << 4m2

A

J(Q, z) �(z)

high Q2

D(z) ⇥ (1� z)2Nspect�1

zD(z) = F (x = 1/z)

zD(z)c⇤pX = Fp⇤cX(x = 1/z)

zi ⌅ m⇧i =
⇥

m2
i + k2

⇧

X = cūd̄ū

F (Q2)I⇤F =
� dz

z3�F (z)J(Q, z)�I(z)

High Q2 

from 


small z  ~ 1/Q

Twist ⌧ = n + L



Holographic Mapping of AdS Modes to QCD LFWFs

• Integrate Soper formula over angles:

F (q2) = 2⇥

⇧ 1

0
dx

(1� x)
x

⇧
�d�J0

⇥
�q

⌥
1� x

x

⇤
⇤̃(x, �),

with ⌃⇤(x, �) QCD effective transverse charge density.

• Transversality variable

� =
⌥

x

1� x

���
n�1⌅

j=1

xjb⇥j

���.

• Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

⇧ 1

0
dxJ0

⇥
�Q

⌥
1� x

x

⇤
= �QK1(�Q),

the solution for J(Q, �) = �QK1(�Q) !

Exploring QCD, Cambridge, August 20-24, 2007 Page 35

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

Drell-Yan-West: Form Factors are 
Convolution of LFWFs

Identical to Polchinski-Strassler Convolution of AdS Amplitudes

de Teramond, sjb



⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�
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z
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⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)
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z
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⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)
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� =
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x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

LF(3+1)                AdS5

Light-Front Holography: Unique mapping derived from equality of LF and 
AdS  formula for EM and gravitational current matrix elements and 

identical equations of motion

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u
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Current Matrix Elements in AdS Space (SW)

• Propagation of external current inside AdS space described by the AdS wave equation
⇤
z2⇧2

z � z
�
1 + 2�2z2

⇥
⇧z �Q2z2

⌅
J�(Q, z) = 0.

• Solution bulk-to-boundary propagator

J�(Q, z) = �
⇧

1 +
Q2

4�2

⌃
U

⇧
Q2

4�2
, 0, �2z2

⌃
,

where U(a, b, c) is the confluent hypergeometric function

�(a)U(a, b, z) =
⌥ ⇥

0
e�ztta�1(1 + t)b�a�1dt.

• Form factor in presence of the dilaton background ⇥ = �2z2

F (Q2) = R3
⌥

dz

z3
e��2z2

⇥(z)J�(Q, z)⇥(z).

• For large Q2 ⇤ 4�2

J�(Q, z)⌅ zQK1(zQ) = J(Q, z),

the external current decouples from the dilaton field.
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Dressed 
Current 

 in Soft-Wall 
Model

de Tèramond  & sjb 
Grigoryan and Radyushkin

e'(z) = e+2z



e+

e�
��

�+

��

Dressed soft-wall current brings in higher Fock 
states and more vector meson poles
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Timelike Pion Form Factor from AdS/QCD  
          and Light-Front Holography

s(GeV2)

F⇡(s) = (1� �) 1
(1� s
M2

⇢
) + � 1

(1� s
M2

⇢
)(1� s

M2
⇢0

)(1� s
M2

⇢00
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Prescription for 
Timelike poles :

1
s�M2 + i

p
s�

log |F⇡(s)|
� = 0.17

M2
⇢n

= 42(1/2 + n)

Frascati data 14% four-quark 
 probability
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Remarkable Features of  
Light-Front Schrödinger Equation

•Relativistic, frame-independent	



•QCD scale appears - unique LF potential	



•Reproduces spectroscopy and dynamics of light-quark hadrons with one 
parameter	



•Zero-mass pion for zero mass quarks!	



•Regge slope same for n and L  -- not usual HO	



•Splitting in L persists to high mass   -- contradicts conventional wisdom based 
on breakdown of chiral symmetry	



•Phenomenology: LFWFs, Form factors, electroproduction	



•Extension to heavy quarks

U(⇣) = 4⇣2 + 22(L + S � 1)



To Appear in Physics Reports
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Stanley J. Brodsky

SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA 3

Abstract

We construct an e↵ective QCD light-front Hamiltonian for both mesons and
baryons in the chiral limit based on the generalized supercharges of a superconfor-
mal graded algebra. The superconformal construction is shown to be equivalent
to a semi-classical approximation to light-front QCD and its embedding in AdS
space. The specific breaking of conformal invariance inside the graded algebra
uniquely determines the e↵ective confinement potential. The generalized super-
charges connect the baryon and meson spectra to each other in a remarkable
manner. In particular, the ⇡/b

1

Regge trajectory is identified as the superpartner
of the nucleon trajectory. However, the lowest-lying state on this trajectory, the
⇡-meson is massless in the chiral limit and has no supersymmetric partner since
it is annihilated by the supercharge, and thus breaks the supersymmetry.

1
h.g.dosch@thphys.uni-heidelberg.de

2
gdt@asterix.crnet.cr

3
sjbth@slac.stanford.edu



�
� @2

⇣ + 4⇣2 + 22(LB + 1) +
4L2

B � 1
4⇣2

�
 +

J = M2 +
J

Baryon Equation

Meson Equation

M2(n,LB) = 42(n + LB + 1)

�
� @2

⇣ + 4⇣2 + 22LB +
4(LB + 1)2 � 1

4⇣2

�
 �J = M2 �J

�
� @2

⇣ + 4⇣2 + 22(J � 1) +
4L2

M � 1
4⇣2

�
�J = M2�J

M2(n,LM ) = 42(n + LM ) Same κ!

Meson-Baryon Degeneracy for LM=LB+1

S=1/2, P=+

LF Holography

G22

G11

G11

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

both chiralities 
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Figure 2: Supersymmetric meson-nucleon partners: Mesons with S = 0 (red triangles) and
baryons with S = 1

2 (blue squares). The experimental values ofM2 are plotted vs LM = LB+1.

The solid line corresponds to
√
λ = 0.53 GeV. The π has no baryonic partner.

between λB and λM . Only confirmed PDG states are included [23].

4.2 The Mesonic Superpartners of the Delta Trajectory

The essential physics derived from the superconformal connection of nucleons and

mesons follows from the action of the fermion-number changing supercharge operator

Rλ. As we have discussed in the previous section, this operator transforms a baryon with

angular momentum LB into a superpartner meson with angular momentum LM = LB+1

(See Appendix B), a state with the identical eigenvalue – the hadronic mass squared.

We now check if this relation holds empirically for other baryon trajectories.

We first observe that baryons with positive parity and internal spin S = 3
2 , such as

the ∆
3

2

+

(1232), and baryons with with negative parity and internal spin S = 1
2 , such

as the ∆
1
2

−

(1620), lie on the same trajectory; this corresponds to the phenomenological

assignment ν = LB + 1
2 , given in Table 1. From (12) we obtain the spectrum 10

M2(+)

n,LB,S= 3
2

= M2(−)

n,LB,S= 1
2

= 4

(

n+ LB +
3

2

)

λB. (44)

10For the ∆-states this assignment agrees with the results of Ref. [24].

14

Superconformal AdS Light-Front Holographic QCD (LFHQCD): 	


Identical meson and baryon spectra!

Meson-Baryon !
Mass Degeneracy !

for LM=LB+1

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon
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Features of Supersymmetric Equations

• J =L+S baryon simultaneously satisfies both 
equations of G with L , L+1 for same mass 
eigenvalue!

• Jz =  Lz + 1/2 = (Lz + 1) - 1/2!

• Baryon spin carried by quark orbital angular 
momentum:  <Jz> =Lz+1/2!

• Mass-degenerate meson “superpartner” with 
LM=LB+1.! “Shifted  meson-baryon Duality”

Meson and baryon have same κ!

Sz = ±1/2

Counting Rules Obeyed



Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

⇤+(�)n,L = ⇥2+L

⌅
2n!

(n + L)!
�3/2+Le�⇥2�2/2LL+1

n

�
⇥2�2

⇥

⇤�(�)n,L = ⇥3+L 1⇤
n + L + 2

⌅
2n!

(n + L)!
�5/2+Le�⇥2�2/2LL+2

n

�
⇥2�2

⇥

• Normalization ⇤
d� ⇤2

+(�) =
⇤

d� ⇤2
�(�) = 1

• Eigenvalues

M2
n,L,S=1/2 = 4⇥2 (n + L + 1)

• “Chiral partners”
MN(1535)

MN(940)
=
⇤

2

LC 2011 2011, Dallas, May 23, 2011 Page 13

Chiral Symmetry 
of Eigenstate!



• Boost Invariant 

• Trivial LF vacuum! No condensates, but consistent with GMOR 

• Massless Pion 

• Hadron Eigenstates (even the pion) have LF Fock components of different Lz 

• Proton: equal probability 

!
• Self-Dual Massive Eigenstates: Proton is its own chiral partner. 

• Label State by minimum L as in Atomic Physics 

• Minimum L dominates at short distances                

• AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=0.

Chiral Features of Soft-Wall AdS/
QCD Model

Sz = +1/2, Lz = 0;Sz = �1/2, Lz = +1

Jz = +1/2 :< Lz >= 1/2, < Sz
q >= 0
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Some Features of AdS/QCD

• Regge spectroscopy—same slope in n,L for mesons,"

• Chiral features for mq=0: mπ =0, chiral-invariant 
proton"

• Hadronic LFWFs : Single dynamical LF radial 
variable  ζ"

• Counting Rules"

• Connection between hadron masses and ⇤MS

Superconformal AdS Light-Front Holographic QCD (LFHQCD) 	



Meson-Baryon Mass Degeneracy for LM=LB+1
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• Compute Dirac proton form factor using SU(6) flavor symmetry

F p
1 (Q2) = R4

⇧
dz

z4
V (Q, z)�2

+(z)

• Nucleon AdS wave function

�+(z) =
�2+L

R2

⌃
2n!

(n + L)!
z7/2+LLL+1

n

�
�2z2

⇥
e��2z2/2

• Normalization (F1
p(0) = 1, V (Q = 0, z) = 1)

R4

⇧
dz

z4
�2

+(z) = 1

• Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

V (Q, z) = �2z2

⇧ 1

0

dx

(1� x)2
x

Q2

42 e��2z2x/(1�x)

• Find

F p
1 (Q2) =

1⇤
1 + Q2

M2
⇢

⌅⇤
1 + Q2

M2
⇢0

⌅

withM⇥
2
n ⇤ 4�2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 20
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Using SU(6) flavor symmetry and normalization to static quantities
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Niccolò Cabeo 2012, Ferrara, May 25, 2011
Page 42
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0 1 2 3 4 5 6
0

0.5

1

1.5

2

Untitled-1 1

Spacelike Pauli Form Factor

F2(Q2)

Q2(GeV2)

JADE determination of �s(MZ)

M =
⇥

TH ⇥�⌅i

M ⇤ f(⇥CM)
QNtot�4

�
initial ⇤

H
i =

�
final ⇤

H
j

Harmonic Oscillator Confinement 
Normalized to anomalous moment

F p
2 (Q2)

� = 0.49 GeV

G. de Teramond, sjb 

From overlap of L = 1 and L = 0 LFWFs



Data from I. Aznauryan, et al. CLAS (2009)

IUSS, Ferrara, May 27, 2011 Page 31

Nucleon Transition Form Factors

• Compute spin non-flip EM transition N(940)⇥ N�(1440): �n=0,L=0
+ ⇥ �n=1,L=0

+

• Transition form factor

F1
p
N⇥N�(Q2) = R4

⇧
dz

z4
�n=1,L=0

+ (z)V (Q, z)�n=0,L=0
+ (z)

• Orthonormality of Laguerre functions
�
F1

p
N⇥N�(0) = 0, V (Q = 0, z) = 1

⇥

R4
⇧

dz

z4
�n⇥,L

+ (z)�n,L
+ (z) = �n,n⇥

• Find

F1
p
N⇥N�(Q2) =

2
⌅

2
3

Q2

M2
P⇤

1 + Q2

M2
�

⌅⇤
1 + Q2

M2
�⇥

⌅⇤
1 + Q2

M2

�
⇥⇥

⌅

withM�
2
n ⇥ 4⇥2(n + 1/2)

IUSS, Ferrara, May 27, 2011 Page 30

Nucleon Transition Form Factors

• Compute spin non-flip EM transition N(940)⇥ N�(1440): �n=0,L=0
+ ⇥ �n=1,L=0

+

• Transition form factor

F1
p
N⇥N�(Q2) = R4

⇧
dz

z4
�n=1,L=0

+ (z)V (Q, z)�n=0,L=0
+ (z)

• Orthonormality of Laguerre functions
�
F1

p
N⇥N�(0) = 0, V (Q = 0, z) = 1

⇥

R4
⇧

dz

z4
�n⇥,L

+ (z)�n,L
+ (z) = �n,n⇥

• Find

F1
p
N⇥N�(Q2) =

2
⌅

2
3

Q2

M2
P⇤

1 + Q2

M2
�

⌅⇤
1 + Q2

M2
�⇥

⌅⇤
1 + Q2

M2

�
⇥⇥

⌅

withM�
2
n ⇥ 4⇥2(n + 1/2)

IUSS, Ferrara, May 27, 2011 Page 30



Predictions from AdS Holographic QCD

• Zero-Mass pion for zero quark mass"

• Regge Spectroscopy"

• Same slope in n, L"

• LFWFs, Distribution Amplitudes"

• Form Factors, Structure Functions, GPDs"

• Non-perturbative running coupling"

• Meson-Baryon Supersymmetry for LM= LB+1

79

↵s(Q2) / e�
Q2

42

�⇡(x) / f⇡

p
x(1� x)

M2
⇡(n,L) = 42(n + L)

� = 2

Dosch, Deur, de Teramond, 
sjb



Interpretation of Mass Scale 
• Does not affect conformal symmetry of QCD action"

• Self-consistent regularization of IR divergences"

• Determines all mass and length scales for zero quark mass"

• Compute scheme-dependent           determined in terms of"

• Value of          itself not determined -- place holder"

• Need external constraint such as fπ"



⇤MS







QCD Lagrangian

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]

Classical Chiral Lagrangian is Conformally Invariant  

Where does the QCD Mass Scale ΛQCD come from?  

How does color confinement arise?

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	


without affecting conformal invariance of action!

Unique confinement potential!



G = uH + vD + wK

G| (⌧) >= i
@

@⌧
| (⌧) >

G = H⌧ =
1
2
�
� d2

dx2
+

g

x2
+

4uw � v2

4
x2

�

Retains conformal invariance of action despite mass scale! 

Identical to LF Hamiltonian with unique potential and dilaton! 

• de Alfaro, Fubini, Furlan

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

U(⇣) = 4⇣2 + 22(L + S � 1)

4uw � v2 = 4 = [M ]4

• Dosch, de Teramond, sjb

New term
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What determines the QCD mass scale ΛQCD? 

• Mass scale does not appear in the QCD Lagrangian (massless 
quarks)	



• Dimensional Transmutation? Requires external constraint 
such as 	



• dAFF: Confinement Scale κ appears spontaneously via the 
Hamiltonian:	



• The confinement scale regulates infrared divergences,  

connects  ΛQCD   to the confinement scale κ	



• Only dimensionless mass ratios (and M times R ) predicted	



• Mass and time units [GeV] and [sec] from physics external to 
QCD	



• New feature: bounded frame-independent relative time 

↵s(MZ)

G = uH + vD + wK 4uw � v2 = 4 = [M ]4
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fixed uniquely: it is, like the original Hamiltonian with unbroken dilatation symmetry,179

a constant of motion (2). This procedure breaks scale invariance by a redefinition of180

the fields and the time parameter (16). The Lagrangian, expressed in terms of the181

original fields Q(t) is unchanged up to a total derivative (2). The dAFF mechanism182

is reminiscent of spontaneous symmetry breaking, however, this is not the case since183

there are no degenerate vacua (14) and thus a massless scalar 0++ state is not required.184

The dAFF mechanism is also di↵erent from usual explicit breaking by just adding a185

term to the Lagrangian (15).186

In their discussion of the evolution operator H⌧ dAFF mention a critical point,187

namely that “the time evolution is quite di↵erent from a stationary one”. By this188

statement they refer to the fact that the variable ⌧ is related to the variable t by189

⌧ =
2p

4uw � v2
arctan

✓
2tw + vp
4uw � v2

◆
, (22)

i.e., ⌧ has only a finite range. Since q2(⌧) vanishes at the borders of this range (See190

(16)), the surface term in (18) vanishes also there. In our approach ⌧ = x+/P+
191

can be interpreted as the LF time di↵erence of the confined q and q̄ in the hadron,192

a quantity which is naturally of finite range and in principle could be measured in193

double-parton scattering processes. It is also interesting to notice that the conformal194

group in one dimension with generators Ht, K and D is locally isomorphic to the195

group SO(2, 1) and thus, a correspondence can be established between the SO(2, 1)196

group of conformal quantum mechanics and the AdS2 space with isometry group197

SO(2, 1) (16).198

Following the work of de Alfaro, Fubini and Furlan in Ref. (2), we have discussed199

in this letter an e↵ective theory which encodes the fundamental conformal symmetry200

of the QCD Lagrangian in the limit of massless quarks. It is an explicit model in201

which the confinement length scale appears in the light-front Hamiltonian from the202

breaking of dilatation invariance, without a↵ecting the conformal invariance of the203

action. In the context of the dual holographic model it shows that the form of the204

dilaton profile is unique, which leads by the mapping to the light-front Hamiltonian205

9

dAFF: New Time Variable

• Identify with difference of LF time Δx+/P+ 

between constituents 

• Finite range  

• Measure in Double-Parton Processes



Light-Front Holography  
AdS/QCD 

Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

!
Conformal Symmetry 

of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique "
Confinement Potential!

!
de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	


without affecting conformal invariance of action!
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Light-Front Holography  
AdS/QCD 

Soft-Wall  Model 

!
Conformal Symmetry 

of the action  

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Light-Front Schrödinger Equation

de Teramond, Dosch, sjb

Semi-Classical Approximation to QCD 
Relativistic, frame-independent 
Unique color-confining potential 

Zero mass pion for massless quarks 
Regge trajectories with equal slopes in n and L 

Light-Front Wavefunctions
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• Zero mass pion for mq =0  (n=J=L=0) 

• Regge trajectories: equal slope in n and L 

• Form Factors at high Q2: Dimensional counting 

• Space-like and Time-like Meson and Baryon 
Form Factors 

• Running Coupling for NPQCD 

• Meson Distribution Amplitude  

!
AdS/QCD and Light-Front Holography

[Q2
]

n�1
F (Q2

)! const

�⇡(x) / f⇡

p
x(1� x)

↵s(Q2) / e�
Q2

42

M2
n,J,L = 42

�
n +

J + L

2
�
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•Can be used as standard QCD coupling	



•Well measured	



•Asymptotic freedom at large Q2	



•Computable at large Q2 in any pQCD 
scheme	



•Universal  β0,  β1   

Bjorken sum rule defines effective charge ↵g1(Q2)
Z 1

0
dx[gep

1 (x,Q

2)� g

en
1 (x,Q

2)] ⌘ ga

6
[1� ↵g1(Q2)

⇡

]

�AdS
s (Q)/⇥ = e�Q2/4�2

Grunberg Deur,  de Teramond, sjb



Running Coupling from Light-Front Holography and AdS/QCD

�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb

 = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point

Q (GeV)

�
s(Q

)/�

�g1/� (pQCD)
�g1/� world data

��/� OPAL

AdS
Modified AdS

Lattice QCD (2004) (2007)
�g1/� Hall A/CLAS
�g1/� JLab CLAS

�F3/�GDH limit

0

0.2

0.4

0.6

0.8

1

10 -1 1 10

Sublimated gluons below 1 GeVAdS/QCD dilaton captures the higher twist corrections to  effective charges for Q < 1 GeV

e' = e+2z2



5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD

Deur,  de Teramond, sjb



Perturbative QCD

Holographic QCD

(asymptotic freedom)

Q0

Non−perturbative

0

0.2

0.4

0.6

0.8

1

10
-1

1 10

Q (GeV)

α
g
1
(Q

)/
π

Transition scale 
Q0

Perturbative QCD!
(Asymptotic Freedom)

↵s
g1

(Q2)
⇡

Nonperturbative QCD !
(Quark Confinement)

All-Scale QCD Coupling

Q2
0 = 1.08± 0.17 GeV 2

e�
Q2

42

Deur, de Tèramond, sjbm⇢ =
p

2

mp = 2

� ⌘ 2

⇤MS = 0.341± 0.024 GeV

⇤MS = 0.339± 0.016 GeV

Expt:

Connect npQCD to pQCD!
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Tests of AdS/QCD and LF Holography 
at JLab 12 GeV

• Compare Spacelike-Transition Form Factors, 
Counting Rules 

!

• Supersymmetric QCD Relations: Spectra, Dynamics 

• Baryons: q + diquark: 

• Pentaquarks: diquark-antidiquark?:

[q]3C [qq]3̄C

F⇡!b1(Q2) Fp!N⇤(Q2)

[qq]3̄C [q̄q̄]3C

vs.
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New Directions: AdS/QCD and LF Holography
• Hadronization at Amplitude Level:                    

Calculate Fragmentation Functions from 
LFWFs  

• Higher-Fock States of Proton: Intrinsic Heavy 
Quarks; s(x) vs. s(x) asymmetry 

• Hidden Color of Deuteron 

• Predict Spectrum of Tetraquarks, Exotic 
Hadrons 
pA! Jet [Jet Jet] A0 ! pA! Jet Jet Jet A0
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[ūc̄]3C [uc]3̄C diquarks
1/10/2015 NeoFronteras » Confirman Z(4430) - Portada -

http://neofronteras.com/?p=4405 2/11

Los quarks tienen además de carga eléctrica una carga distinta que se ha llamado carga de color y que
puede ser roja, verde o azul (es una analogía, obviamente no tienen color real), con sus correspondientes
anticolores. Combinando quarks se consiguen partículas con carga de color neutra. Los leptones son
partículas de spin semientero, en concreto son el electrón, el muón y el tau con sus correspondientes
neutrinos asociados.
Además de todo ello, hay partículas de spin entero (bosones) que son los portadores de las fuerzas. Los
quarks y leptones interaccionan intercambiando bosones virtuales de fuerza, partículas que no tienen
consistencia real. Un electrón se ve atraído por otro porque se intercambian fotones virtuales (los bosones
de la fuerza electromagnética).

Esquema del modelo estándar. Foto: Fermilab.

Para crear un protón se necesitan tres quaks, dos quark up y uno down que se mantienen unidos gracias a que intercambian unos bosones
virtuales denominados gluones que son los portadores de la fuerza nuclear fuerte.
Los conjuntos de quarks, como el protón, se denominan hadrones. Los hadrones de dos quarks son los mesones (color y anticolor) y los de
tres (tres colores que dan neutro) se llaman bariones. Así que Z(4430) es un hadrón.
La cromodinámica cuántica predice la existencia de hadrones exóticos, además de los bariones y mesones conocidos, esta teoría de campos
predice la existencia de tetraquarks (dos colores y sus correspondientes anticolores), pentaquarks (tres colores y un color y anticolor),
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Four-Quark Hadrons: an Updated Review	


A. ESPOSITOA, L. GUERRIERI, F. PICCININI, A. PILLONI and A.  POLOSA	



arXiv:1411.5997v2 
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Table 3. Summary of quarkonium-like states. For charged states, the C-parity is given for the neutral members of
the corresponding isotriplets.

State M (MeV) � (MeV) JPC Process (mode) Experiment (#�)

X(3823) 3823.1± 1.9 < 24 ??� B ! K(�c1�) Belle23 (4.0)

X(3872) 3871.68± 0.17 < 1.2 1++ B ! K(⇡+⇡�J/ ) Belle24,25 (>10), BABAR26 (8.6)

pp̄ ! (⇡+⇡�J/ ) ... CDF27,28 (11.6), D029 (5.2)

pp ! (⇡+⇡�J/ ) ... LHCb30,31 (np)

B ! K(⇡+⇡�⇡0J/ ) Belle32 (4.3), BABAR33 (4.0)

B ! K(� J/ ) Belle34 (5.5), BABAR35 (3.5)

LHCb36 (> 10)

B ! K(�  (2S)) BABAR35 (3.6), Belle34 (0.2)

LHCb36 (4.4)

B ! K(DD̄⇤) Belle37 (6.4), BABAR38 (4.9)

Zc(3900)+ 3888.7± 3.4 35± 7 1+� Y (4260) ! ⇡�(DD̄⇤)+ BES III39 (np)

Y (4260) ! ⇡�(⇡+J/ ) BES III40 (8), Belle41 (5.2)

CLEO data42 (>5)

Zc(4020)+ 4023.9± 2.4 10± 6 1+� Y (4260) ! ⇡�(⇡+hc) BES III43 (8.9)

Y (4260) ! ⇡�(D⇤D̄⇤)+ BES III44 (10)

Y (3915) 3918.4± 1.9 20± 5 0++ B ! K(!J/ ) Belle45 (8), BABAR33,46 (19)

e+e� ! e+e�(!J/ ) Belle47 (7.7), BABAR48 (7.6)

Z(3930) 3927.2± 2.6 24± 6 2++ e+e� ! e+e�(DD̄) Belle49 (5.3), BABAR50 (5.8)

X(3940) 3942+9

�8

37+27

�17

??+ e+e� ! J/ (DD̄⇤) Belle51,52 (6)

Y (4008) 3891± 42 255± 42 1�� e+e� ! (⇡+⇡�J/ ) Belle41,53 (7.4)

Z(4050)+ 4051+24

�43

82+51

�55

??+ B̄0 ! K�(⇡+�c1) Belle54 (5.0), BABAR55 (1.1)

Y (4140) 4145.6± 3.6 14.3± 5.9 ??+ B+ ! K+(�J/ ) CDF56,57 (5.0), Belle58 (1.9),

LHCb59 (1.4), CMS60 (>5)

D?61 (3.1)

X(4160) 4156+29

�25

139+113

�65

??+ e+e� ! J/ (D⇤D̄⇤) Belle52 (5.5)

Z(4200)+ 4196+35

�30

370+99

�110

1+� B̄0 ! K�(⇡+J/ ) Belle62 (7.2)
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Fig. 16. Distributions of M
max

(J/ ⇡±), i.e. the larger one of the two M(J/ ⇡±) in each event,
according to BES III40 (left) and Belle41 (right) in the Y (4260) ! J/ ⇡+⇡� decay. The red
solid curve is the result of the fit, the blue dotted curve is the background component, the green
histogram shows the normalized J/ sideband events.

Since some theoretical papers82 cast doubts on the resonant nature of the peak,
in this analysis the complex value of the Z(4430) amplitude has been plotted as
a function of M( (2S)⇡) (Fig. 15). The behaviour is compatible with the Breit-
Wigner prediction with the fitted values of mass and width. The same analysis also
shows hints for a Z(4200) peak with quantum numbers likely JP = 0�, mass and
width M = (4239±18+45

�10

)MeV, � = (220±47+108

�74

)MeV; however, since the Argand
diagram is not conclusive about its resonant nature, LHCb has decided not to claim
the discovery of another state.

Recently, Belle published a similar analysis of the B ! J/ ⇡K decays.62 Hints of
a Z(4430) have been reported in M(J/ ⇡) invariant mass, with branching fraction

B �
B0 ! K+Z(4430)�

�⇥ B �
Z(4430)� ! J/ ⇡�� =

�
5.4+4.0

�1.0
+1.1
�0.6

�⇥ 10�6. (39)

The fact that the Z(4430) is found in di↵erent decay channels gives solidity to its
existence. In the same analysis, Belle claimed the discovery of a broad Z(4200) state
with quantum numbers likely JP = 1+, mass and width M = (4196+31

�29

+17

�13

)MeV,
� = (370+70

�70

+70

�132

)MeV, with a significance of 6.2�, possibly related to the LHCb
hint. The reported branching fraction is

B �
B0 ! K+Z(4200)�

�⇥ B �
Z(4200)� ! J/ ⇡�� =

�
2.2+0.7

�0.5
+1.1
�0.6

�⇥ 10�5. (40)

3.2. Charged states in the 3900-4300MeV region

In March 2013, BES III40 and Belle41 claimed the discovery of a charged resonance
in the channel J/ ⇡+ at a mass of about 3900MeV, i.e. slightly above the DD⇤

threshold (Fig. 16). BES III takes data at the Y (4260) pole, and analyzes the
process e+e� ! Y (4260) ! J/ ⇡+⇡�; Belle instead produces Y (4260) in addition
with initial state radiation (ISR), and analyzes the process e+e� ! Y (4260)�

ISR

!

Surprising Result: 
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product branching fractions

B �
B0 ! K+Z(4430)�

�⇥ B �
Z(4430)� !  (2S)⇡�� = (4.1± 1.0± 1.4)⇥ 10�5.

(35)
BABAR reviewed this analysis,75 by studying in detail the e�ciency corrections

and the shape of the background, relying for the latter on data as much as pos-
sible. Hints of a structure near 4430MeV appeared, even though not statistically
significant, thus leading to a 95% C.L. upper limit on the production branching
fraction

B(B0 ! K+Z(4430)�)⇥ B(Z(4430)� !  (2S)⇡�) < 3.1⇥ 10�5. (36)

After that, Belle revised the analysis73 studying in detail the 3-body Dalitz plot,
and adding all known K⇡ resonances, both with and without a coherent amplitude
for the Z(4430) in the  (2S)⇡� channel. Belle confirmed the presence of a peak
with a statistical significance of 6.4�. The Breit-Wigner parameter from the Dalitz
analysis are M = (4443+15

�12

+19

�13

)MeV and � = (109+86

�43

+74

�56

)MeV. A more recent 4D
re-analysis by Belle74 shows that the JP = 1+ hypothesis is favored, modifying
mass and width values to M = 4485+22+28

�22�11

MeV and � = 200+41+26

�46�35

MeV (Fig. 14).
The production branching fraction is instead

B �
B0 ! K+Z(4430)�

�⇥B �
Z(4430)� !  (2S)⇡�� =

�
6.0+1.7

�2.0
+2.5
�1.4

�⇥ 10�5. (37)

LHCb confirmed this last result with a similar 4D analysis of the same decay
channel. The Z(4430)+ is confirmed with a significance of 13.9� at least, and the
fitted mass and width are M = (4475 ± 7+15

�25

)MeV and � = (172 ± 13+37

�34

)MeV.
Also the JP = 1+ signature is confirmed with high significance. The average à la

PDG of Belle’s and LHCb’s mass and width are:

M = (4478± 17)MeV, � = (180± 31)MeV. (38)
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Fig. 15. Invariant mass distributions in  (2S)⇡� channel (left) and resonant behaviour (right)
according to LHCb.76 In the left panel, the red solid (brown dashed) curve shows the fit with
(without) the additional Z(4430) resonance. In the right panel, the complex value of the Z(4430)
fitted amplitude for six bins of M( (2S)⇡) is shown. The red curve is the prediction from the
Breit-Wigner formula with a resonance mass (width) of 4475 (172)MeV.

Belle, BaBar:

Dominance of large size  0
(2S) vs. J/ decays



Diquark Anti-diquark Model"
!

Lebed, Hwang, sjb

Dominance of  overlap with large-size Ψ’ vs J/Ψ decays 

Formation of charmonium  at large separation:

d̄
u

c

c̄

Z+
c ⇡+

[c̄c]nS

Z+
c ([cu]3̄C [c̄d̄]3C)! ⇡+ 0

3̄C

3C



JLab 12 GeV: An Exotic Charm Factory!

�⇤p! J/ + p threshold

at

p
s ' 4 GeV, E�⇤

lab ' 7.5 GeV.

�⇤d! J/ + d threshold

at

p
s ' 5 GeV, E�⇤

lab ' 6 GeV.

Produce [J/ + p] bound state

|uudcc̄ >

Produce [J/ + d] nuclear-bound quarkonium state

|uuddducc̄ > octoquark!

pentaquark

�⇤p! X(3872) + p0

tetraquark|cc̄qq̄ >



Tetraquark Production at Threshold

p

�⇤
c̄

c

u
d

p

X(3872)

u
-u u

�⇤p! X(3872) + p0

|cc̄qq̄ >

|cc̄uū >

E�
lab > 11.9 GeV

Diquark-Diquark "
vs Molecular State?"
!
New approach "
to hadronic decays

Lebed, Hwang, sjbDominance of Ψ’ vs J/Ψ decays 



Open Charm Production at Threshold

n

�⇤

⇤c

c̄

c
u

d

u

D0

n

D

[⇤cn]

�⇤d! D
0(c̄u)[⇤cn](cududd)

Possible charmed B= 2 nucleus 

Nuclear binding at low relative velocity



Open Charm Production at Threshold

n�⇤

⇤c

c̄

c
u

d

u

D

Create pentaquark on deuteron at low relative velocity

[D̄0n]
D̄0

�⇤d! ⇤c + [D0(c̄u)n](c̄uudd)



Octoquark Production at Threshold

�⇤ c̄

c

D

�⇤D ! |uuduudcc̄ >

Explains Krisch Effect!

M
octoquark

⇠ 5 GeV



P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

CF

p

q2
? = Q2 = �q2

d
c
c̄

u

Light-Front Wavefunctions and Heavy-Quark Electroproduction

q+ = 0

�⇤(q)

`
`0

Z+
c (cc̄ud̄)u

d

d̄

Coalescence of comovers at threshold produces

Z+
c tetraquark resonance

|uudcc̄dd̄i

Produce Charged Tetraquarks at JLab!

�⇤p! Z+
c n



|p,Sz>= ∑
n=3

ψn(xi, ~k?i,λi)|n;k?i,λi>|p,Sz>= ∑
n=3

Ψn(xi,~k?i,λi)|n;~k?i,λi>

|p,Sz>= ∑
n=3

Ψn(xi,~k?i,λi)|n;~k?i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,~k?i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n

∑
i
k+
i = P+,

n

∑
i
xi = 1,

n

∑
i

~k?i =~0?.

sum over states with n=3, 4, ...constituents

Fixed LF time
Intrinsic heavy quarks    s̄(x) ⇤= s(x)

⇥M(x, Q0) ⇥
�

x(1� x)

⇤M(x, k2
⌅)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ep⇥ e�+n

P�/p ⇤ 30%

Violation of Gottfried sum rule

ū(x) ⌅= d̄(x)

Does not produce (C = �) J/⇥,�

Produces (C = �) J/⇥,�

Same IC mechanism explains A2/3

s(x), c(x), b(x) at high x !
Hidden ColorMueller:  gluon Fock states     BFKL 

Pomeron



! E866/NuSea (Drell-Yan)

Intrinsic glue, sea, 
heavy quarks

d̄(x) �= ū(x)



• Non-symmetric strange and antistrange sea? 

• Non-perturbative physics; e.g  

• Important for interpreting NuTeV anomaly 

|uudss̄ >' |�(uds)K+(s̄u) >

k2
F /

�k2
?

1�x

⇤(Q2, Q2
0) = 1

4⌅

R Q2

Q2
0

d�2 �s(�2)
�2

⇤(Q2, Q2
0) = 1

4⌅

R Q2

Q2
0

d�2 �s(�2)

�2+
k2?
1�x

⇥p! J/⇧p

⇥d! J/⇧np

s

s̄

|uudss̄ >' |�(uds)K+(s̄u) >

ep ! e0KX

k2
F /

�k2
?

1�x

⇥(Q2, Q2
0) = 1

4⇤

R Q2

Q2
0

d⌦2 �s(⌦2)
⌦2

s

s̄

|uudss̄ >' |�(uds)K+(s̄u) >

ep ! e0KX

k2
F /

�k2
?

1�x

⇥(Q2, Q2
0) = 1

4⇤

R Q2

Q2
0

d⌦2 �s(⌦2)
⌦2

Measure strangeness distribution  
in Semi-Inclusive DIS at JLab

Is s(x) = s̄(x)?

Tag struck quark flavor in semi-inclusive DIS ep! e0K+X

B. Q. Ma, sjb



Do heavy quarks exist in the proton at high x?"
!

Conventional wisdom: impossible!"
!

Standard Assumption: Heavy quarks are generated "
via DGLAP evolution "
from gluon splitting

!
Conventional wisdom is wrong even in QED!

s(x, µ

2
F ) = c(x, µ

2
F ) = b(x, µ

2
F ) ⌘ 0

at starting scale µ2
F



p p

Probability (QED) � 1
M4

�

Probability (QCD) � 1
M2

Q

Proton Self Energy from g g to gg  scattering   
QCD predicts Intrinsic Heavy Quarks!

Collins, Ellis, Gunion, Mueller, sjb 
M. Polyakov, et al. 

 

xQ � (m2
Q + k2

�)1/2

Q

Q

G3
µ⌫

M2
Q

F 4
µ⌫

M2
`



p p

Probability (QED) � 1
M4

�

Probability (QCD) � 1
M2

Q

Proton 5-quark Fock State : 
Intrinsic Heavy Quarks

Collins, Ellis, Gunion, Mueller, sjb 
M. Polyakov 

 

Fixed LF time

xQ � (m2
Q + k2

�)1/2

Q

Q

QCD predicts  
Intrinsic Heavy 

Quarks at high x!

Minimal off-
shellness



J. J. Aubert et al. [European Muon Collaboration], “Pro-
duction Of Charmed Particles In 250-Gev Mu+ - Iron In-
teractions,” Nucl. Phys. B 213, 31 (1983).

First Evidence for 
Intrinsic Charm

Measurement of Charm 
Structure  Function 

DGLAP / Photon-Gluon Fusion: factor of 30 too small

factor of 30 !

Two Components (separate evolution):
c(x,Q

2) = c(x, Q

2)
extrinsic

+ c(x, Q

2)
intrinsic

gluon splitting 
(DGLAP)



!
Scattering Theory, AdS/QCD, and LF Quantization  Stan BrodskyReaction Theory Workshop!

University of Indiana       !
June 12, 2015

Leading Hadron Production 
from Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks
Produce J/ψ, Λc and other Charm Hadrons at High xF

PX X

Spectator counting rules 
dN

dxF
/ (1� xF )2nspect�1



Barger, Halzen, Keung

Evidence for charm at large x

intrinsic charm



⇤c(cud)

(1� xF )p
, p = ns � 1

p(uudcc̄)
ns = 2

Phase space alone 
gives minimum power 

p=1

Maximum fraction  
of projectile momentum  

carried by charm quarks!



• EMC data: c(x, Q2) > 30�DGLAP
Q2 = 75 GeV2, x = 0.42

• High xF pp⇤ J/�X

• High xF pp⇤ J/�J/�X

• High xF pp⇤ �cX

• High xF pp⇤ �bX

• High xF pp⇤ ⇥(ccd)X (SELEX)

Critical Measurements at threshold for JLab, PANDA
Interesting spin, charge asymmetry, threshold, spectator effects

Important corrections to B decays; Quarkonium decays

Gardner, Karliner, sjb



Production of Two Charmonia at 
High xF

X

pp� p + J/� + p

pp� p + H + p

Also:

c

c̄

< xF >= 0.33

Minimize LF energy denominator

pp� p + J/� + p

pp� p + H + p

Also:

c

c̄

< xF >= 0.33

Minimize LF energy denominator

pp� p + J/� + p

pp� p + H + p

Also:

c

c̄

< xF >= 0.33

Minimize LF energy denominator

pp� p + J/� + p

pp� p + H + p

Also:

c

c̄

< xF >= 0.33

Minimize LF energy denominator

X

NA3: All events at high xF = xψ +  xψ !
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Fig. 3. The fi# pair distributions are shown in (a) and (c) for the 

pion and proton projectiles. Similarly, the distributions of J/$‘s 

from the pairs are shown in (b) and (d). Our calculations are 

compared with the n-N data at 150 and 280 GeV/c [ I]. The 

x++, distributions are normalized to the number of pairs from both 

pion beams (a) and the number of pairs from the 400 GeV proton 

measurement (c) The number of single J/e’s is twice the number 

of pairs. 

x+ = ~it,/pt,~a~ in Fig. 3. The +$ pair distributions 

are shown in Fig. 3(a) and 3(c) and the associated 

the single J/I) distributions in pair events are shown 

in Fig. 3(b) and 3(d) . Both are normalized to the 

data with the single J/r/ normalization twice that of 

the pair. 

4. Other tests of the intrinsic heavy quark 

mechanism 

The intrinsic charm model provides a natural expla- 

nation of double J/e hadroproduction and thus gives 

strong phenomenological support for the presence of 

intrinsic heavy quark states in hadrons. While the gen- 

eral agreement with the intrinsic charm model is quite 

good, the excess events at medium xlfi~l suggests that 

intrinsic charm may not be the only @$ QCD produc- 

tion mechanism present or that the model parameteri- 

zation with a constant vertex function is too oversim- 

plified. The x,++,+ distributions can also be affected by 

the A dependence. Additional mechanisms, including 

an update of previous models [ 3-71, will be presented 

in a separate paper [ 81. 

The intrinsic heavy quark model can also be used to 

predict the features of heavier quarkonium hadropro- 

duction, such as YY, Y$, and (6~) (Eb) pairs. Using 

fib = 4.6 GeV, we find that the single Y and YY pair 

x distributions are similar to the equivalent I,& distri- 

butions. The average mass, (MYY), is 21.4 GeV for 

pion projectiles and 21.7 GeV for a proton, a few GeV 

above threshold, 2my = 18.9 GeV. The xy@ pair distri- 

butions are also similar to the +@ distributions but we 

note that (xy) = 0.44 and (xe) = 0.30 from a l&fcCbb) 

configuration and (xy) = 0.39 and (x$) = 0.27 from 

a luudc&) configuration. Here (MY@) = 14.9 GeV 

with a pion projectile and 15.2 GeV with a proton, 

again a few GeV above threshold, my + rn+ = 12.6 

GeV. 

It is clearly important for the double J/+ measure- 

ments to be repeated with higher statistics and also at 

higher energies. The same intrinsic Fock states will 

also lead to the production of multi-charmed baryons 

in the proton fragmentation region. It is also interesting 

to study the correlations of the heavy quarkonium pairs 

to search for possible new four-quark bound states and 

final state interactions generated by multiple gluon ex- 

change [ 71. It has been suggested that such QCD Van 

der Waals interactions could be anomalously strong at 

low relative rapidity [ 22,231. 

There are many ways in which the intrinsic heavy 

quark content of light hadrons can be tested. More 

measurements of the charm and bottom structure func- 

tions at large XF are needed to confirm the EMC data 

[ 151. Charm production in the proton fragmentation 

region in deep inelastic lepton-proton scattering is sen- 

sitive to the hidden charm in the proton wavefunction. 

The presence of intrinsic heavy quarks in the hadron 

wavefunction also enhances heavy flavor production 

in hadronic interactions near threshold. More gener- 

ally, the intrinsic heavy quark model leads to enhanced 

open and hidden heavy quark production and leading 

particle correlations at high XF in hadron collisions 

with a distinctive strongly-shadowed nuclear depen- 

dence characteristic of soft hadronic collisions. 
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[ 121. For soft interactions at momentum scale CL, the 

intrinsic heavy quark cross section is suppressed by a 

resolving factor cc &2/m; [ 131. 

There is substantial circumstantial evidence for the 

existence of intrinsic CL! states in light hadrons. For ex- 

ample, the charm structure function of the proton mea- 

sured by EMC is significantly larger than predicted by 

photon-gluon fusion at large XBj [ 151. Leading charm 

production in TN and hyperon-N collisions also re- 

quires a charm source beyond leading twist [ 13,161. 

The NA3 experiment has also shown that the single 

J/$ cross section at large XF is greater than expected 

from gg and q?j production [ 171. Additionally, intrin- 

sic charm may account for the anomalous longitudi- 

nal polarization of the J/+4 at large XF [ 181 seen in 

?rN -+ J/+X interactions. 

Over a sufficiently short time, the pion can contain 

Fock states of arbitrary complexity. For example, two 

intrinsic CC pairs may appear simultaneously in the 

quantum fluctuations of the projectile wavefunction 

and then, freed in an energetic interaction, coalesce 

to form a pair of I,!J’s. We shall estimate the creation 
-- 

probability of ~~vcccc) Fock states, where nv = &I for 

7~- and nv = uud for proton projectiles, assuming that 

all of the double J/I,~ events arise from these configu- 

rations. We then examine the x+$ and invariant mass 

distributions of the $$ pairs and the x,,+ distribution 

for the single $‘s arising from these Fock states. 

2. Intrinsic charm Fock states 

The probability distribution for a general n-particle 

intrinsic CC Fock state as a function of x and kr is 

written as 

(1) 

where N,, normalizes the Fock state probability. In 

the model, the vertex function in the intrinsic charm 

wavefunction is assumed to be relatively slowly vary- 

ing; the particle distributions are then controlled by the 

light-cone energy denominator and phase space. This 

form for the higher Fock wavefunctions generalizes 

for an arbitrary number of light and heavy quark com- 

ponents. The Fock states containing charmed quarks 

can be materialized by a soft collision in the target 

which brings the state on shell. The distribution of 

produced open and hidden charm states will reflect the 

underlying shape of the Fock state wavefunction. 

The invariant mass of a c.? pair, M,, from such a 

Fock state is 

(2) 

where n = 4 and 5 is the number of partons in the 

lowest lying meson and baryon intrinsic CC Fock states. 

The probability to produce a J/(/I from an intrinsic 

CT state is proportional to the fraction of intrinsic ci? 

production below the Or, threshold. The fraction of 

CC pairs with 2m, < MC? < 2rno is 

The ratio fc~jr is approximately 15% larger than fc~iP 

for 1.2 < m, < 1.8 GeV. However, not all c?‘s pro- 

duced below the DB threshold will produce a final- 

state J/S. We include two suppression factors to es- 

timate J/q5 production, one reflecting the number of 

quarkonium channels available with McT < 2rno and 

one for the c and C to coalesce with each other rather 

than combine with valence quarks to produce open 

charm states. The “channel” suppression factor, s, z 

0.3, is estimated from direct and indirect J/$ produc- 

tion, including x1 and xz radiative and +’ hadronic 

decays. The combinatoric “flavor” suppression factor, 

of, is l/2 for a IEdcC) state and l/4 for a IuudcC) 

state. In Fig. 1 we show the predicted fraction of $‘s 

produced from intrinsic CC pairs, 

f@lh = s,sf.fE/h ) (4) 

as a function of m,. We take m, = I .5 GeV, suggesting 

f ur  M 0.03 and f e j p M 0.014. 

NA3 Data

πA! J/ψJ/ψX

µ2
R = CQ2

⌅(Q2) = C0 + C1�s(µR) + C2�2
s(µR) + · · ·

⇧ = 1
2x�P+

⇥p⌅ µ+µ�p

Oberwölz

All events have xF
⌃⌃ > 0.4 !

⇧(pp⌅ cX) ⇤ 1µb

Excludes PYTHIA 
‘color drag’ model

R, Vogt, sjb 
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insensitive to 
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Signal for 
significant IC  

at x > 0.1 

Measurement of !þ bþ X and !þ cþ X Production Cross Sections
in p !p Collisions at

ffiffiffi
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p ¼ 1:96 TeV
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Intrinsic Charm Mechanism for Inclusive  
High-XF Higgs Production

H

Higgs can have 80% of Proton Momentum!

Also: intrinsic bottom, top

pp� HXp

p

c
c̄

g

New search strategy for Higgs
AFTER: Higgs production at threshold!



Figure 3: The cross section of inclusive Higgs production in fb, coming

from the nonperturbative intrinsic bottom distribution, at both LHC

(
√

s = 14 TeV, solid curve) and Tevatron (
√

s = 2 TeV, dashed curve)

energies.

that the cross section for inclusive Higgs production from intrinsic bottom is much

higher than the one coming from intrinsic charm. Although it is true that the Higgs-

quark coupling, proportional to mQ, cancels in the cross section with PIQ ∝ 1/m2
Q,

the matrix element between IQ and Higgs wave functions has an additional mQ factor.

This is because the Higgs wave function is very narrow and the overlap of the two

wave functions results in ΨQQ(0) ∝ mQ. Thus, the cross section rises as m2
Q, as we

see in the results.

We can compare our predictions for inclusive Higgs production coming from

IB with our previous ansatz for the Higgs production gluon-gluon fusion process

xdN/dx = 6(1 − x)5. At the maximum (xF = 0.9) of the IB curve we get a value of

roughly 50 fb, while there gluon-gluon gives 0.067 fb. Thus this high-xF region is the

ideal place to look for Higgs production coming from intrinsic heavy quarks.

We obtain essentially the same curves for Tevatron energies (
√

s = 2 TeV) , al-

though the rates are reduced by a factor of approximately 3.

We also show in Fig.4 the results for Higgs production coming from the perturba-

tive charm distribution. The magnitude of the production cross section is considerably

12

⌅ = t + z/c

d⇤
dxF

(pp ⇥ HX)[fb]

fb

⇥q ⇥ ��q

��

⇥

p
Goldhaber, Kopeliovich, 

Schmidt, Soffer, sjb

LHC :
�

s = 14TeV

Tevatron :
�

s = 2TeV

Need High xF Acceptance
Most practical: Higgs to  2 or 4 muons 



Charm at Threshold

• Intrinsic charm Fock state puts 80% of the proton 
momentum into the electroproduction process"

• 1/velocity enhancement from FSI"

• CLEO data for quarkonium production at threshold"

• Krisch effect shows  B=2 resonance"

• all particles produced at small relative rapidity--
resonance production"

• Many exotic hidden and open charm resonances will 
be produced at JLab (12 GeV)
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• Anti-Shadowing is Universal 

• ISI and FSI are higher twist effects and universal 

• High transverse momentum hadrons arise only from jet 
fragmentation  -- baryon anomaly! 

• Heavy quarks only from gluon splitting 

• Renormalization scale cannot be fixed 

• QCD condensates are vacuum effects 

• QCD gives 1042 to the cosmological constant 

QCD Myths



Electron-Electron Scattering in QED

t u

This is very important!

This is very important!

This is very important!

This is very important!

↵(t) =

↵(0)

1�⇧(t)

↵(t) =

↵(t
0

)

1�⇧(t,t
0

)

Gell-Mann--Low Effective Charge
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limNC ⇥ 0 at fixed � = CF�s, n⌥ = nF/CF

e+e� ⇥ p⇤ p

QCD ⇥ Abelian Gauge Theory

limNC ⇥ 0 at fixed � = CF�s, n⌥ = nF/CF

e+e� ⇥ p⇤ p

Huet, sjb

Analytic Feature of SU(Nc) Gauge Theory

Scale-Setting procedure for QCD  
must be applicable to QED

125

CF =
N2

C � 1
2NC



Xing-Gang Wu, Matin Mojaza "
Leonardo  di Giustino, SJB

Shift scale of αs to µPMC
R to eliminate {βR

i }− terms

Conformal Series

Choose renormalization scheme; e.g. αR
s (µ

init
R )

Choose µinit
R ; arbitrary initial renormalization scale

Identify {βR
i }− terms using nf − terms

through the PMC −BLM correspondence principle

Result is independent of µinit
R and scheme at fixed order

No renormalization scale ambiguity! 
!

Result is independent of  
Renormalization scheme  

and initial scale! 
!

QED Scale Setting at NC=0 
!
!

Eliminates unnecessary  
systematic uncertainty

PMC/BLM

Set multiple renormalization scales -- 	


Lensing, DGLAP, ERBL Evolution ...

δ-Scheme automatically             
identifies β-terms!

Scale fixed at each order

Principle of Maximum Conformality

using δ-scheme dependence
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Independent of the initial renormalization scale

Obeys renormalization group properties;
renormalization scheme- and scale-invariance, transitivity, etc...

The argument of the running coupling is the ‘final scale’ that resums all non-
conformal terms; a function of scheme and renormalization scale

{ci}

a(τ, {ci})

A

B

C

D

E F

Resummed perturbative QED = dressed 
skeleton expansion; 

the perturbative coefficients are those of the 
would-be conformal theory

Let’s give this lesson a name so we don’t forget:
The Principal of Maximum Conformality

and Stanford Linear Accelerator Center, Stanford Unioersity, Stanford, California 94305*

G. Peter Lepage
Institute for Aduanced Study, Princeton, New Jersey 08540

and Laboratory ofNuclear Studies, Cornell Unioersity, Ithaca, New York I4853*

Paul B.Mackenzie
Fermilab, Batavia, Illinois 6D51D
(Received 23 November 1982)

We present a new method for resolving the scheme-scale ambiguity that has plagued perturbative
analyses in quantum chromodynamics (QCD) and other gauge theories. For aphelian theories the
method reduces to the standard criterion that only vacuum-polarization insertions contribute to the
effective coupling constant. Given a scheme, our procedure automatically determines the coupling-
constant scale appropriate to a particular process. This leads to a new criterion for the convergence
of perturbative expansions in QCD. We examine a number of well known reactions in QCD, and
find that perturbation theory converges well for all processes other than the gluonic width of the Y.
Our analysis calls into question recent determinations of the QCD coupling constant based upon Y
decay.

I. INTRODUCTION the for orthopositronium is much

On some possible extensions 
of the Brodsky-Lepage-Mackenzie approach 
beyond the next-to-leading order 
G. Grunberg  
Centre de Physique Theorique, Ecole Polytechnique, F-91128 Palaiseau, France 

and 

A.L. Kataev 1 
Randall Laboratory of Physics, University of Michigan. Ann Arbor, M148109-1120, USA 

Received 20 May 1991; revised manuscript received 20 January 1992 

Noting that the choice of  renormalization point advocated by Brodsky, Lepage and Mackenzie ( BLM ) is the flavor independent 
prescription which removes all f-dependence from the next-to-leading order coefficients, we consider the possible generalization 
which requires all higher order coefficients ri to be f-independent constants r,*. We point out that in QCD, setting ri= r,* is always 
possible, but leaves us with an ambiguous prescription. We consider an alternative possibility within the framework of  the BLM 
approach and apply the corresponding prescription to the next-to-next-to-leading approximation of trtot(e+e - ~hadrons)  in QCD. 
The analogous questions and the special features of the BLM and effective charge approaches in QED are also discussed. 

PHYSICAL REVIEW D VOLUME 51, NUMBER 7 1 APRIL

Commensurate scale relations in quantum chromodynamics

Stanley J. Brodsky
Stanford Linear Accelerator Center, Stanford University, Stanford, California 9)909

Hung Jung Lu*
Department of Physics, University of Maryland, College Park, Maryland 20742

(Received 4 May 1994)

We use the BLM method to relate perturbatively calculable observables in +CD, including the
annihilation ratio R +, , the heavy quark potential, and radiative corrections to structure function
sum rules. The commensurate scale relations connecting the effective charges for observables A and
B have the forin cry(Qq) = nor(Qg) (1+regis —P + ), where the coefficient rqg~ is independent
of the number of ffavors f contributing to coupling constant renormalization. The ratio of scales
Qz/Qir is unique at leading order and guarantees that the observables A and B pass through new
quark thresholds at the same physical scale. We also show that the commensurate scales satisfy the
renormalization group transitivity rule which ensures that predictions in PQCD are independent of
the choice of an intermediate renormalization scheme C. In particular, scale-Axed predictions can
be made without reference to theoretically constructed renormalization schemes such as MS. +CD
can thus be tested in a new and precise way by checking that the observables track both in their
relative normalization and in their commensurate scale dependence. The generalization of the BLM
procedure to higher order assigns a different renormalization scale for each order in the perturbative
series. The scales are determined by a systematic resummation of running coupling constant effects.
The application of this procedure to relate known physical observables in +CD gives rather simple
results. In particular, we find that up to light-by-light-type corrections all terms involving (s,
and m in the relation between the annihilation ratio R + and the Bjorken sum rule for polarized
electroproduction are automatically absorbed into the renormalization scales. The final series has

Scale setting using the extended renormalization group and the principle of maximum
conformality: The QCD coupling constant at four loops

Stanley J. Brodsky1,* and Xing-Gang Wu1,2,†

1SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
2Department of Physics, Chongqing University, Chongqing 401331, China

(Received 30 November 2011; published 22 February 2012)

A key problem in making precise perturbative QCD predictions is to set the proper renormalization

scale of the running coupling. The extended renormalization group equations, which express the

invariance of the physical observables under both the renormalization scale- and scheme-parameter

transformations, provide a convenient way for estimating the scale- and scheme-dependence of the

physical process. In this paper, we present a solution for the scale equation of the extended renormal-

ization group equations at the four-loop level. Using the principle of maximum conformality (PMC)/

Brodsky-Lepage-Mackenzie (BLM) scale-setting method, all nonconformal f!ig terms in the perturbative

expansion series can be summed into the running coupling, and the resulting scale-fixed predictions are

independent of the renormalization scheme. The PMC/BLM scales can be fixed order-by-order. As a

useful reference, we present a systematic and scheme-independent procedure for setting PMC/BLM scales

up to next-to-next-to-leading order. An explicit application for determining the scale setting of Reþe"ðQÞ
up to four loops is presented. By using the world average "MS

s ðMZÞ ¼ 0:1184& 0:0007, we obtain the

asymptotic scale for the ’t Hooft scheme associated with the MS scheme, !0tH
MS

¼ 245þ9
"10 MeV, and the

asymptotic scale for the conventional MS scheme, ! ¼ 213þ19 MeV.

PHYSICAL REVIEW D 85, 034038 (2012)

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

The renormalization scale-setting problem in QCD
Xing-Gang Wua,⇤, Stanley J. Brodskyb, Matin Mojazab,c

Department of Physics, Chongqing University, Chongqing 401331, PR China
SLAC National Accelerator Laboratory, Stanford University, CA 94039, USA
CP3-Origins, Danish Institute for Advanced Studies, University of Southern Denmark, DK-5230, Denmark

a r t i c l e i n f o

Keywords:
Renormalization group
Renormalization scale
BLM/PMC
QCD

a b s t r a c t

A key problem in making precise perturbative QCD predictions is to set the proper renor-
malization scale of the running coupling. The conventional scale-setting procedure assigns
an arbitrary range and an arbitrary systematic error to fixed-order pQCD predictions. In
fact, this ad hoc procedure gives results which depend on the choice of the renormaliza-
tion scheme, and it is in conflict with the standard scale-setting procedure used in QED.
Predictions for physical results should be independent of the choice of the scheme or other
theoretical conventions. We review current ideas and points of view on how to deal with
the renormalization scale ambiguity and show how to obtain renormalization scheme-
and scale-independent estimates.We begin by introducing the renormalization group (RG)
equation and an extended version, which expresses the invariance of physical observ-
ables under both the renormalization scheme and scale-parameter transformations. The
RG equation provides a convenient way for estimating the scheme- and scale-dependence

Review of past
30 years development

Systematic All-Orders Method to Eliminate Renormalization-Scale and
Scheme Ambiguities in Perturbative QCD

Matin Mojaza*

CP3-Origins, Danish Institute for Advanced Studies, University of Southern Denmark, DK-5230 Odense, Denmark
and SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

Stanley J. Brodsky†

SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

Xing-Gang Wu‡

Department of Physics, Chongqing University, Chongqing 401331, People’s Republic of China
(Received 13 January 2013; published 10 May 2013)

We introduce a generalization of the conventional renormalization schemes used in dimensional

regularization, which illuminates the renormalization scheme and scale ambiguities of perturbative

QCD predictions, exposes the general pattern of nonconformal f!ig terms, and reveals a special

degeneracy of the terms in the perturbative coefficients. It allows us to systematically determine the

argument of the running coupling order by order in perturbative QCD in a form which can be readily

automatized. The new method satisfies all of the principles of the renormalization group and eliminates an

unnecessary source of systematic error.
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In dim. reg.         poles come in powers of [Bollini & Gambiagi, ‘t Hooft & Veltman, ’72] 1/✏

2

subtracted in addition to the standard subtraction
ln 4⇡ � �E of the MS-scheme. The �-subtraction defines
an infinite set of renormalization schemes which we call
�-Renormalization (R�) schemes; since physical results
cannot depend on the choice of scheme, predictions must
be independent of �. The R�-scheme exposes the gen-
eral pattern of nonconformal {�i}-terms, and it reveals a
special degeneracy of the terms in the perturbative coef-
ficients which allows us to resum the perturbative series.
The resummed series matches the conformal series, which
is itself free of any scheme and scale ambiguities as well
as being free of a divergent renormalon series. It is the
final expression one should use for physical predictions.
It also makes it possible to setup an algorithm for au-
tomatically computing the conformal series and setting
the e↵ective scales for the coupling at each perturbative
order.

II. THE �-RENORMALIZATION SCHEME

In dimensional regularization logarithmically divergent
integrals are regularized by computing them in d = 4�2✏
dimensions [25–28]. This requires the following transfor-
mation of the integration measure and introduction of an
arbitrary mass scale µ:

Z

d4p ! µ2✏

Z

d4�2✏p . (1)

Divergences are then separated as 1/✏ poles and can be
absorbed into redefinitions of the couplings. The choice
of subtraction procedure is known as the renormalization

scheme and is chosen at the theorist’s convenience. To
avoid dealing with coupling constants changing dimen-
sionality as a function of ✏ one rescales the the couplings
as well with the mass scale µ in the d = 4� 2✏ theory. In
particular, for QCD one rewrites the bare gauge coupling
a0 = ↵0/4⇡ = g2/(4⇡)2 as:

a0 = µ2✏ZaSaS , (2)

where aS is the renormalized gauge coupling under a spe-
cific renormalization scheme S and ZaS is the renormal-
ization constant of the coupling. The mass scale µ is
now understood as the renormalization scale. The bare
coupling must be independent of the arbitrary scale µ,
thus

µ2 da0
dµ2

= 0. (3)

Using this and the expansions

µ2 daS
dµ2

= �✏aS + �(aS) , (4)

�(a) = �a2
1
X

i=0

�ia
i , (5)

Za = 1 +
1
X

i=1

zia
i , (6)

it is easily derived that:

Za =1� �0
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12✏3
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5�2�0

6✏2
+

3�2
1

8✏2
� �3

4✏

◆

a4 + · · ·

and the �i coe�cients are known up to �3, or four loops
[29]. The coe�cients �i are renormalization-scheme de-
pendent; however, it is easy to demonstrate by a general
scheme-transformation that the first two coe�cients �0

and �1 are universal for all mass-independent renormal-
ization schemes.
In the minimal subtraction (MS) scheme [30] one ab-

sorbs the 1/✏ poles appearing in loop integrals which
come in powers of

ln
µ2
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✏
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where c is the finite part of the integral. Since anything
can be hidden into infinity, one can subtract any finite
part as well with the pole. This is equivalent to redefin-
ing the arbitrary scale µ in Eq.(1). The MS-scheme [31]
di↵ers from the MS-scheme by an additional absorption
of the term ln(4⇡)� �E , which corresponds to redefining
µ to:

µ2 = µ2
MS

exp(ln 4⇡ � �E) . (9)

We will generalize this by defining the
�-Renormalization scheme, R�, where one absorbs
ln(4⇡)� �E � �, i.e.

µ2 = µ2
� exp(ln 4⇡ � �E � �) , (10)

where � is an arbitrary finite number, and by appropriate
choice will connect all MS-type schemes. In particular1:

R0 = MS , (11)

Rln 4⇡��E = MS . (12)

The scheme-transformation between di↵erent R� cor-
responds simply to a displacement in their corresponding
scales, i.e.
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�2 = µ2

�1 exp(�2 � �1) . (13)

In particular:

µ2
� = µ2

MS
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Note that we have chosen MS as the reference scheme for R0.

This is done since most results today are known in this scheme;

however there is nothing special about MS, and R0 can be rede-

fined to be any other MS-scheme

In the modified minimal subtraction scheme (MS-bar) one subtracts together 
with the pole a constant [Bardeen, Buras, Duke, Muta (1978) on DIS results]:  
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an infinite set of renormalization schemes which we call
�-Renormalization (R�) schemes; since physical results
cannot depend on the choice of scheme, predictions must
be independent of �. The R�-scheme exposes the gen-
eral pattern of nonconformal {�i}-terms, and it reveals a
special degeneracy of the terms in the perturbative coef-
ficients which allows us to resum the perturbative series.
The resummed series matches the conformal series, which
is itself free of any scheme and scale ambiguities as well
as being free of a divergent renormalon series. It is the
final expression one should use for physical predictions.
It also makes it possible to setup an algorithm for au-
tomatically computing the conformal series and setting
the e↵ective scales for the coupling at each perturbative
order.
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can be hidden into infinity, one can subtract any finite
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Exposing the Renormalization Scheme Dependence
Observable in the      -scheme:

⇢�(Q
2) =r0 + r1a(µ) + [r2 + �0r1�]a(µ)

2 + [r3 + �1r1� + 2�0r2� + �2
0r1�

2]a(µ)3 + · · ·

R0 = MS , Rln 4⇡��E = MS µ2
= µ2

MS
exp(ln 4⇡ � �E) , µ2

�2 = µ2
�1 exp(�2 � �1)

Note the divergent ‘renormalon series’ n!�n↵n
s

⇢�(Q
2) =r0 + r1a1(µ1) + (r2 + �0r1�1)a2(µ2)

2 + [r3 + �1r1�1 + 2�0r2�2 + �2
0r1�

2
1 ]a3(µ3)

3

The �pka
n
-term indicates the term associated to a diagram with 1/✏n�k

di-

vergence for any p. Grouping the di↵erent �k-terms, one recovers in the Nc ! 0

Abelian limit the dressed skeleton expansion.

R�

Exercise: 
Use the scale displacement relation to derive these expressions

Renormalization Scheme Equation
d⇢

d�
= ��(a)

d⇢

da
!
= 0 �! PMC



The Renormalization Scale Ambiguity for Top-Pair Production 	


Eliminated Using the ‘Principle of Maximum Conformality’ (PMC)

Xing-Gang Wu  
 SJB

Conventional guess for renormalization scale  
and range

Experimental  
asymmetry

PMC Prediction

Top quark forward-backward asymmetry predicted by pQCD NNLO 
within 1 σ of CDF/D0 measurements using PMC/BLM scale setting 



Reanalysis of the Higher Order Perturbative QCD corrections to Hadronic Z Decays	


using the Principle of Maximum Conformality

S-Q Wang, X-G Wu, sjb P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn, and J. Rittinger,!
Phys. Rev. Lett. 108, 222003 (2012).!



[1 + �R(s⇥)
⇥ ][1� �g1(q

2)
⇥ ] = 1

⌅
s⇥ ⇤ 0.52Q

[1 + �R(s⇥)
⇥ ][1� �g1(q

2)
⇥ ] = 1

⌅
s⇥ ⇤ 0.52Q

Generalized Crewther Relation"

Conformal relation true to all orders in 
perturbation theory 

No radiative corrections to axial anomaly 
Nonconformal terms set relative scales (BLM)#

No renormalization scale ambiguity!

Lu, Kataev, Gabadadze, Sjb

Both observables go through new quark thresholds 
at commensurate scales!



Principle of Maximum Conformality (PMC)

• Sets pQCD renormalization scale correctly at every finite 
order 

• Predictions are scheme-independent 

• Satisfies all principles of the renormalization group 

• Agrees with Gell Mann-Low procedure for pQED in Abelian 
limit 

• Shifts all β terms into αs,  leaving conformal series 

• Automatic procedure: Rδ scheme 

• Number of flavors nf set 
Xing-Gang Wu, Matin Mojaza  

Leonardo di Giustino, SJB
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• Although we know the QCD Lagrangian, we have 
just begun to understand its remarkable 
properties.   "

• Novel Phenomena: Color Confinement, Color 
Transparency, Intrinsic Heavy Quarks, Hidden 
Color, Tetraquarks, Octoquarks, Nuclear Bound 
Quarkonium…"

•“Truth is stranger than fiction, 
because fiction is obliged to stick to 
possibilities” — Mark Twain

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f



Valparaiso, Chile  May 19-20, 2011 
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June 12, 2015

2015 International Summer Workshop on Reaction Theory!

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

General remarks about orbital angular mo-
mentum
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i
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Scattering Theory and Light-Front QCD
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AdS/QCD : Light-Front Holography

ABOUT THE SCHOOL

The 2015 International Summer Workshop is dedicated to
theory and phenomenology of scattering theory and its
application to data analysis of modern experiments in strong
interactions physics. As a new frontier in particle and
nuclear physics has opened up with advances in
experimental, theoretical and computational techniques
there is new demand for a qualitatively new level of
sophistication in data analysis never before achieved. These
require deep knowledge of the methods in relativistic
scattering theory. For at least two decades scattering theory
has essentially disappeared from the physics curriculum and
generations of physicists have been educated without this
basic knowledge. Few have working experience with topics

related to the analysis of relativistic reactions that involve aspects of Regge phenomenology, crossing relations and duality, analytic
continuations, dispersion relations, etc., and the phenomenological application of all these concepts.

The Workshop will consist of daily lectures from faculty in the morning, followed
by lab sessions devoted to practical implementation of reaction amplitudes in data
fitting using AmpTools and ROOT. There will also be opportunities for
participants to present their current research. The Workshop is dedicated in
memory of Tullio Regge who passed away on October 23, 2014. He discovered
the role of complex angular momentum singularities. Named after him, Regge
poles and cuts, determine asymptotic behavior of relativistic scattering amplitudes,
and the discovery led to the most successful phenomenology of high energy
collisions.
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