Scattering Theory and Light-Front QCD

$$
\begin{gathered}
\text { Fixed } \tau=t+z / c \\
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
\end{gathered}
$$

x

AdS/QCD : Light-Front Holography

2015 International Summer Workshop on Reaction ${ }^{1.5}$ Theory

June 11, 2015
ЏT indiana university Jefferson Lab
Thomas Jefferson National Accelerator Facility

Regge Theory Revisited

The Workshop is dedicated in memory of Tullio Regge who passed away on October 23, 2014.

He discovered the role of complex angular momentum singularities. Named after him, Regge poles and cuts, determine asymptotic behavior of relativistic scattering amplitudes, and the discovery led to the most successful phenomenology of high energy collisions.

$$
m_{u}=m_{d}=0
$$

Scattering School University of Indiana June 11, 2015

Scattering Theory and LF Quantization
Stan Brodsky

Need a First Approximation to QCD

$$
\begin{gathered}
\text { Comparable in simplicity to } \\
\text { Schrödinger Theory in Atomic Physics }
\end{gathered}
$$

Relativistic, Frame-Independent, Color-Confining

AdS/QCD
Soft-Wall Model

Semi-Classical Approximation to QCD

 Relativistic, frame-independent Unique color-confining potential Zero mass pion for massless quarks Regge trajectories with equal slopes in n and LLight-Front Wavefunctions

Light-Front Schrödinger Equation
Conformal symmetry of the action

Scattering School
University of Indiana June 11, 2015

Scattering Theory and LF Quantization
Stan Brodsky

$$
A d S / Q C D
$$

Soft-Wall Model

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Unique

Confinement Potential!
Preserves Conformal Symmetry of the action

Confinement scale:

$$
\kappa \simeq 0.6 \mathrm{GeV}
$$

$$
1 / \kappa \simeq 1 / 3 \mathrm{fm}
$$

de Alfaro, Fubini, Furlan:
Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

- Regge spectroscopy-same slope in n,Lfor mesons, baryons
- Chiral features for $m_{q}=0: m_{\pi}=0$, chiral-invariant proton
- Hadronic Frame-IndependentWavefunctions
- Counting Rulesfor fall-off in momentum transfer
- Connection between badron masses and $\Lambda_{\overline{M S}}$

Superconformal AdS Light-Front Holographic QCD:
Meson-Baryon Mass Degeneracy for $L_{M}=L_{B}+1$

Scattering School
University of Indiana June 11, 2015

Scattering Theory and LF Quantization

Stan Brodsky

Superconformal Algebra

Superconformal AdS Light-Front Holographic QCD (LFHQCD): Identical meson and baryon spectra!

$S=0, I=\mid$ Meson is "superpartner" of $S=|/ 2, I=|$ Baryon

Dosch, de Teramond, sjb

Reggeon Exchange in the t-channel

$\mathcal{M}_{R} \sim s^{\alpha_{R}(t)} F_{R}(t) \frac{1}{2}\left[e^{-i \pi \alpha_{R}(t)} \pm 1\right]$
Need Hadron Wavefunctions
Signature factor $C= \pm 1$

Light-Front Wavefunctions: rigorous representation of composite

 systems in quantum field theory

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

Measurements of hadron LF wavefunction are at fixed LF time

Like a flash photograph

$$
x_{b j}=x=\frac{k^{+}}{P^{+}}
$$

Each element of flash photograph illuminated along the light front at a fixed

$$
\tau=t+z / c
$$

Evolve in LF time

$$
\begin{gathered}
P^{-}=i \frac{d}{d \tau} \\
\text { Eigenvalue } \\
P^{-}=\frac{\mathcal{M}^{2}+\vec{P}_{\perp}^{2}}{P^{+}} \\
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
\end{gathered}
$$

Light-Front Wavefunctions: rigorous representation of composite

 systems in quantum field theoryEigenstate of LF Hamiltonian: Off-shell in Invariant Mass

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

$$
\text { Fixed } \tau=t+z / c
$$

Fixed LF time

$$
P^{+}, \vec{P}_{\perp}
$$

$$
\psi_{n}\left(x_{i}, \vec{k}_{\perp_{i}}, \lambda_{i}\right)
$$

$$
\left|p, J_{z}>=\sum \psi_{n}\left(x_{i}, \vec{k}_{\mid i}, \lambda_{i}\right)\right| n ; x_{i}, \stackrel{\rightharpoonup}{k}_{\mid i}, \lambda_{i}>\quad \sum_{i}^{n} x_{i}=1
$$

$$
\overline{n=3}
$$

$$
\sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}
$$

$$
\text { Invariant under boosts! Independent of } P^{\mu}
$$

Causal, Frame-independent. Creation Operators on Simple Vacuum, Current Matrix Elements are Overlaps of LFWFS

Dírac's Amazing Idea:
The "Front Form"

Evolve in ordinary time

P.A.M Dirac, Rev. Mod. Phys. 21, 392 (1949)

Evolve in light-front time!

Instant Form

Front Form
Boost Invariant!

Angular Momentum on the Light-Front

$$
J^{z}=\sum_{i=1}^{n} s_{i}^{z}+\sum_{j=1}^{n-1} l_{j}^{z} . \quad \begin{gathered}
\text { LC gauge } \quad \mathrm{A}^{+}=0 \\
\text { Conserved Fock state by Fock State }
\end{gathered}
$$

Gluon orbital angular momentum defined in physical lc gauge

$$
l_{j}^{z}=-\mathrm{i}\left(k_{j}^{1} \frac{\partial}{\partial k_{i}^{2}}-k_{j}^{2} \frac{\partial}{\partial k_{i}^{1}}\right) \quad \text { n-ı orbital angular momenta }
$$

Nonzero Anomalous Moment -->
Nonzero quark orbital angular momentum!

$$
\begin{aligned}
& <p+q\left|j^{+}(0)\right| p>=2 p^{+} F\left(q^{2}\right) \\
& \text { Drell \&Yan, West } \\
& \text { Exact LF formula } \\
& \text { Form Factors are } \\
& \text { Overlaps of LFWFs } \\
& \text { spectators } \quad \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}-x_{i} \vec{q}_{\perp}
\end{aligned}
$$

Scattering School
University of Indiana June 11, 2015

Scattering Theory and LF Quantization

$$
\begin{aligned}
& \frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{1}{2} \times \\
& {\left[-\frac{1}{q^{L}} \psi_{a}^{\uparrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)+\frac{1}{q^{R}} \psi_{a}^{\llcorner *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\uparrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right]} \\
& \mathbf{k}_{\perp i}^{\prime}=\mathbf{k}_{\perp i}-x_{i} \mathbf{q}_{\perp} \\
& \mathbf{k}_{\perp j}^{\prime}=\mathbf{k}_{\perp j}+\left(1-x_{j}\right) \mathbf{q}_{\perp}
\end{aligned}
$$

Must have $\Delta \ell_{z}= \pm 1$ to have nonzero $F_{2}\left(q^{2}\right)$
Nonzero Proton A nomalous Moment -->
Nonzero orbital quark angular momentum

Scattering School
University of Indiana June 11, 2015

Scattering Theory and LF Quantization
Stan Brodsky

Calculation of Form Factors in Equal-Time Theory

Instant Form

Calculation of Form Factors in Light-Front Theory

Front Form

Scattering School University of Indiana June 11, 2015

No vacuum graphs
Scattering Theory and LF Quantization

Complete Answer

Absent for $q^{+}=0$ Stan Brodsky SLAc

Calculation of proton form factor in Instant Form $<p+q\left|J^{\mu}(0)\right| p>$

- Need to boost proton wavefunction from p to $p+q$: Extremely complicated dynamical problem; even the particle number changes
- Need to couple to all currents arising from vacuum!! Remains even after normal-ordering
- Each time-ordered contribution is frame dependent
- Divide by disconnected vacuum diagrams
- Instant form: acausal boundary conditions

Scattering School
University of Indiana June 11, 2015

Scattering Theory and LF Quantization

Stan Brodsky

Other Features of Light-Front Wavefunctions

- Cluster Decomposition Theorem
- Zero Anomalous Gravitomagnetic Moment
- Angular Momentum J ${ }^{\text {z }}$
- J ${ }^{\text {z Momentum Sum Rule }}$
- Bethe-Salpeter WF integrated over \mathbf{k}^{-}
- Electron WFs reproduce $\mathbf{p Q E D}$ results
- Parke-Taylor (Stasto)
- Gauge Dependent WF but observables are GI
- Stable hadron: Real LFWF

Light-Front Wave Function Overlap Representation

DVCS/GPD
Diehl, Hwang, sjb, NPB596, 200I
See also: Diehl, Feldmann, Jakob, Kroll

DGLAP region

ERBL region

DGLAP region

Bakker \& JI
Lorce

Scattering School University of Indiana June 11, 2015

Scattering Theory and LF Quantization
Stan Brodsky

- LF wavefunctions play the role of Schrödinger wavefunctions in Atomic Physics
- LFWFs=Hadron Eigensolutions: Direct Connection to QCD Lagrangian

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

- Relativistic, frame-independent: no boosts, no disc contraction, Melosh built into LF spinors
- Hadronic observables computed from LFWFs: Form factors, Structure Functions, Distribution Amplitudes, GPDs, TMDs, Weak Decays, modulo `lensing' from ISIs, FSIs
- Cannot compute current matrix elements using instant or point form from eigensolutions alone -- need to include vacuum currents!
- Hadron Physics without LFWFs is like Biology without DNA!
- Hadron Physics without LFWFs is like Biology without DNA!

Scattering School
University of Indiana
June 11, 2015

Scattering Theory and LF Quantization
Stan Brodsky

$$
\begin{aligned}
& \frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{1}{2} \times \\
& \begin{aligned}
& {\left[-\frac{1}{q^{L}} \psi_{a}^{\uparrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)+\frac{1}{q^{R}} \psi_{a}^{\downarrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\uparrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right] } \\
& \mathbf{k}_{\perp i}^{\prime}=\mathbf{k}_{\perp i}-x_{i} \mathbf{q}_{\perp} \text { Drell, sjb } \\
& \mathbf{k}_{\perp j}^{\prime}=\mathbf{k}_{\perp j}+\left(1-x_{j}\right) \mathbf{q}_{\perp}
\end{aligned}
\end{aligned}
$$

Must have $\Delta \ell_{z}= \pm 1$ to have nonzero $F_{2}\left(q^{2}\right)$
Nonzero Proton Anomalous Moment -->
Nonzero orbital quark angular momentum

P.A.M Dirac, Rev. Mod. Phys. 21, 392 (1949)

"Working with the light front is a process that is unfamiliar to physicists.
But still I feel that the mathematical simplification that it introduces is all-important. I consider the method to be promising and bave recently been making an extensive study of it. It offers new opportunities, while the familiar instant form seems to be played out "P.A.M. Dirac (1977)

Bound States in Relativistic Quantum Field Theory:

Light-Front Wavefunctions Dirac's Front Form: Fixed $\tau=t+z / c$

Fixed $\tau=t+z / c$

$$
\psi\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad x_{i}=\frac{k_{i}^{+}}{P^{+}}
$$

Invariant under boosts. Independent of $\mathrm{P}^{\boldsymbol{\mu}}$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Direct connection to QCD Lagrangian
Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

The two-particle Fock state for an electron with $J^{z}=+\frac{1}{2}$ has four possible spin combinations:

$$
\begin{aligned}
& \left|\Psi_{\text {two particle }}^{\uparrow}\left(P^{+}, \vec{P}_{\perp}=\overrightarrow{0}_{\perp}\right)\right\rangle \\
= & \int \frac{\mathrm{d}^{2} \vec{k}_{\perp} \mathrm{d} x}{\sqrt{x(1-x)} 16 \pi^{3}}\left[\psi_{+\frac{1}{2}+1}^{\uparrow}\left(x, \vec{k}_{\perp}\right)\left|+\frac{1}{2}+1 ; x P^{+}, \vec{k}_{\perp}\right\rangle\right.
\end{aligned}
$$

$$
\left.\left.+\psi_{+\frac{1}{2}-1}^{\uparrow}\left(x, \vec{k}_{\perp}\right) \right\rvert\,+\frac{1}{2}-1 ; x P^{+}, \vec{k}_{\perp}\right)+\psi_{-\frac{1}{2}+1}^{\uparrow}\left(x, \vec{k}_{\perp}\right)\left|-\frac{1}{2}+1 ; x P^{+}, \vec{k}_{\perp}\right\rangle
$$

$$
\left.+\psi_{-\frac{1}{2}-1}^{\uparrow}\left(x, \vec{k}_{\perp}\right)\left|-\frac{1}{2}-1 ; x P^{+}, \vec{k}_{\perp}\right\rangle\right]
$$

$$
\left\{\begin{array}{l}
\psi_{+\frac{1}{2}+1}^{\uparrow}\left(x, \vec{k}_{\perp}\right)=-\sqrt{2} \frac{\left(-k^{1}+\mathrm{i} k^{2}\right)}{x(1-x)} \varphi \\
\psi_{+\frac{1}{2}-1}^{\uparrow}\left(x, \vec{k}_{\perp}\right)=-\sqrt{2} \frac{\left(+k^{1}+\mathrm{i} k^{2}\right)}{1-x} \varphi \\
\psi_{-\frac{1}{2}+1}^{\uparrow}\left(x, \vec{k}_{\perp}\right)=-\sqrt{2}\left(M-\frac{m}{x}\right) \varphi \\
\psi_{-\frac{1}{2}-1}^{\uparrow}\left(x, \vec{k}_{\perp}\right)=0
\end{array}\right.
$$

$$
\varphi=\varphi\left(x, \vec{k}_{\perp}\right)=\frac{e / \sqrt{1-x}}{M^{2}-\left(\vec{k}_{\perp}^{2}+m^{2}\right) / x-\left(\vec{k}_{\perp}^{2}+\lambda^{2}\right) /(1-x)}
$$

$$
\begin{align*}
F_{2}\left(q^{2}\right)= & \frac{-2 M}{\left(q^{1}-\mathrm{i} q^{2}\right)}\left\langle\Psi^{\uparrow}\left(P^{+}, \vec{P}_{\perp}=\vec{q}_{\perp}\right) \mid \Psi^{\downarrow}\left(P^{+}, \vec{P}_{\perp}=\overrightarrow{0}_{\perp}\right)\right\rangle \\
= & \frac{-2 M}{\left(q^{1}-\mathrm{i} q^{2}\right)} \int \frac{\mathrm{d}^{2} \vec{k}_{\perp} \mathrm{d} x}{16 \pi^{3}}\left[\psi_{+\frac{1}{2}-1}^{\uparrow *}\left(x, \vec{k}_{\perp}^{\prime}\right) \psi_{+\frac{1}{2}-1}^{\downarrow}\left(x, \vec{k}_{\perp}\right)\right. \\
& \left.+\psi_{-\frac{1}{2}+1}^{\uparrow *}\left(x, \vec{k}_{\perp}^{\prime}\right) \psi_{-\frac{1}{2}+1}^{\downarrow}\left(x, \vec{k}_{\perp}\right)\right] \\
= & 4 M \int \frac{\mathrm{~d}^{2} \vec{k}_{\perp} \mathrm{d} x}{16 \pi^{3}} \frac{(m-M x)}{x} \varphi\left(x, \vec{k}_{\perp}^{\prime}\right)^{*} \varphi\left(x, \vec{k}_{\perp}\right) \\
= & 4 M e^{2} \int \frac{\mathrm{~d}^{2} \vec{k}_{\perp} \mathrm{d} x}{16 \pi^{3}} \frac{(m-x M)}{x(1-x)} \\
& \times \frac{1}{M^{2}-\left(\left(\vec{k}_{\perp}+(1-x) \vec{q}_{\perp}\right)^{2}+m^{2}\right) / x-\left(\left(\vec{k}_{\perp}+(1-x) \vec{q}_{\perp}\right)^{2}+\lambda^{2}\right) /(1-x)} \\
& \times \frac{1}{M^{2}-\left(\vec{k}_{\perp}^{2}+m^{2}\right) / x-\left(\vec{k}_{\perp}^{2}+\lambda^{2}\right) /(1-x)} . \tag{30}\\
& M e^{2} \int_{0}^{1} \mathrm{~d} \alpha \int_{0}^{1} \mathrm{~d} x \frac{1}{\alpha(1-\alpha) \frac{1-x}{x}} \vec{q}_{\perp}^{2}-M^{2}+\frac{m^{2}}{x}+\frac{\lambda^{2}}{1-x} .
\end{align*}
$$

The anomalous moment is obtained in the limit of zero momentum transfer:

$$
\begin{align*}
F_{2}(0) & =4 M e^{2} \int \frac{\mathrm{~d}^{2} \vec{k}_{\perp} \mathrm{d} x}{16 \pi^{3}} \frac{(m-x M)}{x(1-x)} \frac{1}{\left[M^{2}-\left(\vec{k}_{\perp}^{2}+m^{2}\right) / x-\left(\vec{k}_{\perp}^{2}+\lambda^{2}\right) /(1-x)\right]^{2}} \\
& =\frac{M e^{2}}{4 \pi^{2}} \int_{0}^{1} \mathrm{~d} x \frac{m-x M}{-M^{2}+\frac{m^{2}}{x}+\frac{\lambda^{2}}{1-x}} \tag{32}
\end{align*}
$$

which is the result of Ref. [8]. For zero photon mass and $M=m$, it gives the correct order α Schwinger value $a_{e}=F_{2}(0)=\alpha / 2 \pi$ for the electron anomalous magnetic moment for QED.

$$
a_{e}=F_{2}(0)=\frac{\alpha}{2 \pi}
$$

Simpler than Feynman/Schwinger
Anomalous gravitomagnetic moment vanishes: $\quad \frac{\alpha}{3 \pi}-\frac{\alpha}{3 \pi}=0$

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau=t+z / c$

Invariant under boosts. Independent of $\mathrm{P}^{\boldsymbol{\mu}}$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Direct connection to QCD Lagrangian

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Diffractive leptoproduction of vector mesons in QCD

Stanley J. Brodsky (SLAC) , L. Frankfurt (Tel Aviv U.) , J.F. Gunion (UC, Davis) , Alfred H. Mueller (Columbia U.) , M. Strikman (Penn State U.) Jan 1994-34 pages

Phys.Rev. D50 (1994) 3134-3144
DOI: 10.1103/PhysRevD.50.3134
SLAC-PUB-6412, CU-TP-617, UCD-93-36
e-Print: hep-ph/9402283 | PDF

- Factorization Principle
- LF Wave Function, Distribution Amplitude
- s, I/Q Q^{6} dependence, $\quad \sigma_{L} / \sigma_{T}$

Prediction from AdS/QCD: Meson LFWF
$e^{\varphi(z)}=e^{+\kappa^{2} z}$
x
$0.8^{0.6^{0.40 .2}}$

Note coupling

$$
k_{\perp}^{2}, x
$$

de Teramond, Cao, sjb
"Soft Wall" model
massless quarks

$$
\begin{array}{cc}
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k^{2}}{2 \kappa^{2} x(1-x)}} & \underbrace{\phi_{\pi}(x)=\frac{4}{\sqrt{3} \pi} f_{\pi} \sqrt{x(1-x)}}_{\text {Same as DSE! }} \\
f_{\pi}=\sqrt{P_{q \bar{q}}} \frac{\sqrt{3}}{8} \kappa=92.4 \mathrm{MeV} &
\end{array}
$$

Provides Connection of Confinement to Hadron Structure

AdS/QCD Holographic Wave Function for the ρ Meson and Diffractive ρ Meson Electroproduction

J. R. Forshaw*
Consortium for Fundamental Physics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

$$
\text { R. Sandapen }{ }^{\dagger}
$$

Département de Physique et d'Astronomie, Université de Moncton, Moncton, New Brunswick E1A3E9, Canada (Received 5 April 2012; published 20 August 2012)

We show that anti-de Sitter/quantum chromodynamics generates predictions for the rate of diffractive ρ-meson electroproduction that are in agreement with data collected at the Hadron Electron Ring Accelerator electron-proton collider.

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}}
$$

See also Ferreira and Dosch

AdS/QCD Holographic Wave Function for the ρ Meson

 and Diffractive ρ Meson Electroproduction

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}} m_{f} \bar{\Psi}_{f} \Psi_{f}
$$

$$
\begin{aligned}
& H_{Q C D}^{L F}=\frac{1}{2} \int d^{3} x \overline{\widetilde{\psi}} \gamma^{+} \frac{\left(\mathrm{i} \partial^{\perp}\right)^{2}+m^{2}}{\mathrm{i} \partial^{+}} \widetilde{\psi}-A_{a}^{i}\left(\mathrm{i} \partial^{\perp}\right)^{2} A_{i a} \\
& -\frac{1}{2} g^{2} \int d^{3} x \operatorname{Tr}\left[\tilde{A}^{\mu}, \tilde{A}^{\nu}\right]\left[\widetilde{A}_{\mu}, \widetilde{A}_{\nu}\right] \\
& +\frac{1}{2} g^{2} \int d^{3} x \overline{\widetilde{\psi}} \gamma^{+} T^{a} \widetilde{\psi} \frac{1}{\left(\mathrm{i} \partial^{+}\right)^{2}} \overline{\tilde{\psi}} \gamma^{+} T^{a} \tilde{\psi} \\
& -g^{2} \int d^{3} x \overline{\tilde{\psi}} \gamma^{+}\left(\frac{1}{\left(\mathrm{i} \partial^{+}\right)^{2}}\left[\mathrm{i} \partial^{+} \widetilde{A}^{\kappa}, \widetilde{A}_{\kappa}\right]\right) \tilde{\psi} \\
& +g^{2} \int d^{3} x \operatorname{Tr}\left([\mathrm { i } \partial ^ { + } \tilde { A } ^ { \kappa } , \tilde { A } _ { \kappa }] \frac { 1 } { (\mathrm { i } \partial ^ { + }) ^ { 2 } } \left[\mathrm{i} \partial^{+} \tilde{A}^{\kappa}\right.\right. \\
& +\frac{1}{2} g^{2} \int d^{3} x \overline{\widetilde{\psi}} \tilde{A} \frac{\gamma^{+}}{\mathrm{i} \partial^{+}} \tilde{A} \tilde{\psi} \\
& +g \int d^{3} x \widetilde{\psi} \tilde{A} \tilde{\psi} \\
& +2 g \int d^{3} x \operatorname{Tr}\left(\mathrm{i} \partial^{\mu} \widetilde{A}^{\nu}\left[\widetilde{A}_{\mu}, \widetilde{A}_{\nu}\right]\right)
\end{aligned}
$$

Physical gauge: $A^{+}=0$

Exact frame-independent formulation of nonperturbative QCD!

$$
\begin{gathered}
L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
H_{L F}^{Q C D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t} \\
H_{L F}^{i n t}: \text { Matrix in Fock Space } \\
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}> \\
\left|p, J_{z}>=\sum_{n=3} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
\end{gathered}
$$

Eigenvalues and Eigensolutions give Hadronic Spectrum and Light-Front wavefunctions

LFWFs: Off-shell in P - and invariant mass

$H_{L F}^{i n t}$

LIGHT-FRONT MATRIX EQUATION

Rigorous Method for Solving Non-Perturbative QCD!

$$
\begin{aligned}
& \left(M_{\pi}^{2}-\sum_{i} \frac{\vec{k}_{1 i}^{2}+m_{i}^{2}}{x_{i}}\right)\left[\begin{array}{c}
\psi_{q \bar{q} / \pi} \\
\psi_{g \bar{q} g / \pi} \\
\vdots
\end{array}\right]=\left[\begin{array}{ccc}
\langle q \bar{q}| V|q \bar{q}\rangle & \langle q \bar{q}| V|q \bar{q} g\rangle & \cdots \\
\langle q \bar{q} g| V|q \bar{q}\rangle & \langle q \bar{q} g| V|q \bar{q} g\rangle & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
\psi_{q \bar{q} / \pi} \\
\psi_{q \bar{q} q / \pi} \\
\vdots
\end{array}\right] \\
& A^{+}=0
\end{aligned}
$$

Minkowski space; frame-independent, no fermion doubling; no ghosts

- Light-Front Vacuum = vacuum offree Hamiltonian!

Light－Front QCD
Heisenberg Equation
$H_{L C}^{Q C D}\left|\Psi_{h}\right\rangle=\mathcal{M}_{h}^{2}\left|\Psi_{h}\right\rangle$

DLCQ：Solve QCD（1＋1）for any quark mass and flavors

Hornbostel，Pauli，sjb

$i_{2}^{2}{ }_{2}^{k, \lambda}$	\％Sector	${ }_{\text {q}}^{1}$	$\begin{aligned} & 2 \\ & 9 g \end{aligned}$	$\begin{gathered} 3 \\ 9 \bar{q} \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ q \bar{q} q \bar{q} \end{gathered}$	$\begin{aligned} & 5 \\ & 999 \end{aligned}$	$\begin{aligned} & \hline \frac{6}{9 q 999} \end{aligned}$	${ }^{27}{ }^{7} \bar{q} \bar{q} 9$	$\underset{q \bar{q} व \bar{q} \bar{q}}{8}$	$\begin{gathered} 9 \\ \text { ggg9 } \end{gathered}$	$\begin{aligned} & 10 \\ & \text { cag9999 } \end{aligned}$	$\begin{gathered} 11 \\ q \bar{q} q 99 \end{gathered}$	$\begin{array}{\|c} 129 \\ \overline{9} \bar{q} \bar{q} 99 \end{array}$	$\begin{gathered} 13 \\ \text { वq} \bar{q} \bar{q} \bar{q} व \bar{q} \end{gathered}$
	$1{ }^{1}$	\％	F	－	\％		7		－	－		．		
（a）	2 299	L	x	m	．	mer	It		－	絺	－	－		－
		\％－	\％	－	－	I	me	\％			F	．		
－prorrrr	$4{ }^{4}$ qăqă	3		\％	5.		I	－	\％			E		
noul．	5 g9 6		3	F		x	m			Nus	E			
$\begin{array}{ll} \overline{\mathrm{k}}, \lambda^{\prime} & \text { (b) } \end{array}$	6 aq̆g	m	37	，	F	\geqslant	I－	m		I	－	\％		
	$7 \quad$ ¢ 9 व̆ặ 9			3	）		\％	I	－		I	－	约	
$\xrightarrow{\stackrel{\bar{p}, \mathrm{~s}^{\prime}}{\longrightarrow}}{ }^{\mathrm{p}, \mathrm{~s}}$	8 ¢ $\bar{\square} \bar{\square} \bar{\square} \bar{q}$				3			＞	t．			I	－	频
క̧	${ }^{9} \mathrm{gggg}$		3			3m	${ }_{5}$			x	m			
$\overrightarrow{\overline{\mathrm{k}, \sigma^{\prime}}} \underbrace{\text { en }}$	10 वăgs		．	3		37	－	F		\％	\pm.	m		
（c）	11 वq̆व̄̆9				3		3	＞	I		\％	I－	m	
	12 व̄̆व̆वपव̆9		．					3	）			\geq	7.	\cdots
	13 व̄ăquăqua	－	－	－	－	－			3				\geqslant	5

Minkowski space；frame－independent，no fermion doubling，no ghosts trivial vacuum

a-c) First three states in $N=3$ baryon spectrum, $2 \mathrm{~K}=21$. d) First $B=2$ state.

Light-Front Perturbative QCD

- Calculate $\mathrm{T}_{\text {matrix }} \quad T=V+V \frac{1}{D+i \epsilon}^{T}$
$D=\mathcal{M}_{\text {initial }}^{2}-\mathcal{M}_{\text {intermediate }}^{2}$
Sum over intermediate states

All propagating particles have positive $k^{+}=k^{0}+k^{3}>0$

Scattering School
University of Indiana June 11, 2015

Scattering Theory and LF Quantization
Stan Brodsky

Exclusive processes in perturbative quantum chromodynamics

G. Peter Lepage
Laboratory of Nuclear Studieś, Cornell University, Ithaca, New York 14853
Stanley J. Brodsky
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305
(Received 27 May 1980)

Abstract

We present a systematic analysis in perturbative quantum chromodynamics (QCD) of large-momentum-transfer exclusive processes. Predictions are given for the scaling behavior, angular dependence, helicity structure, and normalization of elastic and inelastic form factors and large-angle exclusive scattering amplitudes for hadrons and photons. We prove that these reactions are dominated by quark and gluon subprocesses at short distances, and thus that the dimensional-counting rules for the power-law falloff of these amplitudes with momentum transfer are rigorous predictions of QCD , modulo calculable logarithmic corrections from the behavior of the hadronic wave functions at short distances. These anomalous-dimension corrections are determined by evolution equations for process-independent meson and baryon "distribution amplitudes" $\phi\left(x_{i}, Q\right)$ which control the valence-quark distributions in high-momentum-transfer exclusive reactions. The analysis can be carried out systematically in powers of $\alpha_{s}\left(Q^{2}\right)$, the QCD running coupling constant. Although the calculations are most conveniently carried out using light-cone perturbation theory and the light-cone gauge, we also present a gauge-independent analysis and relate the distribution amplitude to a gauge-invariant Bethe-Salpeter amplitude.

Recursion Relations and Scattering Amplitudes in the Light-Front Formalism

Cruz-Santiago \& Stasto

Cluster Decomposition Theorem for relativistic systems: C.Ji\&sjb

Parke-Taylor amplitudes reflect LF angular momentum conservation

$$
\langle i j\rangle=\sqrt{z_{i} z_{j}} \underline{\underline{E}}^{(-)} \cdot\left(\frac{\underline{k}_{i}}{z_{i}}-\frac{\underline{k}_{j}}{z_{j}}\right)=
$$

Hadronization at the Amplitude Level

Event amplitude generator

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

> Intrinsic heavy quarks
> $\boldsymbol{s}(\boldsymbol{x}), \boldsymbol{c}(\boldsymbol{x}), \boldsymbol{b}(\boldsymbol{x})$ at bigh $\boldsymbol{x}!) \quad \bar{u}(x) \neq \bar{d}(x)$

Fixed LF time $\tau=t+z / c$

Hidden Color in QCD

Lepage, Ji, sjb

- Deuteron six quark wavefunction:
- 5 color-singlet combinations of 6 color-triplets -- one state is $\ln \mathrm{p}>$
- Components evolve towards equality at short distances
- Hidden color states dominate deuteron form factor and photodisintegration at high momentum transfer
- Predict

$$
\frac{d \sigma}{d t}\left(\gamma d \rightarrow \Delta^{++} \Delta^{-}\right) \simeq \frac{d \sigma}{d t}(\gamma d \rightarrow p n) \text { at high } Q^{2}
$$

- Light Front Wavefunctions.

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

Transverse density in momentum space

Longitudinal

Momentum space

$$
\begin{gathered}
\vec{k}_{\perp} \leftrightarrow \vec{z}_{\perp} \\
\vec{\Delta}_{\perp} \leftrightarrow \vec{b}_{\perp}
\end{gathered}
$$

Position space

Transverse density in position space

Lorre,
Pasquini

Charges

$\rightarrow \quad \int \mathrm{d} x$

+ Factorization-Breaking Lensing Corrections: Sivers, T-odd

QCD and the LF Hadron Wavefunctions

- LF wavefunctions play the role of Schrödinger wavefunctions in Atomic Physics
- LFWFs=Hadron Eigensolutions: Direct Connection to QCD Lagrangian
\bullet Relativistic, frame-independent: no boosts, no disc contraction, Melosh built into LF spinors
- Hadronic observables computed from LFWFs: Form factors, Structure Functions, Distribution Amplitudes, GPDs, TMDs, Weak Decays, modulo `lensing' from ISIs, FSIs
- Cannot compute current matrix elements using instant form from eigensolutions alone -- need to include vacuum currents!
- Hadron Physics without LFWFs is like Biology without DNA!

Reggeon Exchange in the t-channel

easiest to compute u-channel exchange

$$
K^{\mu}=\left(P^{+}, \frac{M_{K}^{2}+r_{\perp}^{2}+q_{\perp}^{2}}{P^{+}}, \vec{q}_{\perp}+\vec{r}_{\perp}\right) \quad K^{\mu^{\prime}}=\left(P^{+}, \frac{M_{K}^{2}+r_{\perp}^{2}}{P^{+}}, \vec{r}_{\perp}\right)
$$

$P^{\mu}=\left(P^{+}, P^{-}, \vec{P}_{\perp}\right)=\left(P^{+}, \frac{M_{p}^{2}}{P^{+}}, \overrightarrow{0}_{\perp}\right)$

$$
P^{\mu \prime}=\left(P^{+}, \frac{M_{p}^{2}+q_{\perp}^{2}}{P^{+}}, \vec{q}_{\perp}\right)
$$

Remarkable Light-Front Frame Bj: "Fool's ISR Frame"

Idealfor
QCD factorization proofs Single $A+=0$ Gange

$$
\begin{aligned}
& P^{ \pm} \equiv P^{0} \pm P^{3} \\
& P^{2}=P^{+} P^{-}-\vec{P}_{\perp}^{2}=M^{2} \\
& P^{-}=\frac{\vec{P}_{\perp}^{2}+M^{2}}{P^{+}} \quad P^{\mu}=\left[P^{+}, \frac{\vec{P}_{\perp}^{2}+M^{2}}{P^{+}}, \vec{P}_{\perp}\right] \\
& \left(\vec{q}_{\perp}\right)^{2}=-t \quad\left(\vec{r}_{\perp}\right)^{2}=-u \quad \vec{q}_{\perp} \cdot \vec{r}_{\perp}=0 \\
& s=(p+K)^{2}=M_{p}^{2}+M_{K}^{2}+P^{+}\left(P_{K}^{-}+P_{p}^{-}\right)-2 \vec{p} \not \cdot \vec{K}_{\perp} \\
& =M_{p}^{2}+M_{K}^{2}+P^{+}\left(P_{K}^{-}+P_{p}^{-}\right) \\
& \\
& =2 M_{p}^{2}+2 M_{K}^{2}-t-u
\end{aligned}
$$

Scattering School University of Indiana June 11, 2015

CIM: Blankenbecler, Gunion, sjb

$$
\frac{d \sigma}{d t}=\frac{|M(s, t)|^{2}}{s^{2}}
$$

$M(t, u)_{\text {interchange }} \propto \frac{1}{u t^{2}}$

$$
\begin{gathered}
=\frac{1}{2(2 \pi)^{3}} \int d^{2} k \int_{0}^{1} \frac{d x}{x^{2}(1-x)^{2}} \Delta \psi_{C}\left(\overrightarrow{\mathrm{k}}_{\perp}-x \overrightarrow{\mathrm{r}}_{\perp}, x\right) \psi_{D}\left(\overrightarrow{\mathrm{k}}_{\perp}+(1-x) \overrightarrow{\mathrm{q}}_{\perp}, x\right) \psi_{A}\left(\overrightarrow{\mathrm{k}}_{\perp}-x \overrightarrow{\mathrm{r}}_{\perp}+(1-x) \overrightarrow{\mathrm{q}}_{\perp}, x\right) \psi_{B}\left(\overrightarrow{\mathrm{k}}_{\perp}, x\right) \\
\Delta=s-\sum_{i} \frac{k_{\perp i}^{2}+m_{i}^{2}}{x_{i}}
\end{gathered}
$$

Agrees with electron exchange in atom-atom scattering in nonrelativistic limit

$$
K^{+} p \rightarrow K^{+} p
$$

AdS/CFT explains why quark interchange is dominant
interaction at high momentum transfer in exclusive reactions
$M(t, u)_{\text {interchange }} \propto \frac{1}{u t^{2}}$ $\frac{d \sigma}{d t}\left(K^{+} p \rightarrow K^{+} p\right) \propto \frac{1}{s^{2} u^{2} t^{4}}$

Non-linear Regge behavior:

$$
\alpha_{R}(t) \rightarrow-1
$$

$\frac{d \sigma}{d t}(M B \rightarrow M B)=\frac{F\left(\theta_{c m}\right)}{s^{8}}$ at fixed $\theta_{c m}$
Test of Quark Interchange Mechanism

CIM: Blankenbecler, Gunion, sjb

Quark Interchange
(Spin exchange in atomatom scattering)

Glwon Exchange Landshoff

$$
\frac{d \sigma}{d t}=\frac{|M(s, t)|^{2}}{s^{2}}
$$

$M(t, u)_{\text {interchange }} \propto \frac{1}{u t^{2}}$
$M(s, t)_{\text {gluonexchange }} \propto s F(t)$

Comparison of Exclusive Reactions at Large \boldsymbol{t}

B. R. Baller, ${ }^{\text {(a) }}$ G. C. Blazey, ${ }^{(b)}$ H. Courant, K. J. Heller, S. Heppelmann, ${ }^{(c)}$ M. L. Marshak, E. A. Peterson, M. A. Shupe, and D. S. Wahl ${ }^{\text {(d) }}$

University of Minnesota, Minneapolis, Minnesota 55455
D. S. Barton, G. Bunce, A. S. Carroll, and Y. I. Makdisi

Brookhaven National Laboratory, Upton, New York 11973
and
S. Gushue ${ }^{(\mathrm{e})}$ and J. J. Russell

Southeastern Massachusetts University, North Dartmouth, Massachusetts 02747
(Received 28 October 1987; revised manuscript received 3 February 1988)

Cross sections or upper limits are reported for twelve meson-baryon and two baryon-baryon reactions for an incident momentum of $9.9 \mathrm{GeV} / \mathrm{c}$, near 90° c.m.: $\pi^{ \pm} p \rightarrow p \pi^{ \pm}, p \rho^{ \pm}, \pi^{+} \Delta^{ \pm}, K^{+} \Sigma^{ \pm},\left(\Lambda^{0} / \Sigma^{0}\right) K^{0}$; $K^{ \pm} p \rightarrow p K^{ \pm} ; p^{ \pm} p \rightarrow p p^{ \pm}$. By studying the flavor dependence of the different reactions, we have been able to isolate the quark-interchange mechanism as dominant over gluon exchange and quark-antiquark annihilation.

$$
\begin{aligned}
& \pi^{ \pm} p \rightarrow p \pi^{ \pm}, \\
& K^{ \pm} p \rightarrow p K^{ \pm}, \\
& \pi^{ \pm} p \rightarrow p \rho^{ \pm}, \\
& \pi^{ \pm} p \rightarrow \pi^{+} \Delta^{ \pm}, \\
& \pi^{ \pm} p \rightarrow K^{+} \Sigma^{ \pm}, \\
& \pi^{-} p \rightarrow \Lambda^{0} K^{0}, \Sigma^{0} K^{0}, \\
& p^{ \pm} p \rightarrow p p^{ \pm} .
\end{aligned}
$$

Precise Tests of Triple-Regge Theory from π^{0} and η Inclusive Production in $100-\mathrm{GeV} / c \pi \pm p$ Collisions

A. V. Barnes, G. C. Fox, R. G. Kennett, and R. L. Walker California Institute of Technology, Pasadena, California 91125

and
O. I. Dahl, R. W. Kenney, A. Ogawa, and M. Pripstein Lawrence Berkeley Labovatory, Berkeley, California 94720
(Received 21 August 1978)
We present data on π^{0} and η inclusive production from $100-\mathrm{GeV} / c \pi^{ \pm} p$ collisions in the kinematic region $x \geqslant 0.7$ and $0<-t \$ 4(\mathrm{GeV} / c)^{2}$. The results are in excellent agreement with the predictions of triple-Regge theory and we have extracted the ρ and A_{2} trajectories out to $-t=4(\mathrm{GeV} / c)^{2}$.

$$
-t(G e V)^{2}
$$

$$
\alpha_{\rho}(t) \text { from } \pi^{-} p \rightarrow \pi^{0} X \text { with } 0.71<x_{F}<0.98
$$

t > 0: spectrum (s-channel pole)
Oleg Andreev \& Warren Siegel

Scattering School

University of Indiana June 11, 2015

Scattering Theory and LF Quantization號

Stan Brodsky 는

Leading-Twist Contribution to Real Part of DVCS

Close, Gunion, sjb
Szczepaniak, Llanes Estrada, sjb
LF Instantaneous interaction
$T=-2 \sum_{q} \frac{e_{q}^{2}}{x_{q}} \vec{\epsilon} \cdot \vec{\epsilon}^{\prime}$
$T \propto s^{0} F_{C=+}(t=0)$

Regge domain virtual compton Scattering

$$
M\left(\gamma^{*} p \rightarrow \gamma p\right) \sim s^{\alpha_{R}(t)} \beta_{R}(t) \quad s \gg-t, Q^{2}
$$

$\frac{d \sigma}{d t}\left(\gamma^{*} p \rightarrow \gamma p\right) \rightarrow \frac{1}{s^{2}} \beta_{R}^{2}(t) \sim \frac{1}{s^{2} t^{4}} \sim \frac{1}{s^{6}}$ at fixed $\frac{t}{s}, \frac{Q^{2}}{s}$
Fundamental test of QCD

Test of BBG Quark Interchange Mechanism
in $p p \rightarrow p p$

$$
\begin{array}{r}
\frac{d \sigma}{d t}(p p \rightarrow p p) \propto \frac{1}{s^{2} u^{4} t^{4}} \\
\frac{d \sigma}{d t}(p p \rightarrow p p)=\frac{F\left(\theta_{c m}\right)}{s^{10}} \text { at fixed } \theta_{c m} \\
\alpha_{R}(t) \rightarrow-2
\end{array}
$$

Local two-photon couplings and the $J=0$ fixed pole in real and virtual Compton scattering

Stanley J. Brodsky*
Theory Group, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, 94025 Menlo Park, California, USA
Felipe J. Llanes-Estrada ${ }^{\dagger}$
Departmento Física Teórica I, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain

Adam P. Szczepaniak ${ }^{\ddagger}$

Department of Physics and Nuclear Theory Center, Indiana University, Bloomington, Indiana 47405, USA (Received 5 December 2008; published 20 February 2009)

The local coupling of two photons to the fundamental quark currents of a hadron gives an energyindependent contribution to the Compton amplitude proportional to the charge squared of the struck quark, a contribution which has no analog in hadron scattering reactions. We show that this local contribution has a real phase and is universal, giving the same contribution for real or virtual Compton scattering for any photon virtuality and skewness at fixed momentum transfer squared t. The t dependence of this $J=0$ fixed Regge pole is parameterized by a yet unmeasured even charge-conjugation form factor of the target nucleon. The $t=0$ limit gives an important constraint on the dependence of the nucleon mass on the quark mass through the Weisberger relation. We discuss how this $1 / x$ form factor can be extracted from high-energy deeply virtual Compton scattering and examine predictions given by models of the H generalized parton distribution.

Counting Rules:

$$
\begin{array}{ll}
\mathbf{C} & \frac{d \sigma}{d t}(s, t)=\frac{F\left(\theta_{\mathrm{cm}}\right)}{s^{\left[n_{\mathrm{tot}}-2\right]}} \quad s=E_{\mathrm{cm}}^{2} \\
\mathbf{D} & F_{H}\left(Q^{2}\right) \sim\left[\frac{1}{Q^{2}}\right]^{n_{H}-1} \\
n_{t o t}=n_{A}+n_{B}+n_{C}+n_{D} & \text { Marrar \& sjb; } \\
\quad \begin{array}{l}
\text { Fixed } t / s \text { or } \cos \theta_{c m}
\end{array} & \text { Matveev, Muradyan, Tavkhelidze }
\end{array}
$$

PQCD predicts the leading-twist scaling behavior of fixed-CM angle exclusive amplitudes

$$
s,-t \gg m_{\ell}^{2}
$$

Non-Perturbative Proof from AdS/CFT: Polchinski and Strassler

Quark-Counting: $\frac{d \sigma}{d t}(p p \rightarrow p p)=\frac{F\left(\theta_{C M}\right)}{s^{10}} \quad n=4 \times 3-2=10$

Scattering School
University of Indiana June 11, 2015

Scattering Theory and LF Quantization 68

Stan Brodsky

Counting Rules: $n=9-2=7 \quad \frac{d \sigma}{d t}(\gamma p \rightarrow M B)=\frac{F\left(\theta_{c m}\right)}{s^{7}}$

Scaling behavior in exclusive meson photoproduction from Jefferson Lab at large
momentum transfers

$$
-0.95 \leq \cos \theta_{\text {c.m. }} \leq 0.95
$$

(a)

(d)

(b)

(a)
K^{+}

(c)

(f)

Biplab Dey

- Phenomenological success of dimensional scaling laws for exclusive processes

$$
d \sigma / d t \sim 1 / s^{n-2}, \quad n=n_{A}+n_{B}+n_{C}+n_{D}
$$

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies Farrar and sjb (1973); Matveev et al. (1973).

- Derivation of counting rules for gauge theories with mass gap dual to string theories in warped space (hard behavior instead of soft behavior characteristic of strings) Polchinski and Strassler (2001).

Exclusive Processes

What if we ask for a specific final state?

Probability decreases with number of constituents!

Lepage, sjb; Efremov and Radyushkin

$$
M=\int \prod d x_{i} d y_{i} \phi_{F}(x, \widetilde{Q}) \times T_{H}\left(x_{i}, y_{i}, \widetilde{Q}\right) \phi_{I}\left(y_{i}, Q\right)
$$

- Iterate kernel of LFWFs when at high virtuality; distribution amplitude contains all physics below factorization scale
- Rigorous Factorization Formulae: Leading twist
- Underly Exclusive B-decay analyses
- Distribution amplitude: gauge invariant, OPE, evolution equations, conformal expansions
- BLM/PMC scale setting: sum nonconformal contributions in scale of running coupling
- Derive Dimensional Counting Rules/ Conformal Scaling

Hadron Distribution Amplitudes

$$
\phi_{M}(x, Q)=\int_{\sum_{i} x_{i}=1}^{Q} d^{2} \vec{k} \psi_{q \bar{q}}\left(x, \vec{k}_{\perp}\right)
$$

- Fundamental gauge invariant non-perturbative input to hard exclusive processes, heavy hadron decays. Defined for Mesons, Baryons

> Lepage, sjb

- Evolution Equations from PQCD, OPE

> Efremov, Radyushkin

Sachrajda, Frishman Lepage, sjb

- Conformal Expansions Braun, Gardi
- Compute from valence light-front wavefunction in light-cone gauge

Hebrew University
May 11, 2015

Superconformal Algebra, and Light-Front Holography

Stan Brodsky
SLAC

Counting Rules:

$$
\begin{array}{ll}
\mathbf{C} & \frac{d \sigma}{d t}(s, t)=\frac{F\left(\theta_{\mathrm{cm}}\right)}{s^{\left[n_{\mathrm{tot}}-2\right]}} \quad s=E_{\mathrm{cm}}^{2} \\
\mathbf{D} & F_{H}\left(Q^{2}\right) \sim\left[\frac{1}{Q^{2}}\right]^{n_{H}-1} \\
n_{t o t}=n_{A}+n_{B}+n_{C}+n_{D} & \text { Farrar \& sjb; } \\
\quad \begin{array}{l}
\text { Matveev, Muradyan, Tavkhelidze }
\end{array}
\end{array}
$$

PQCD predicts the leading-twist scaling behavior of fixed-CM angle exclusive amplitudes

$$
s,-t \gg m_{\ell}^{2}
$$

Non-Perturbative Prooffrom AdS/CFT: Polchinski and Strassler

ERBL Evolution of Meson Distribution A mplitude
$x_{1} x_{2} Q^{2} \frac{\partial}{\partial Q^{2}} \tilde{\phi}\left(x_{i}, Q\right)$

$$
\begin{aligned}
=C_{F} \frac{\alpha_{s}\left(Q^{2}\right)}{4 \pi}\{ & \int_{0}^{1}[d y] V\left(x_{i}, y_{i}\right) \tilde{\phi}\left(y_{i}, Q\right) \\
& \left.-x_{1} x_{2} \tilde{\phi}\left(x_{i}, Q\right)\right\}
\end{aligned}
$$

Fixed $\tau=t+z / c$

where

$$
\tilde{\phi}=x_{1} x_{2} \phi
$$

$$
\begin{aligned}
V\left(x_{i}, y_{i}\right)= & 2\left[x_{1} y_{2} \theta\left(y_{1}-x_{1}\right)\left(\delta_{h_{1} \bar{n}_{2}}+\frac{\Delta}{y_{1}-x_{1}}\right)\right. \\
& +(1 \rightarrow 2)] \\
= & V\left(y_{i}, x_{i}\right)
\end{aligned}
$$

and $\Delta \tilde{\phi}\left(y_{i}, Q\right) \equiv \tilde{\phi}\left(y_{i}, Q\right)-\tilde{\phi}\left(x_{i}, Q\right)$.

$$
\phi\left(x_{i}, Q\right)=x_{1} x_{2} \sum_{n=0}^{\infty} a_{n} C_{n}^{3 / 2}\left(x_{1}-x_{2}\right)\left(\ln \frac{Q^{2}}{\Lambda^{2}}\right)^{\gamma_{n}}
$$

where

$$
\gamma_{n}=\frac{C_{F}}{\beta}\left(1+4 \sum_{2}^{n+1} \frac{1}{k}-\frac{2 \delta_{h_{1} \bar{h} 2}}{(n+1)(n+2)}\right) \geqslant 0
$$

Evolves from $\sqrt{x(1-x)}$ to $x(1-x)$

$$
\phi_{\pi}(x)=\frac{4}{\sqrt{3} \pi} f_{\pi} \sqrt{x(1-x)}
$$

AdS/QCD

Timelike proton form factor in PQCD

$$
\begin{aligned}
G_{M}\left(Q^{2}\right) & \rightarrow \frac{\alpha_{s}^{2}\left(Q^{2}\right)}{Q^{4}} \sum_{n, m} b_{n m}\left(\log \frac{Q^{2}}{\Lambda^{2}}\right)^{\gamma_{n}^{B}+\gamma_{n}^{B}} \\
& \times\left[1+\mathcal{O}\left(\alpha_{s}\left(Q^{2}\right), \frac{m^{2}}{Q^{2}}\right)\right]
\end{aligned}
$$

- Define "Effective" form factor by

$$
\sigma=\frac{4 \pi \alpha^{2} \beta C}{3 m_{p \bar{p}}^{2}}|F|^{2},|F|=\sqrt{\left|G_{M}\right|^{2}+\frac{2 m_{p}^{2}}{m_{p \bar{p}}^{2}}\left|G_{E}\right|^{2}}
$$

- Peak at threshold, sharp dips at $2.25 \mathrm{GeV}, 3.0$ GeV .
- Good fit to pQCD prediction for high m_{pp}.
$F(s) \propto \frac{\log ^{-2} \frac{s}{\Lambda^{2}}}{s^{2}}$

- PQCD Factorization
- Convolution of Hadron Distribution Amplitudes with Hard QCD
- Leading Twist: Counting Rules
- Hadron Helicity Conservation
- Color Transparency
- BBG Quark Interchange
- Absence of Landshoff Amplitudes
- Puzzle: Huge Krisch $\mathbf{R}_{\mathbf{N N}}$

Quark-Counting: $\frac{d \sigma}{d t}(p p \rightarrow p p)=\frac{F\left(\theta_{C M}\right)}{s^{10}} \quad n=4 \times 3-2=10$

Scattering School
University of Indiana June 11, 2015

Scattering Theory and LF Quantization
8I

Stan Brodsky

Unexpected

spin effects
in pp
elastic scattering

Spin Correlations in Elastic $p-p$ Scattering

$Q^{2}=5 \mathrm{GeV}^{2}$

Scattering School
University of Indiana June 11, 2015

Scattering Theory and LF Quantization
Stan Brodsky

Is Antishadowing in DIS Non-Universal, Flavor-Dependent?

Nuclear Shadowing in QCD

Shadowing requires leading-twist diffractive DIS

Nuclear Shadowing not included in nuclear LFWF !
Dynamical effect due to virtual photon interacting in nucleus

Scattering School
University of Indiana June 11, 2015

Scattering Theory and LF Quantization
\square Stan Brodsky

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_{B} :

$$
1 / M x_{B}=2 \nu / Q^{2} \geq L_{A}
$$

If the scattering on nucleon N_{1} is via pomeron exchange, the one-step and two-step amplitudes are opposite in phase, thus diminishing the \bar{q} flux reaching N_{2}.

Interior nucleons shadowed

\rightarrow Shadowing of the DIS nuclear structure functions.

Observed HERA DDIS produces nuclear shadowing

Scattering School

 University of Indiana June 11, 2015Scattering Theory and LF Quantization Stan Brodsky

Dúffractive Deep Inelastic Scattering

Diffractive DIS $e p \rightarrow e p X$ where there is a large rapidity gap and the target nucleon remains intact probes the final state interaction of the scattered quark with the spectator system via gluon exchange.

Diffractive DIS on nuclei $e A \rightarrow e^{\prime} A X$ and hard diffractive reactions such as $\gamma^{*} A \rightarrow V A$ can occur coherently leaving the nucleus intact.

Low-Nussinov model of Pomeron

Scattering School University of Indiana June 11, 2015

Scattering Theory and LF Quantization

Stan Brodsky SLAC

Diffractive Structure Function $F_{2}{ }^{D}$

Diffractive inclusive cross section

$$
\frac{\mathrm{d}^{3} \sigma_{N C}^{\text {diff }}}{\mathrm{d} x_{\mathbb{P}} \mathrm{d} \beta \mathrm{~d} Q^{2}} \propto \frac{2 \pi \alpha^{2}}{x Q^{4}} F_{2}^{D(3)}\left(x_{\mathbb{P}}, \beta, Q^{2}\right)
$$

$$
F_{2}^{D}\left(x_{\mathbb{P}}, \beta, Q^{2}\right)=f\left(x_{\mathbb{P}}\right) \cdot F_{2}^{\mathbb{P}}\left(\beta, Q^{2}\right)
$$

extract DPDF and $x g(x)$ from scaling violation
Large kinematic domain $3<Q^{2}<1600 \mathrm{GeV}^{2}$
Precise measurements sys 5%, stat $5-20 \%$

QCD Mechanism for Rapidity Gaps

Reproduces lab-frame color dipole approach

Scattering School
University of Indiana June 11, 2015

Scattering Theory and LF Quantization
Stan Brodsky

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_{B} :
$1 / M x_{B}=2 \nu / Q^{2} \geq L_{A}$.

Regge
If the scattering on nucleon N_{1} is via exchange, the one-step and two-step amplitudes are oppesite in phase, thus diminishing the \bar{q} flum reaching N_{2}
constructive in phase thus increasing the flux reaching N_{2}

Interior nucleons anti-shadowed

Regge Exchange in DDIS produces nuclear anti-shadowing

Scattering School
University of Indiana June 11, 2015

Scattering Theory and LF Quantization

Stan Brodsky

Regge contribution: $\sigma_{\bar{q} N} \sim \widehat{s}^{\alpha} R^{-1}$
$\alpha_{R} \simeq 1 / 2$

Reggeon Exchange

Regge contribution: $\sigma_{\bar{q} N} \sim \widetilde{s}^{\alpha_{R}-1} \quad \alpha_{R} \simeq 1 / 2$
Phase of two-step amplitude relative to one step:
$\frac{1}{\sqrt{2}}(1-i) \times i=\frac{1}{\sqrt{2}}(i+1)$
Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of $\gamma^{*}, Z^{0}, W^{ \pm}$

Nuclear Antishadowing not universal!

Scattering School

 University of Indiana June 11, 2015Scattering Theory and LF Quantization

Shadowing and Antishadowing of DIS Structure Functions

S. J. Brodsky, I. Schmidt and J. J. Yang, "Nuclear Antishadowing in Neutrino Deep Inelastic Scattering," Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

Modifies NuTeV extraction of $\sin ^{2} \theta_{W}$

Test in flavor-tagged lepton-nucleus collisions

Scattering School University of Indiana June 11, 2015

Scattering Theory and LF Quantization

Stan Brodsky

CrucialJLab Experiments

- Measure Diffractive DIS: Agree with Shadowing of Nuclear Structure Functions?
- Isospin Dependence of Diffractive DIS Reggeon Exchange
- Flavor Dependence of Antishadowing: Tagged Quark Distributions?
- Test for Odderon Exchange in DDIS

Look for Charge Asymmetries from Odderon-Pomeron Interference

Merino, Rathsman, sjb

Odderon-Pomeron Interference leads to $\mathrm{K}^{+} \mathrm{K}^{-}$, $\mathrm{D}^{+} \mathrm{D}^{-}$and $\mathrm{B}^{+} \mathrm{B}^{-}$ charge and angular asymmetries

Odderon at amplitude level

Strong enhancement at heavy-quark pair threshold from QCD Sakharov-Schwinger-Sommerfeld effect

Scattering School

University of Indiana June 11, 2015

Merino, Rathsman, sjb

$$
\begin{array}{r}
\frac{\pi \alpha_{s}\left(\beta^{2} s\right)}{\beta} \\
\underset{\substack{\text { Hoang, Kuhn } \\
\text { sjb }}}{ }
\end{array}
$$

Stan Brodsky SIN를
Single-spin
asymmetries
${ }^{\mathrm{i}} \vec{S}_{p} \cdot \vec{q} \times \vec{p}_{q}$
Psendo-T-Odd QED:
Lensing involves soft scales

> Light-Front Wavefunction
S andP-Waves!
final state interaction
spectator system

Leading Twist Sivers Effect

Hwang, Schmidt, sjb

Sign reversal ín DY! University of Indiana June 11, 2015

Stan Brodsky

Single-spin

 asymmetries in exclusive channels e-Exclusive
Sivers Effect connects to Inclusive Effect
$i \vec{S}_{p} \cdot \vec{q} \times \vec{p}_{K}$
Psendo-T-Odd
 S and P-Waves

Scattering School
University of Indiana June 11, 2015

Scattering Theory and LF Quantization

Stan Brodsky

- Square of Target LFWFs
- NoWilson Line
- Probability Distributions
- Process-Independent
- T-even Observables
- No Shadowing, Anti-Shadowing
- Sum Rules: Momentum and J
- DGLAP Evolution; mod. at large x
- No Diffractive DIS

Dynamic

Modified by Rescattering: ISI \& FSI
Contains Wilson Line, Phases
No Probabilistic Interpretation
Process-Dependent - From Collision
T-Odd (Sivers, Boer-Mulders, etc.)
Shadowing, Anti-Shadowing, Saturation
Sum Rules Not Proven

DGLAP Evolution
Hard Pomeron and Odderon Diffractive DIS

Need a First Approximation to QCD

$$
\begin{gathered}
\text { Comparable in simplicity to } \\
\text { Schrödinger Theory in Atomic Physics }
\end{gathered}
$$

Relativistic, Frame-Independent, Color-Confining

Atomic Physics from First Principles

Light-Front QCD

Fixed $\tau=t+z / c$

$$
\left(H_{L F}^{0}+H_{L F}^{I}\right)\left|\Psi>=M^{2}\right| \Psi>
$$

Coupled Fock states
Eliminate higher Fock states and retarded interactions

Effective two-particle equation

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

AdS/QCD:

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Semiclassical fürst approximation to QCD

Azimuthat Basis

$$
\begin{gathered}
\zeta, \phi \\
m_{q}=0
\end{gathered}
$$

Confining AdS/QCD potential!
Sums an infinite \# diagrams

Fixed $\tau=t+z / c$

ζ^{2} conjugate to $\frac{k_{\perp}^{2}}{x(1-x)}=\left(p_{q}+p_{\bar{q}}\right)^{2}=\mathcal{M}_{q+\bar{q}}^{2}$

$$
\int d k^{-} \Psi_{B S}(P, k) \rightarrow \psi_{L F}\left(x, \vec{k}_{\perp}\right)
$$

AdS5: Conformal Template for QCD

- Light-Front Holography
with Guy de Teramond and Hans Guenter Dosch

Fixed $\tau=t+z / c$

Duality of AdS ${ }_{5}$ with LF Hamiltonian Theory

- Light Front Wavefunctions:

Light-Front Schrödinger Equation Spectroscopy and Dynamics

Some Features of AdS/QCD

- Regge spectroscopy-same slope in n,Lfor mesons,
- Chiral features for $m_{q}=0: \boldsymbol{m}_{\boldsymbol{\pi}}=\mathbf{o}$, chiral-invariant proton
- Hadronic LFWFs
- Counting Rules
- Connection between hadron masses and $\Lambda \overline{M S}$

Superconformal AdS Light-Front Holographic OCD (LFHOCD)

Meson-Baryon Mass Degeneracy for $L_{M}=L_{B}+1$

Scattering School
University of Indiana June 11, 2015

Scattering Theory and LF Quantization 109

Stan Brodsky

$$
A d S / Q C D
$$

Soft-Wall Model

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Unique

Confinement Potential!
Preserves Conformal Symmetry of the action

Confinement scale:

$$
\kappa \simeq 0.6 \mathrm{GeV}
$$

$$
1 / \kappa \simeq 1 / 3 \mathrm{fm}
$$

de Alfaro, Fubini, Furlan:
Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

$$
m_{u}=m_{d}=0
$$

Scattering School University of Indiana June 11, 2015

Scattering Theory and LF Quantization

Stan Brodsky
S녀를

AdS/QCD and Light-Front Holography

- A first, semi-classical approximation to nonpertubative QCD
- Hadron Spectroscopy and LF Dynamics
- Color Confinement Potential

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

- Running QCD Coupling $\alpha\left(\mathrm{Q}^{2}\right)$ at All Scales Q^{2}
- What sets the QCD Mass Scale?
- Connection of Hadron Masses to $\Lambda_{\overline{M S}}$

Scattering Theory and Light-Front QCD

$$
\begin{gathered}
\text { Fixed } \tau=t+z / c \\
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
\end{gathered}
$$

x

AdS/QCD : Light-Front Holography

2015 International Summer Workshop on Reaction ${ }^{1.5}$ Theory

June 11, 2015
ЏT indiana university Jefferson Lab
Thomas Jefferson National Accelerator Facility

