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The physical origins and dynamical details of Regge behavior are stodied by examining a
general class of theories which are capable of describing the observed large-momentum-
transfer data and extending them into the intermediate-t range, The mechanism respon-
sible for the smooth connection between the deep-scattering region and the Regge region is
discussed in detail. We derive a convenient new form of the exact integral equation which de-
scribes generalized ladder graphs containing irreducible scattering amplitudes as the rungs.
The limiting behavior of the Regge trajectories and residues are then calculated in both the
single-channel and the more realistic coupled-channel cases. The trajectories are found to
approach negative constants for large negative momentum transfer and the residues fall as
powers in the same limit. Furthermore, since the forward and backward Regge regimes
must join smoothly onto the same fixed-angle behavior, there are relations between a priori
unrelated trajectory functions and residues. The standard properties of Regge poles, in par-
ticular factorization and signature, are-shown to be present even though the basic, fixed-
angle interaction possesses neither of these properties. These general considerations are
then applied to the more specific constituent-interchange model. Here we find that the asymp-
totic behavior of the trajectories and residues are controlled by the form factors of the par-
ticles involved in the scattering. Finally, we elucidate the relationship between the constit-
uent-interchange diagrams and the Harari-Rosner duality diagrams.

I. INTRODUCTION

The conventional wisdom of Regge analyses
states that hadron scattering at large angles is
hopelessly complicated; one could never hope to
unravel the effects of cuts, nonleading trajec-
tories, and other secondary singularities of the

j plane as they become increasingly important and
intertwined as

)
t

(
and

( u( become large. In this
paper we present just the opposite view: Regge
behavior at large ~

t
~

and large
~

u
~

is elegant and

simple; moreover, scattering in this region di-
rectly reflects the fundamental properties of the
interacting hadrons at short distances.

The most dramatic feature of this new point of
view for Regge theory is that all trajectories,
n,.(t), in hadron-hadron scattering will approach
negative constants as t--~. (A logarithmic be-
havior is also possible and is not inconsistent with
our approach. ) For instance, in a model calcula-
tion we find that meson-meson and meson-baryon
scattering is controlled at large angles by four
factorizable Regge poles which become degenerate
and approach = -1 as t - -~. In baryon-baryon
scattering, the contributions of these four trajec-
tories cancel as

~
t

~
becomes large, thereby ex-

posing a nonleading set of approximately exchange-

degenerate trajectories which approach =-3 at
The dependence of the residues and, most

important, the behavior of the first-order devia-
tion of the trajectories from their asymptotic val-
ues can be readily obtained. Thus we can discuss
quantitatively the transition region which connects
the large-angle asymptotic region of deep-elastic
scattering (t/s, u/s fixed; s -~) to the multipar-
ticle coherent Regge regions of fixed t or u.

The simplest illustration of this type of Regge
behavior is found in superrenormalizable field
theories such as Q'. As is well known, the t-
channel iteration of the Born amplitude, e.g.,
K(s, t) =g/(s- m'+i&) ', generates Regge behavior.
However, for' large

~
t ~, the leading behavior of

the complete amplitude is given by the Born term
and thus the effective trajectory n(t ) approaches

In the calculations presented here we start with
simple forms for the Born term K, which will re-
produce the features of all current large-angle
scattering data. The t -channel iteration of this
basic interaction then yields moving trajectories,
n, (t). Iterations in the s channel which unitarize
the theory become important at low energies (in
the resonance region) and at high energies when
an o(&) approaches + I, which is expected to occur
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only at small values of
~
t

~
. Thus our simple the-

ory should apply, except near
~
t

~

-0, where the
above complications are manifest.

Because of the power-law nature of the assumed
Born amplitudes, one finds that the leading be-
havior of the complete amplitude in the deep-scat-
tering region is given by the Born terms, and the
asymptotic trajectories and residues are thereby
constrained to produce this behavior. In the as-
ymptotic large-angle region, the interaction time
is so short that only the simplest "hadron irre-
ducible" interactions can take place, and the use
of the impulse approximation is justified. In this
region the coherent Regge effects are suppressed,
exposing the basic mechanisms which underlie the
interactions between hadrons.

It should be noted that our conclusions concern-
ing the nature of Regge behavior in the large-
angle and transition regions are independent of any
model used for calculating the basic interaction so
long as the underlying theory allows t -channel
iterations. Indeed, we could almost rely solely on
experimental data for the behavior in the large-
angle region. We admit our prejudices, however,
in favor of the parton-interchange model discussed
in Refs. 1, 2, and 3, since this theory is a natural
consequence of composite hadron models and cor-
rectly reproduces the deep-scattering exclusive
data —given only the power-law falloff of the me-
son and baryon form factors. We can also con-
sistently allow for logarithmic modifications of
the basic power-law results.

It is possible, of course, that other mechanisms
such as vector-meson exchange, ' elementary gluon
exchange, ' direct parton-parton interactions, ' or
perhaps hadronic bootstrap mechanisms, ' could
contribute to the Born terms. However, in view of
the apparent success of the interchange model, the
coupling constant between these other mechanisms
and the real hadronic world may well be small. In
that case, it is clear that as one approaches the
region of small

~

f
~

or
~

u
~

from the deep-scatter-
ing region, the first corrections to simple inter-
change results will be those due to mulitple inter-
actions of the basic interchange mechanism itself.
Such iterative effects Reggeize the scattering
process when the forward or backward regions of
exclusive scattering are approached, and other
interactions will only become important at quite
small

~

t [, where coherence can overcome their
intrinsically small coupling constant. Further-
more, if such additional mechanisms exist, it
will be important to know the kernel outside the
deep region in order to extend the Reggeization
procedure to the kinematic domain of very small

~
u~ or

~
t ~. However, we want to emphasize that,

the discussion of this paragraph notwithstanding,

the approach of the present paper is not tied to a
specific model of deep scattering.

Physically, the inclusion of multiple interactions
in the t channel can be thought of as allowing one
of the incoming hadrons produce in a b~emsstrah-
lung process a secondary hadron which, in turn,
undergoes the basic interaction with the other in-
coming hadron, at a lower effective energy. The
resulting theory has the complexities of normal
Regge behavior in the forward and backward re-
gions and joins smoothly to the impulse result in
the deep region. The physical consequences and
effects of the hadronic bremsstrahlung component
on parton-model results, especially in electromag-
netic processes, are discussed in another paper. '

The outline of this paper is as follows. In Sec. II
we derive a very convenient three-dimensional
Euclidean integral equation for the iteration of
two-body scattering amplitudes. An alternate der-
ivation using time-ordered perturbation theory in
the infinite-momentum frame is given in an Ap-
pendix to help in clarifying the physics of the equa-
tion.

In Sec. III we review the well-known fact that the
iteration of the ladder Born terms, K, in the t
channel becomes important and leads to Regge be-
havior of the scattering amplitude when the back-
ward or forward regions of exclusive scattering
are approached.

In Sec. IV, a treatment of more complicated
basic interactions is given. The Born terms used
here provide a realistic description of large-angle
scattering data. The single- and coupled-channel
cases, as well as the effects of signature, are
discussed, and the transition region between the
fixed-angle and the fixed-t or Regge domain is
described in detail. Techniques applicable to me-
son and baryon scattering in the large-angle and
transition regions are also presented.

II. DERIVATION OF THE INTEGRAL EQUATION

In this section we shall derive a very useful
three-dimensional integral equation which gives
the convolution of two general, two-particle scat-
tering amplitudes: M =E && T. Each amplitude K
and T can have general off-mass-shell dependence
on its external legs. Upon integration over the
mass squared l' of the Feynman loop, a covariant
equation is obtained in terms of the transverse
momentum and fractional longitudinal momentum
variables familiar from infinite-momentum frame
and light-cone variable analyses.

Among the uses of this equation are the follow-
ing:

(I) If K is chosen as a kernel which fits large-
angle scattering, then the t -channel iteration of
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K, i.e., M=K+K&&M wi1.1 produce an integral
equation which determines Min terms of K. This
equation yields Regge behavior and provides a
description of the physics of the transition between
fixed angle and fixed t. This problem is discussed
in detail in Sec. III.

(2) If %=K is taken as a basic (e.g., parton
model) Compton or electroproduction (or weak
production) amplitude, then the convolution
M =K +K xM, with a sum of hadronic scattering
amplitudes M, provides the synthesis between
electromagnetic parton models and hadronic phys-
ics. The Regge behavior of the Compton electro-
production amplitude in both energy and the
Bjorken scaling variable co is a natural reflection
of the Regge behavior of the hadronic amplitude,
M. This will be discussed in detail in another
paper. '

(3) Since K is by definition irreducible with re-
spect to two-hadron particle states in the S chan-
nel, Regge behavior in Mean be viewed as arising
from the elementary scattering on the "hadronic
bremsstrahlung" constituents of the target. The
spectrum of the hadronic bremsstrahlung is Regge-
behaved, G(x)dx-x "dx for x-0 (n =—1 for Pom-
eron behavior), where x is the fractional longitu-
dinal momentum in the P -~ frame. Further dis-
cussion of this point may be found in Ref. 8. This
picture is similar to the "wee"-parton-exchange
theory of Feynman' except that ha&ons rather
than partons with x-0 are responsible for Regge
behavior in hadron-hadron scattering.

The derivation of the integral equation presented
below will use a method discussed by Chang and
Ma' and Schmidt" in which a covariant Feynman
expression is transformed to a three-dimensional
form in terms of light-cone variables. An alter-
native derivation using time-ordered perturbation
theory in the infinite-momentum frame also can
be carried out. Although somewhat more cumber-
some, this latter derivation can be very illumi-
nating, especially in the context. of constituent
models and in comparison with earlier calcula-
tions. It is discussed in detail in the Appendix.

Let us begin by considering a diagram of the
type shown in Fig. 1(a). This figure describe. a
term M„which is the n-fold iteration in the t
channel of some basic scattering amplitude K.
The total scattering amplitude is a sum over n,

In order to discuss the properties of the sum, it
is convenient to derive an integral equation for M.
First, a recursion relation for M„„in terms of
M„and K will be derived as depicted in Fig. 1(b).
If all particles are spinless, covariant perturba-
tion theory yields the expression

~. I l' —m'+is) '[(I+q)' —m'+i~]
~ d4/

( 2)'si

xK(u, t; v', v; I', (I+q) )M„(u, t; i2, (l+q)'},

K

where u=(p-r)', t=q', u=(l-r), u=(p —l),
v' =p', v' = (1+ q)'. The dependence of M„on the
upper masses r' and (q+r)' has been suppressed
but the other off-mass-shell dependences of M„
and K have been explicitly displayed.

It is convenient at this point to introduce a dis-
persion representation for K:

(a)
do'

x W(v, t; v', O'; A.', P), (3)

(c)
FIG. 1. The integral equation for an hadronic ampli-

tude generated by the t-channel iteration of an hadronic
scattering kernel, E. (a) The amplitude in Nth order.
(b) The iteration equation computed in Eq. (6). (c) The
integral equation derived in Eq. (10).

where W is the discontinuity of K across the u cut
and the notation X'=l', X'=(l+q)' has been intro-
duced. When this expression is introduced into
Eq. (2), the integrand depends on I through the
three explicit propagators, as well as through the
dependence of M„on u = (l —r)' and the off-mass-
shell dependences (A2, V) of M„and W.

The integration over l' can, however, be readi-
ly carried out. To do this conveniently, we choose
the following parameterization of the Lorentz frame:
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v qP qP
4P & 4P 7 2P q

l2+1 2 l2+1 2

l gP + p ) lj ) xP
44xP 4'

The obvious poles in l' arise from the three ex-
plicit propagators and the u dependence of M„
(which can be written in the form of a dispersion
relation). The additional singularities in l' which
may arise as a result of the off-mass-shell de-
pendences of the subamplitudes will be discussed
below. Using the four-vectors as given in (4), it
is easy to see that all these singularities are in
the lower half l' plane if x is outside the range
(0, 1). If x is inside this range, only the pole at
(P -l )' = o' —ie is in the upper half plane and the
l' integration can be immediately performed to
yield

d'l do'
2(2v}'

I
3

2

where

(6)

='p - 'p
2P ' ' 2P

The rapidity of the incident particle P„ is ln(2P/v),
and is, of course, arbitrary. The choice P=v/2
is the lab system, and the choice P- ~ is the
usual infinite-momentum frame. In this case
x -=(l, + l,}/2P can be identified with the fractional
longitudinal momentum l,/P, . Note that the
masses of the two external particles at the top,
r'= r, ' a-nd (r+q)' = (r+-q), ', have been chosen
to be spacelike. This choice produces many sim-
plifications which will become apparent as we pro-
ceed. It will be simple to continue our final re-
sults back to stable physical-mass values at the
end of the calculation.

To obtain the recursion relation in its most use-
ful form, the l integration must be explicitly per-
formed. Using the above parameterization of l,
one finds (independent of P) that"

2 2 2 2

S(l )—= l~ ™i~+g
x

' 1-x
which is the sum of the kinetic energies in the in-
finite-momentum frame time-ordered analysis.

A few comments about this result are useful
here. First, the fact that only values of x in the
range (0, 1) contribute to the integral is due to the
choice of a particular type of frame. Using the
infinite-momentum method language, the vectors
r and q+x are not allowed to brihg in any longi-
tudinsl momentum (in the P - ~ limit). This is ac-
complished by giving the masses r' and (q+r)'
spacelike values. This statement is identical to
the observation made in the Appendix that only one
time-ordered graph contributes because the longi-
tudinal momentum must flow to the right in each
line.

Second, we note that the integral in Eq. (6) looks
very much like those that appear in time-ordered
perturbation theory in the infinite-momentum
frame. In fact, if a spectral representation of
M„ is introduced similar to that given for E in
Eq. (3) and is inserted into (6), the result is ex-
actly the time-ordered perturbation theory ex-
pression for the box graph [with external mass-
es v', P', r, ', an-d -(q+r), '] multiplied by
weight functions and integrated over the masses
of the rungs.

Third, in the case of simple analytic off-shell
behavior for K (e.g., Born terms with vertex
parts), Eq. (6) may be used in a straightforward
way. In the case of other, more complicated
graphs involving certain kinds of singularities in
X' and P, the 02 line integration must be deformed
to avoid singularities of the integrand. " This
more complicated situation does not occur in the
calculation of the absorptive part of M, nor in
any of the examples treated in this paper.

Having demonstrated the recursion relation
given by Eq. (6), the last (trivial) step in deriving
an integral equation for &is to sum over n. The
result is

M(u, t; v', P') =K(u, t; v', P')

'dx M(u, t; X', P)
2(2v) '

0 x'(1 —x)D,Di

x W(g', t; v', v', A.', V),

(10)

X' —m'=x[v'-S(l„x)] = xD, , —

~' —m'=x[P' —S(1,+(1 —x)q„x)] -=xD~,

u- m'=xf u-S(1, -(1—x)r„x)], (8)

where the D's are defined by Eq. (7). The struc-
ture of the formula is depicted in Fig. 1(c). This
is a particularly simple and convenient equation to
use to discuss Reggeization since it is covariant
yet has a nonsingular, Euclidean kernel.
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III. REGGE BEHAVIOR IN LADDER
APPROXIMATION

As a first application of the integral equation
(10), we turn to a well-known problem, that of
the Regge behavior of sums of simple ladder
graphs. This example will illustrate in a straight-
forward way the transition between fixed-t and
fixed-angle behavior.

We work in Q' theory, and choose as our Born
term a u-channel pole,

K = -g'(u —p, '+i e) '.
Using the dispersion representation (3), the weight
function which corresponds to this kernel is

W( v') =g'6(p, ' —0') .
Iterating this kernel in the t channel will generate
simple ladder graphs (as shown, for example, in
Fig. 2). Notice that the top two lines are crossed,
making the graph nonplanar, and therefore purely
real for s&0, t -0.'4

Turning now to Eq. (10) we see that with the
present choice for 8', a power behavior for M is
consistent with the integral equation. In particu-
lar, if one attempts to write M in the form

2 n(g)
M=P(t v' P ) +

then for large (-u), the equation for M becomes
a nonsingular homogeneous equation for P if
o.(t)& -1 and

1

To discuss the transition from the large-~ t
~

to
the small-~ t

~
region, let us examine the first two

terms in the series for M, and consider a slightly
more general case in which 8' may depend upon t.
To second order in W, the scattering amplitude
can be written as

„,W(c', t)M= do

J 22~'

FIG. 2. Ladder graph generated in Q theory. This
is calculated explicitly in the Appendix.

where

dx
o x'(1 —x)D, D~ (.p' —u)

' (12)

This form explicitly shows the analyticity in the
upper masses and the symmetry under the double
interchange v' —-r~' and P' —-(q +r, )'. This
result could also have been obtained directly from
a standard Feynman-parameterized form for M.

For large (-u), the leading behavior in J arises
from small values of x and y, and one easily finds
from (13) or directly from (12) that

1
x dz[m'+z(1 —z) q, '] -'+ O(1/u),

0
(14)

and this leading behavior is essentially indepen-
dent of 0' and p' and the external masses, and de-
pends only on the internal mass n.'. Expanding
the Regge expression for M,

M-P( )(t- /up)" '

in powers of ln(-u), and comparing the first two
terms with (11), we find that to lowest order in W,

pit) =f dv'W(a', i)i g'

1

o.(t) =-1+, , dz[1 —z(1 —z)t/m']
4(2m)'m' o

In the simple ladder case we are considering,
P(t) is g'/p', to this order in the couplings, and
o.(t) in (15) reduces to the well-known result of
Lee and Sawyer. " This is equivalent to a leading-
log perturbation expansion" in the coupling g, and
thus yields the result (15). Finally, for compari-
son with later results, we note that n(t) ap-
proaches its asymptotic limit for large

~

t
~

as

e(t)- —1+, , ln(-t/p, )+ ~ ~ ~ .P(t)
2(2n)'m' -t

Hence this simple ladder model yields the fol-

(16)

If the three denominators are combined using
Feynman parameters, the d'l, integration can be
performed and Z becomes [after scaling the Feyn-
man parameters by (1-x)],

1
J=w dxdydP, dP, 5(1 —x —y —P, —P, )b, ',

0

where

& =f (1 —x-y)m +p,p, q. ' —xyu+yp +xcr'

—x(P, v' +P, v')+y[P, r,'+P, (q, +r,)']] .
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lowing physical picture of exclusive 2-2 scatter-
ing: In the deep, fixed-angle region, only the
basic Born amplitude is important. Large-angle
scattering, therefore, is particularly simple. As
the forward or backward direction is approached,
multirunged ladders become increasingly impor-
tant, thus Reggeizing the underlying process and
building up the energy dependence of the scattering
amplitude.

To gain further insight into the relationship be-
tween the deep and Regge regions, it is very in-
structive to consider another simple example for
the kernel in the iteration scheme. The graph we
want to discuss is shown in Fig. 3: This kernel
includes one vertex correction. We work in the
frame described above and parameterize the ad-
ditional momentum k as

k +k k +k 2

k = zP+, k~) zP-
4zP

Using this frame it is straightforward to carry out
the dl' and dk' contour integrals. Doing this, we
find there are three terms which contribute to the-
diagram. These are shown as time-ordered
graphs in Fig. 4, where the dashed lines indicate
which particles are on-mass-shell. The first
term, Fig. 4(a) contributes when z & x, while the
others contribute when z& x. Remember that in
the infinite-momentum limit P- ~, z and x are
the fractions of longitudinal momentum carried by
the lines k and l, respectively.

We may now ask which of the vertex-correction
time orderings we expect to dominate in the Regge
region. Since, as we have discussed, small x is
most important here, we expect the time order-
ings with x&z will predominate. These are the
graphs of Figs. 4(b) and 4(c). As we move away
from the Regge region

~

t
~

grows for fixed
~ u~,

and, as we see from Eqs. (11)-(13), it becomes
more and more important for n and P to be small
in order to get a sizable contribution to J. Since
the 6 function must be satisfied, regions of the x
integration, where x is not near zero, become in-

creasingly important, and it is no longer justifi-
able to consider only contributions to J coming
from small x. As far as the vertex-correction
graphs are concerned this means that the time
ordering of Fig. 4(a) becomes more and more im-
portant. In addition, when

~

t
~

is large, all the
amplitudes, M„, n&0 are down by a least a factor

' from the Born term as we have shown. The
picture of Regge behavior and its relation to deep
scattering which emerges from these considera-
tions is the following. In the t channel, the Regge
region is dominated by the exchange of light par-
ticles with relatively small longitudinal momen-
tum in the infinite-momentum frame (x near zero).
If these particles are partons, we recover Feyn-
man's idea that Regge behavior arises from the
exchange of wee partons. ' Notice, however, that
the exchanged particles need not have pointlike
form factors or unusual quantum numbers —in our
formalism, the possibility that they are ordinary
hadrons is more natura, l. Meanwhile, the picture
in the s channel is that in each amplitude M„, the
Regge region is dominated by the many-particle
intermediate states as in Figs. 4(b) and 4(c) wha—t-
ever particles there are want to live as long a,s
possible. In addition, amplitudes M„with in-
creasingly large values of n become important in
order to build up the moving Regge trajectory. As

~
t

~

increases, each M„gets larger and larger
contributions from diagrams like Fig. 4(a)—that
is, the particles in the intermediate state pull
back and live for shorter and shorter times. Fur-
thermore, as

~
t~ increases, all the amplitudes,

M„ for n& 0 become small in comparison with the
Born term by at least a factor of ~~ t

~

', until final-
ly in the deep region only the Born term is impor-
tant.

IV. THE TRANSITION BETWEEN THE DEEP
AND THE REGGE REGIONS

In the simple example of Sec. IG, we reviewed
how the dynamics of scattering in the deep region
(roughly, s-~, t/s, u/s fixed; a more precise
definition is given below) produces, by t- hacnnel

(a) (b) (c)

FIG. 3. Example of a vertex insertion in a $3 theory
calculation of the full hadronic amplitude.

FIG. 4. Time-ordered contributions to the vertex
insertion diagram of Fig. 3. The dashed lines indicate
which intermediate-state particles are on the mass shell.
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iteration, ladder amplitudes which are increas-
ingly important as we move into the Regge regions.
Iterations of this type buiM up moving Regge poles.

In this section we will extend the analysis of
Sec. III to more realistic cases. The basic inter-
action kernels K which are used here provide a
good description of the large-angle data. While
their form is motivated by the parton-interchange
model, the iterative contribution to Reggeization
is more general and is not tied to any specific
model for deep scattering.

Near the forward and backward directions, co-
herent effects, including multiple gluon exchange
between the hadronic constituents, will very prob-
ably become important. These are not generated
by the t-channel iteration procedure but must be
included as an additional irreducible kernel. As

~

t
~

becomes larger, such effects may be sup-
pressed relative to iteration of the basic Born am-
plitude, provided the relevant coupling constants
are small. This is certainly the case in the in-
terchange theory of the deep-scattering (fixed-
angle) region. In this theory the iterative contri-
bution will provide an accurate picture of the na-
ture of the transition between the ct p-scattering
region and the Regge region. Consiaeration of the
coherent effects of gluon exchange is beyond the
scope of the present paper. Indeed, if present,
such direct interaction could be capable of binding
the propagating intermediate constituents to form
sets of hadrons or resonances, such as depicted
in Fig. 5, in the appropriate kinematic region.
In this picture the positive-energy portion of a
trajectory probes different aspects of the under-
lying interactions than does the trajectory for
large negative t.

In this section, therefore, we shall approximate
the kernel in the iterative Reggeization process
and neglect other types of two-hadron irreducible
kernels (such as those of Fig. 5). We will discuss
the trajectories obtained by our iteration scheme
and present a qualitative analysis of the energy
and angular dependence of hadronic scattering
through the transition region. Only scalar parti-
cles will be treated here; the extension to parti-

cles with spin is straightforward using the meth-
ods described in Refs. 1 and 2.

We turn first to a brief review of large-angle
scattering amplitudes. Since we are interested
primarily in the nature of the transition between
fixed-angle and fixed-t (Regge) behavior, we can
utilize the asymptotic large-t and large-u behav-
ior of the scattering amplitude to construct the
kernel, K. Thus we shall be able to use the sim-
ple asymptotic power-law form of the parton-
interchange amplitude. This can be written ap-
proximately as

K„~ ~D oc (-s )~„(-s)F~(u)FD(t)

-s' "(-u) c(-t) ~.

Here we have assumed the power-law behavior

FI(t) O- (-t)1, I =A, B, C, D (18)

for the form factors; possible logarithmic factors
have been neglected. The above form for K arises
when we consider the (ut) parton-interchange dia-
gram of Fig. 6, and particle B has the most con-
vergent form factor. For exa,mple, following the
naive quark model, we assume that nucleon-nu-
cleon scattering at large angles is controlled by
the interchange of the common quarks and for the
quark-plus-core bound-state model of the nucleon
obtain

4~N -mr

where a dipole dependence for the nucleon form
factors has been assumed. This result for the
scattering amplitude is in excellent agreement
with large-angle PP scattering data. Thus if one
wishes, one can take the assumed parameteriza-
tions of K as simple empirical fits to data, and
for most purposes of this paper the theoretical
origin can be ignored. However, as we shall dis-
cuss later, the identification of K with the inter-
change amplitude and Reggeiz3tion via the hadronic
bremsstrahlung mechanism may allow an elegant
dynamical interpretation of the Harari-Rosner
duality diagrams. "

In the case of meson-nucleon scattering, we ob-
tain using (17)

FIG. 5. Example of a dynamical correction to the
kerne1 K which is important at low t, but which is
assumed not to be important for large-angle scattering
in, for example, the parton-interchange model. The
external wavy lines could be hadrons or photons.

FIG. 6. A (tu) interchange contribution to the kernel,
K. The hadrons (double line) are represented at large
transverse momentum as parton (so1id line) core (wavy
line) bound states. The partons do not interact with each
other.
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&(u, t ) = (p,
' —u) "F(t), (19)

&z+, z+~ - (-u) '(-t )
'

from (6') quark interchange, and the assumption of
monopole meson form factors Fz(t) -t ' (see also
Ref. 18). In the case of wP - wP scattering, both
the (ut) diagram and the (st) (box) diagram (which
are related by s-u crossing) contribute in the
quark model. All of these forms, especially the
prediction that do/dt -s ' at fixed angle, are con-
sistent with. present data. (A complete review is
given in Ref. 1.)

To discuss the transition regions, we must dis-
cuss the region where (-u)-s is large compared
to (-t), which may or may not be large compared
to a typical squared mass. It is then convenient
to write the kernel corresponding to a (ut) parton-
interchange diagram as

A. Single-Channel Case

The weight function 8'for the interchange am-
plitude of the above form (19) is given by

g (n-&) (c2 2)
p())

(n —1)! (20)

where (n- I) refers to the derivatives of the 5

function. Alternatively, one could impose spectral
conditions of W(o', t) to achieve the same (-u) "

behavior of K. The dependence of F(t) on the off-
shell masses has been neglected. This is permis-
sible in the interchange theory because F(t ) is
independent of A.

' and X' for large enought t and all
integrals involved in the equation for M converge
rapidly in these off-shell mass variables. (Recall
also the discussion of Sec. II.)

Returning to the equation for M, and inserting
the above form for W,

' the o' and p' integrals can
be directly performed and the contribution to M
from the second-order iteration of the (ut) graphs

and F(t) falls asymptotically as (-t) D. For ex-
ample, for P-P elastic scattering, n-3 and D-2
while for w-P scattering, D is still -2 but n-1.[¹teadded iu proof. If a 3-quark wave function
is assumed for the nucleon, then n=2 3+d a=2
for pp scattering. See S. Brodsky and G. Farrar,
Phys. Rev. Lett. 31, 1153 (1973).] In a physically
realistic consideration of these cases, one must
treat a coupled-channel problem, which could in-
clude, for example, a dominant mn channel with
n-1 and D -1. Such a coupled-channel situation
will be discussed shortly, but first the simpler
single-channel case will be considered. Within
the limitations of the models discussed here, this
is directly applicable to the transition to Regge be-
havior arising from the baryon trajectory in back-
ward meson-baryon scattering as illustrated in
Fig. V. For this process n-2 and B-l.

M = (p,
' —u) "F(t )

mF'(t) (2n —1)!
2(2n)' [(n —1)!]'

1

X Cfxlp Q g6l 25 1 —X —p—
0

x(xy)" '6 '", (21)

x I+»„dz[1+z(1—z)q, '/~']F(t) In(-u/m')
7T S2 o

(22)

This leads to the identification of the Regge func-
tion to this order:

where 6 is defined in Eq. (13).
The large-(-u) behavior can be conveniently ex-

tracted by standard Mellin-transform techniques
(see, for example, the reference in Ref. 19) or,
more simply, by noting that only small values of
x and y can contribute in this limit and explicitly
carrying out their integration. The result is

M=(p, ' —u) "F(t)

P(t) = F(t)/!J'" (23)

o(t) =-u+ ——, dz[1-z(I -z)t/m']!i(t)(v '/»')"
4(2v)'

(24)

FIG. 7. Integral equation for backward meson-baryon
scattering. The double line is a baryon, and the dashed
line is a meson.

We see then that for large -t the trajectory de-
viates from its asymptotic value of -n (n& 1) ac-
cording to
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(25)

or

(-t/p, ')"D» c In(-u/m') .
(26)

Thus the transition from the deep region, in
which only the basic Born term dominates, to the
Regge region, where hadronic bremsstrahlung,
i.e., iterative effects become important, occurs
neither Rt a fixed value of t nor a fixed angle, but
someplace in between. The "softer" the particles
involved (that is, the larger the value of D), the
smaller the value of ~t~ required at a fixed value
of (-u) for the deep-scattering formulas to be
valid.

[If n = 1, an extra factor of ln(-t) arises from the
z integral. ] Thus the rate of approach of u(t) to
the value (-n) depends on the falloff of the form
factor of particle D. Recall, for example, that
wN scattering is characterized by D-2.

From Eq. (22) we can also estimate the point at
which Regge effects become small compared to
the basic interaction term K. This occurs when
the second term of M is small compared to the
first, i,e., when

[ ct(t) + n] ln(- u/m') « I

(27)

The effects of subsidiary trajectories in the Born
terms will be ignored throughout our discussion.
More general forms could be considered, for ex-
ample, p,

' could depend oni and j, etc., but the
above form is sufficient to illustrate the behavior
of the leading trajectories and to make the physi-
cal points that are of interest here.

Using this W to calculate the scattering matrix
to second order, the result coming from the first
term only in 8'with equal pairwise masses is

x gz„(t)I,', z„(t}, (28)

Thus if we label the t -channel states by indices
i and j, the appropriate weight functions W, ~, cor-
responding to the absorptive parts of the inter-
change kernels, are assumed to be given by

g (n-1)
(

2 2)~ (t)
(~-1)!

B. Coupled-Channel Case

In this section we will extend the previous dis-
cussion to a coupled-channel situation. A two-
channel problem will be set up and solved explicit-
ly but the final matrix forms can be easily ex-
tended to any number of channels. The channel
labels refer, of course, to the possible two-had-
ron states of given isotopic spin in the t channel,
such as (Vv) and (PP),' which occur in the itera-
tion procedure (see Fig. 8). For simplicity we
will assume that power-law falloff in (-u) of the
interchange kernel does not depend upon the cou-
pled t-channel states but that the residue does.

(29)

6'„. = (1 —x- y)M~'+ p,p,q~' —xyu+ (y+x)p'

x(P, +P—,) ,t!'fy(P, +P-, )t!f,'.
For large (-u), the asymptotic limit of the inte-
gral I,~& arises from small values of x and y and

therefore it does not depend on i or j but only on
k. Introducing the diagonal matrix H(t) with ele-
ments

the scattering matrix in the limit (-u) - ~ can be
written as

M = (~ u)-n

Kua + x F'(t)+, -„ ln 1-—,F'(t)&(t)F(t)
I

(32)

FIG. 8. FuQ integral equation for the scattering A.+B
A+B. The summation over H i.s over a11 contributing

pairs of hadrons.

In an N-channel situation the scattering matrix
will in general be diagonalizable and thus be char-
acterized by N eigenamplitudes. In the large-(-u)
limit, each eigenamplitude will have its own in-
dependent Regge behavior and residue. Thus, for
example, the scattering matrix for two channels
will be of the form (neglecting subsidiary trajec-
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tories}

M=P'(t)(-u/u')"'" +P (t)(- ulp') '"-, (33)

where 0., and e are independent eigentrajectories
and P' and P are (2x2) matrices satisfying the
factorization condition

only slightly more complicated since the cross
terms between F and G do not generate a ln(-u}
behavior in the second-order calculation. The
cross-term integrals produce a contribution to M
which in leading order has the simple form

det[P'(t)] =0. (34)
[C(m, n, t)(p, '- u) "—C(n, m, t)(p' —u)™J.

The n's and p's can be determined to lowest order
by comparing the Regge expression (33) with the
second-order expression (32) for M. One obtains
the equations

F(t) =P'(t)+P (t) (35)

F(t)H(t)F(t) =(n, +n)P'(t)+(n +n)P (t). (36)

The trajectory functions are determined from the
above equations and the factorization conditions on
the residues. The explicit relation that determines
the o.'s is then

That is, the integral reproduces the behavior of
the basic Born terms if m cn, but yields the loga-
rithmic contribution necessary for Regge behavior
if I=n. As follows from the previous discussion,
the trajectories that approach (-n) and (-m) are
each doubled in the general case.

In the physically interesting Fv and pp coupled-
channel system, recall that the interchange theory
(which agrees well with experiment} predicts as-
ymptotic ally that

n-I: F„=0, F ( t) F =F ( t)

(40)
det[ FHF —(o. +n)F] = 0 . (37) 022( ) & 011 G12 21

The roots of this equation are the eigentrajec-
tories. In the two-channel case under discussion,
the trajectories are given by

2(&, +n) = TrFH+[(TrFH)' —4detFH]'". (38)

The residues can then be written as

p'(t) =+ [12,(t) —n (t)] -'[FHF —(o., +n)FJ . (39)

The label 1 refers to the fn channel and 2 refers
to the pp channel. Of particular interest here is
the manner in which M» makes the transition
from the Regge region to the deep region. The
two leading Regge trajectories, both of which ap-
proach (-n) asymptotically, must cancel in this
amplitude. Using our previous results the tra-
jectories are given by

The most important feature of the solution to
note at this point is that both eigentrajectories
have the same asymptotic limit, n, (-~) =-n. This,
of course, is a direct consequence of the fact that
the trajectories and residues must be such as to
reproduce the Born terms, i.e., interchange ker-
nels, at large momentum transfer. Since the Born
term does not in general factorize, more than one
Regge pole is necessary to allow this limiting be-
havior while simultaneously satisfying the fac-
torizability requirements on the trajectory resi-
dues. It should also be noted that the scattering
matrix for the cases considered so far is purely
real, so that when we speak of a Regge trajectory
we really mean a strongly exchange-degenerate
pair of trajectories added together with the sign
appropriate to a purely real contribution. The ef-
fects of signature will be discussed later.

We are now finally in a position to discuss the
most realistic case: that of the coupled t -channel
v11 and PP systems, in which the power falloff of
the interchange kernels is not all the same. In
this case the two coupling matrices, + and G in
Eq. (27) are required to be nonzero. Fortunately,
the discussion of Reggeization is in lowest order

n + 2 [Fll 11 + ( 11 Hll 11H22F12 ) l

n, —-n+H„F„--n+0(-t) ',

n - -n -H„F„'/F„--n —0(-t) ',
(42)

and thus n is much flatter than n, . The residues
for the 22 process (pp - pp) behave for large (-t)
as

~22 022 HllF12 (++ +-) F12 /Fl1 ( t)

The lower-lying trajectory (which is not doubled
in this order) approaches -m for asymptotic (-t)
and behaves as

n, (t) --m+H»F» --m+ 0(-t) '.
Thus as (-t)- ~, M» has the behavior

(4l)

For large momentum transfer they approach their
asymptotic limits as
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-H„F, ' „+ "„[1+H,G jn(-u/p, ')], In(-u/p, "") G„

This represents a Born amplitude which has sin-
gularities for s & 0. Since t & 0, we need not con-
cern ourselves with any of the singularities in t.
In the parton-interchange model, such a Born
term corresponds to an (st) interchange graph.
We now want to iterate this kernel in the t channel.
Using the notation of Fig. 9, we can write

(46)

Thus the nonleading Regge trajectory dominates in
the fixed-angle, deep region by almost a full pow-
er of s because the two leading trajectories can-
cel. For small ~t~, however, it is clear that the
trajectory a, dominates the scattering amplitude
for all coupled processes. Since a, arises pri-
marily from the pion channels in the iterative
process, we can rephrase this result as implying
that all hadron-hadron beams are essentially pion
beams at large impact parameters. That is, in
the region of small jt~ or (u~, incoming hadrons
produce pions in a bremsstrahlung process (the
bremsstrahlung spectrum being characterized by
Regge behavior); these pions then undergo the
basic interchange interactions. Note that coherent
Regge effects become unimportant and the Born
term dominates when

(46)

C. Signature

In our discussions so far, we have limited our-
selves to cases in which the irreducible kernels
have discontinuities in u for positive u, but no
discontinuities in s for positive s. As a result of
this restriction, the amplitudes generated by t-
channel iterations of these irreducible kernels
have been purely real. In Regge language, this
means that we have been generating only pairs of
strongly exchange-degenerate Regge poles. In
general, however, hadronic amplitudes are not
purely real, and so w'e must generalize our Reg-
geization procedure to include the possibility of
nonzero imaginary parts. The imaginary parts of
amplitudes described by Regge poles come from
the rotating phase terms of the signature factors,
and so the generalization to complex amplitudes
requires a method of properly including signature
factors in the Regge poles. This is the task of the
present section.

To see how signature factors come about in our
scheme, consider the simple one-channel problem
defined by specifying the basic interaction

K f(~)(p -s) "~ (47)

This is to be compared with Eq. (26) for the single-
channel case.

x [(I+q)' —m'+is]

x [ (p + I + q)' —o'+ ie]
x [(l+q+x)' —p2+ie]

x6 (n-1) (@2 o2) (48)

where we have used the dispersion representation

Q+r

q+r

Pts i/ q+l

P+Q

P+Q

FIG. 9. Labeling of the integral equation for the first
iteration of E. The equation gives the first correction to
the asymptotic values of the effective trajectories. The
top lines are uncrossed here since these diagrams are
planar in the s-t plane.

f(t)(u'- ) '=
(n-1)! s-o'+is

for the lower amplitude. The upper external lines
of Fig. 9 are uncrossed since E has a singularity
for s&0, rather than u&0. The s variables for
the lower and upper subamplitudes are, respec-
tively, s'=(p+ I+q) and s =( +Iq+r) The. ex-
pression for M, can be evaluated by methods simi-
lar to those used before. In the present case, the
only nonzero contributions to the integral come
from the region -1&y&0. For our purposes, how-
ever, it is easier to simply shift the origin of the
d41 integration. With the substitution l- -l -q, it
is clear that (48) is identical to (11). In particular,
therefore, the asymptotic behavior of (48) for

~
u~- (or s - ~) is

f'(t)H(t)(p. ' —u) " In(-u)

as in (32). This result can be understood by draw-
ing Feynman diagrams in, say, Q' theory. In that
case, it is easy to see that the t-channel iteration
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of two s-channel poles has the same topology as
the t -channel iteration of two u-channel poles.
[Recall that because of our conventions, it is
necessary to cross the intermediate lines to keep
the quantum numbers flowing properly, and this
results in an over-all nonplanar graph with (ut)
topology. ]

Now, suppose we wish to continue iterating the
kernel. The third-order iteration presents us
with a new situation; the kernel has an $-channel
(i.e., positive s) discontinuity, but the amplitude
M„with which it is convoluted, has a u-channel
discontinuity. Using arguments similar to those
sketched above, one can show that this graph is
related to the third-order graph calculated by
iterating three times a (ut) Born term by s —u
crossing. In particular, the leading term as
S-~ 0 1S

Furthermore, the same result follows from the
convolution of a kerriel which has a u-channel dis-
continuity with a subamplitude M„which has an
s-channel discontinuity. These topological prop-
erties are conveniently summarized by the fol-
lowing rules:

Q u=R~

S(3$ =Q~

Su=S
y

us =s.
Here u(s) stands for any amplitude with only a u-
channel (s-channel) discontinuity, and S denotes
the operation of convolution. We remark in pass-
ing that kernels which have discontinuities both
for u& 0 and s &0 (su) amplitudes can be handled
in a similar way. These kernels have nonzero
third double-spectral functions and correspond,
for example, in the parton-interchange theory, to
(su) interchange graphs. When such a kernel is
inserted as a subamplitude into our recursion re-
lation, it generates an output amplitude with both
s- and u-channel discontinuities. The topology
rules for (su) amplitudes are

su u=s u+uu=s+u,
su$ =s gs+us =u+s,
susu=$ (3$ +$ u+us + u u

=s+u.
Let us return now to the problem posed at the

beginning of this section. To see the structure of
the total amplitude M, generated by iterations of
the Born term (47), it is convenient to use a
(perturbation) approximation keeping only the

highest powers of ln(-u) or ln(-s) coming from
each order of the iteration. It is then a simple
matter to sum these terms. The result is

~= 2' f (t) [ (-u) ' + (-s ) +]

——,'f (t)[(-u)"-—(-s)"-], (50)

where n, (t) =-n

sf�(t)H(t)

in this approximation.
We therefore have two nonexchange degenerate,
signatured Regge poles of opposite signature. For
~t! - ~, n, (t)- n-and the trajectories do become
degenerate, their sum reproducing the Born term
as required by consistency. As we move to small-
er ~!t!, however, the trajectories split, one rising
while the other falls. This is to be contrasted
with the case in which the kernel has only a u-
channel discontinuity. In that case, we can also
write the amplitude as the sum of two signatured
Regge poles, but they must be exactly strongly
exchange-degenerate. The fact that the residues
of the poles in (50) are (up to a sign) equal is an
artifact of our approximation. This equality will
be broken by the terms we have neglected in de-
riving the above expression (50).

The results we have been discussing depend only
on the singularity structure of the kernels used in
the iteration scheme. If we apply our methods to
the parton-interchange theory, we find that itera-
tions of (tu) graphs generate pairs of exchange-
degenerate poles, while the iterations of (st)
graphs generate pairs of non-exchange-degenerate
poles. There is evidently a correspondence be-
tween these observations and the predictions of
Harari-Rosner duality diagrams. " In the case of
duality diagrams, a 2-2 hadronic scattering am-
plitude with exotic s-channel quantum numbers is
represented by a, nonplanar diagram which, for
forward (elastic) scattering generally looks like a
(tu) parton-interchange diagram. The nondiffrac-
tive parts of such amplitudes are predicted to be
real in the Regge region, i.e., the leading non-
Pomeron Regge poles are supposed to be exchange-
degenerate near t=0. On the other hand, planar
duality diagrams which look just like (st) parton-
interchange diagrams can be drawn for reactions
with nonexotic s- and t -channel quantum numbers.
For such amplitudes exchange degeneracy among
the non-Pomeron poles near t =0 is not expected.
The same rules of exoticity that determine wheth-
er or not a planar duality diagram can be drawn
also determine if a planar parton-interchange
diagram can be drawn. In the single-channel case,
therefore, there is a straightforward connection
between the predictions of duality diagrams near
t =0 and parton-interchange diagrams in the deep
region, since t-channel iterations of the (tu) in-
terchange amplitude generate pairs of exchange-
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degenerate poles, while no such degeneracy auto-
matically follows from the iteration of (st) inter-
change amplitudes.

In the more realistic coupled-channel problem,
the correspondence is not quite so simple, since
planar (st) subamplitudes will in general contri-
bute in the iteration scheme to processes with
exotic s-channel quantum numbers, and thus will
generate imaginary parts in such amplitudes.
However, these imaginary parts, in addition to
contributing to very low-lying trajectories, prob-
ably build the Pomeron pole. In fact, in the con-
text of our Reggeization scheme, a quite natural
characteristic of the Pomeron pole is that it is a
measure of how much the particles entering the
bottom of the graph forget their identity on their
way up the ladder. '9 (See the discussion for fur-
ther clarification. )

V. DISCUSSION

It is a we11-known and obvious fact that the sum
of simple ladder graphs yields an amplitude which
is Regge behaved. In this paper we have derived
a particularly useful form of the integral equation
describing such graphs which can also handle
generalized ladder graphs. This equation was
used to extract the limiting behavior of the Regge
functions in the case of general input Born terms
of physical relevance in both the single- and cou-
pled-channel situations.

In this latter case, it was shown that if the basic
Born terms do not factorize (i.e., if they are not
of rank one —which is certainly the situation in
general) then multiple eigen-Regge trajectories
are generated which have the property that they
become degenerate asymptotically. This happens
in such a way that the sum of the separate Regge
contributions, each of which factorizes, correctly
reproduces the nonfactorizing input terms. Thus
it is expected that such degeneracies will be a
quite common phenomenon if the basic input terms
have the general structure used here.

In the physical example of the coupled meson-
baryon system which was briefly discussed in the
text, we expect the leading and most important
trajectories to be roughly as shown in Fig. 10 for
each signature. The input to this calculation is
a fit to elastic nP and PP scattering at large angles
based on the interchange model, ' which is in
agreement with the phenomenological analysis of
the effective Regge trajectory for the above pro-
cesses." In a calculation which includes the ef-
fects of signature, this model also predicts that
in P-P scattering the nonleading, but surviving
trajectories rapidly become exchange degenerate
as ~t~ increases and both approach n, .

Some general predictions following from this
approach which are in addition to the specific
limiting behavior derived in the text are:

(l) For any process, the existence of hadronic
bremsstrahlung will lead to Regge behavior at
small momentum transfers. As ~t~ increases,
this multihadronic component of the wave function
will become less important and the basic inter-
action mechanism will increase in importance.
The physical reason for this is that if the basic
interaction falls with energy, then a high-energy
projectile will prefer to emit hadrons (via a
bremsstrahlung-type process) which have less lon-
gitudinal momentum and hence can interact at a
lower effective energy. At large ~t~ values, it is
difficult for this emitted particle to be reab-
sorbed by the projectile as required for an elastic
or c(uasielastic scattering process. At low ~t~

values, however, reabsorption can occur easily,
and this leads to the Reggeization of the amplitude
which should control the behavior of the process
in this kinematic region.

(2) The above theory of Regge behavior in ex-
clusive scattering is physically the same as that
described in Ref. 2 for the inclusive case. How-

ever, it is interesting to note the contrast between
the mechanisms that suppress Regge behavior at
large transverse momentum in exclusive scatter-
ing and in the pionization region of inclusive scat-
tering. In the exclusive case, it is the fact that at
large momentum transfer, the probability of re-
absorbing all the hadronic bremsstrahlung is small.
In the inclusive case, it is energy-momentum con-
servation —the radiated hadron that is responsible
for directly producing the detected particle must
have the necessary energy and momentum.

= 24p,

FIG. 10. Regge trajectories of hadronic scattering.
The n+ and n trajectories become degenerate at —1
for t ——~ and control large-angle meson-baryon
scattering. The m ~ trajectories cancel in baryon-
baryon scattering exposing the no trajectory which is
expected to approach —3 at t —-~ in the interchange
theory. Although the iteration scheme becomes very
complicated to compute for t 0, the trajectories are
expected to smoothly continue to positive t, where at
least some of them will be associated with physical
hadrons according to the usual dicta of Regge theory.
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(3) For sufficiently large but fixed t, the mm and

+ differential cross section shouM have an energy
dependence corresponding to a trajectory having
the value o.(t) --1. Furthermore, if the parton-
interchange picture is correct, the associated
residues P(t) should fall in t as the pion and nu-
cleon form factors, respectively.

(4) In general, we expect the I= 0 and I= 1 ex-
changes to have the same limiting trajectory value
and residue behavior. It is possible to adjust the
hadronic wave functions to destroy this expected
degeneracy, but this would not be a very natural
choice

(5) As was pointed out in Ref. 21, the fact that
the large-angle behavior of the amplitude is re-
lated to the asymptotic behavior of the Regge tra-
jectories yields relations between a PH'Oxi unre-
lated Regge functions. " For example, in meson-
nucleon scattering, as one moves out from the
forward direction, the exchange meson trajecto-
ries must join smoothly on to the basic interaction
describing the 90' behavior. Similarly, as one
moves out from the backward direction, the ex-
changed baryon trajectories and residues must
join smoothly on to the same 90 amplitude. Thus,
the baryonic trajectories and residues are related
to the mesonic residues and trajectories at large
momentum transf er.

(6) For sufficiently large ~t~, the PP scattering
amplitude should become exchange degenerate
without subtracting out the Pomeron contribution
since it is most naturally associated with the lead-
ing trajectories which cancel for large ~t~.

"
(7) The complexities in our calculational ap-

proach near zero momentum transfer arise from
two sources. The fact that there is a trajectory
near 1 means that unitarity in the s and u channels
must be taken care of properly. The second point
is that the two-hadron irreducible kernels K were
approximated by forms which should be accurate
and relevant only for large ~t~ values. Therefore
the output could hardly be trusted for small t val-
ues. It is certainly natural to assume, however,
that the trajectories we compute for large negative
t will continue to positive t and in some sense
keep their identity (except perhaps for the leading
I=O Pomeron singularity which goes to 1 at t =0)
thus giving rise to particles and resonances.

(8) There seems to be an intriguing parallel be-
tween the interchange graphs iterated in the t-
channel and duality diagrams, as we discussed at
the end of See. IV. Perhaps we can make this
relationship somewhat clearer by drawing an
analogy from atomic physics.

Consider the problem of an atom in a magnetic
field. For zero external field, all the states with
a given J' (total angular momentum) have very

nearly the same energy and are thus degenerate.
When a weak magnetic field is applied, the (2J+1)
degenerate states split, and we have the Zeeman
effect. As the external field is increased, the
energy levels of states with different J and M~
change, until finally in a very strong field some
of the levels again become degenerate (the
Paschen-Back effect). The degeneracy pattern
for a strong field is, however, not the same as the
degeneracy pattern for the weak field. The reason
is that different pieces of the Hamiltonian are
dominant in the two different regions, and so the
approximate eigenstates of the Hamiltonian are
not the same. Exactly the same thing happens in
hadronic scattering. In the deep region (~t~-~),
a number of Regge trajectories become degenerate
as we have shown. This is because, in this do-
main, the most important forces are those which
are short-ranged. In the Regge region, we again
find degeneracy among various trajectories, but
here the degeneracy arises because the long-
range part of the Hamiltonian is most important
(large impact parameters), and so the approxi-
mate eigenstates are different. In the single-
channel case the degeneracy patterns are simple
enough so that the connection' between duality dia-
grmn. s and parton-interchange diagrams can be
easily made. But a realistic coupled-channel sit-
uation involves many trajectories so that the exact
relationships among them over the entire t range
is complicated, indeed. Nevertheless, the analogy
presented here shows why one should expect de-
generacies among trajectories at large

~
t~ and in

general, a different degeneracy pattern at small

(9) Our experience in fitting the lowest-order
predictions of the interchange theory to experi-
mental data leads us to expect that the type of be-
havior predicted here for the transition region
will improve both the fit to the data and extend the
range over which a fit can be carried out. The
rather striking cancellation between the leading
trajectories in PP scattering and the degeneracy
of the leading trajectories in the mP case should
produce effects which can be clearly seen experi-
mentally. These effects may have been responsi-
ble for some of the difficulties found in attempts
to extend simple Re~ge fits to higher momentum
transfer.

In this paper we have tried to accomplish two
main objectives. The first has been to derive an
integral equation which allows a simple discussion
of Regge behavior arising from generalized ladder-
type interactions. The second has been to apply
this equation by considering a basic interaction
which correctly reproduces the features of large-
angle data and which has some theoretical motiva-
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tion. Thus we have gone considerably beyond the
normal Regge approach to scattering by predicting
the behavior of trajectories (their asymptotic limit
and the approach to that limit), and the behavior
of their residue functions at large momentum
transfer. We cannot extend these predictions to
small t values without considerably expanding the
input assumptions and the dynamics.

The general behavior of the trajectories arising
from our model is in good agreement with the ef-
fective trajectories derived from experiment in
Ref. 21. However, the cancellation between the
leading trajectories inPP scattering is a rather
novel effect which will require considerably more
experimental confirmation. Its existence depends
on the fact that the meson-nucleon and nucleon-
nucleon differential cross sections fall with a
different power of the energy at fixed, large angle.
This does seem to be the case in the present ex-
perimental regime.

While a full comparison with experiment of a
Regge parameterization of the type proposed here
has not yet been carried out, the success of the
fits described in Ref. 1 and the trend of the fits
at smaller momentum transfer lead us to expect
good agreement. " This would considerably ex-
tend the applicability in a new kinematical direc-
tion of a type of theory which has already been
successfully applied to reactions ranging from
pion-nucleon scattering at = 5 GeV/c to the inclu-
sive production of lar ge-transverse-momentum
mesons at the CERN ISR.'4

is conveniently written in the form

D„j.=D~+Eg -E

=D»+ —[M —S(1»,—x», l», x»,)] .
N

In general

D =D + —[M —S(l, —x l, x )]
1

CO@

-1 2+ — [M -S(4-2-x».4 i x».)]

+ ~ ~ ~

where

+ -- [M' —S(t, —x,f„„x,)],4) ~+1

4) J —XgXQ $ XJ ~

The central energy denominator takes the form

D, =D, +—[ l,' —(l, —r)'] - 2P r1

1

1= u+ r„' —v'+D, +—[ i,' —(l, —r)'],
1

(AS)

= v —S( l» + (1 —x»)If' x») ~

which is actuaQy independent of v' at fixed u. The
denominators on the right-hand side of the dia-
gram have the form

APPENDIX

In this appendix we give an alternate derivation
of the basic iterative equation (10), given in the
text, for the case of (generalized) ladder graphs.
Time-ordered perturbation theory in the infinite-
momentum frame of Eq. (4) will be used." The mo-
menta of the internal particles are defined in the
text and, as before, v' and v" are the masses of
the lower external particles. The advantage of
choosing a frame in which the upper two particles
do not carry any longitudinal momenta is that only
the trapezoidal time-ordered graph of Fig. 2 con-
tributes.

Defining E~ to be 2I' times the energy of the
intermediate state J, the required "energy" de-
nominators are of the form D~=E -E~. For ex-
ample, the first denominator on the left is

l~ +M l~. + p.= vN xg 1 ~ x~

-=v'-S(l», x„).
(For convenience we drop the z subscript on all
transverse momenta. ) The second denominator

D„',=D' +—[M' —S(l„,+ (1 —x„,)q, x„,)] .
CO~

Thus the (%+1)th-order ladder contribution to
the scattering amplitude is simply

2 Pf+1

"+' 2(2 )'

d'l;dx,
;"; (x,.)'"'(1-x,.)D,D,.' D, '

for J=1,2. . . ..N-1, and

p'+ j. s +++1

and comparing to (A4). We find

(A5)

where g is the coupling constant describing the
three-particle vertices.

An iterative form for this equation can be de-
rived by writing down a similar formula for M„„,
changing variables in it from l~ to l~ defined by

l~ —x~l~+, —l~ —x~l~+,
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M„„(u,-q'; v', v", r-, -(q+x) )

g d kdx
2(2~)' x'(1- x)DD

x M„„(u', q'; y' y '& z' (q+z)')

The integral equation for the full ladder scatter-
ing amplitude is then

M(u, -q'; v', v'2; r-', -(q+r)')

g' " d'k dx
2(2w)' x'(1 —x)DD

where
x M(u', -q'; X', X"; r', --(q+r)'),

D = v' —S(k, x), X' —M' = xD,
(A7)

D' = v" —S(k + (1 —x)q, x), A.
"—M' = xD'

with

&=g'(u' —u) '.

(A9)

(A10)

u' —M =x[u —S(k -(1 —x)x, x)] . (AB)

and a rearrangement of Do shows that we must
define u' by

The generalized folding formula (10) of the text
can be derived after only slightly more work by
treating as a unit the addition of two (or more)
rungs to the ladder.
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The interrelation between the two different types of sum rules, the chiral SU(2) SU(2) spectral-
function sum rules and the ones based on the saturation of the chiral SU(2) (3 SU(2) charge algebras

(which also includes the time derivative of axial-vector charge) especially studied by Gilman and Harari

(G-H), is investigated through the charge-charge density algebras and under the same single-particle

approximation. It is shown that, if the p meson is the only I = 1 vector meson, (i) the G-H
saturation is justified for the case of helicity X = 0, (ii) the whole set of sum rules is entirely

consistent with each other, including the second-spectral-function sum rules, and (iii) m„' 2m&' thus

follows to the extent that the KSRF (Kawarabayashi-Suzuki-Riaduddin-Fayyazuddin) relation is experimentally

satisfied. The modification due to the addition of the newly discovered p' meson to the scheme is studied,

It is found that the p' cannot play a dominant role and its relevant couplings, p'mn and p'-y, are restricted to
small values. Typically, we obtain F(p'~ mm) =50-80 MeV and (G /G )' =. 0.2, if the p' is treated as the

triplet D states of the quark model and no more vector mesons are introduced. Some remarks are also made

about the A, px coupling.

I, INTRODUCTION

Whether the A, mass agrees with the prediction'
m„= Wm~ or not is still controversial. The Par-
ticle Data Group' lists its mass around 1070 MeV
but with the comment"-broad enhancement in the
J~= 1' pg partial wave; not a Breit-Wigner reso-
nance. Some say that it is a broad effect centered
at (presumably) higher mass. On the other hand,
considerable evidence (but again not clearcut) also
exists for the possible SU(3) counterparts of A, ,
i.e., K„(1240), D(1285), E(1422), etc.

There is also now convincing evidence' for the
existence of another p meson called p' (p' p v'm,
with M=1.5 GeV and I'=0.4 GeV). It could, for
example, be the triplet D states of the quark mod-
el. One of the interesting problems related to the
p' is the strength of the p'- mm and p' photon cou-
plings. The other is the effect of the p' on the sum
rules involving p, A.„and ~ mesons, etc. We study

these problems in close connection with the earlier
works based on the chiral SU(2)ISSU(2) algebras.

Define G, G„, and p„by (2q, )'~'(0( V'(0)~p (g))
= Gpe'„, (2q,)' '(0~A „" (0)~A, (fl)) = G„e"„, and (2q, )' '
x (0~A„"(0)

~
w (iP) =~,q, respectively [ V'„(x) = V'„(x)

+i V„'(x), A q(x) =A„'(x)+iA„(x), etc].
From the spectral representation of the vacuum

expectation values of the currents V'„(x) and A'„(x)
or the algebra of the gauge fields, Weinberg' ob-
tained the spectral-function sum rules, '

G G (first sum rule),
mp mQ

G ' = G„' (second sum rule). (2)

Das, Mathur, and Okubo' also obtained these sum
rules by requiring that leading terms in the asymp-
totic expansion of the current propagators become
SU(2) ISSU(2) invariant at high momenta.

The so-called KSRF relation'


