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Axial vector (pseudo-vector) mesons

• Spin J and parity P  

• Quark model       states with orbital angular momentum  

• Multiplet like the pseudo-scalar                and vector               
states (whose          )  

• Particle Data Book names:                                                                    
— a_1 (1260)          Isospin I = 1                                                              
— b_1 (1235)                      I = 1            

• — K_1 (1270), K_1 (1400)   I = 1/2, strangeness S = +/- 1               

• Focus in these lectures primarily on the I = 1 a_1 state; with some 
discussion of the K_1 states 

• a_1 forbidden to decay in two pions; 3 pions is the simplest                                                                                   
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Outline - 1

1. Axial-vector mesons — names, symbols 

2. Features of the data 

3. Production dynamics 

- Deck model (non-resonant) 

- Final state interactions  

- Unitarity and analyticity 

4. Phenomenology of the  

- One pole, one channel case (     ) 

- One pole, two channel case (                         ) 

- Heavy lepton decay 

5. Photoproduction of          , and final state interactions 
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Outline - 2

1. Axial-vector mesons in  

- Two resonances (poles), two peaks 

- Mixing 

2. Fast forward to 2014 - 2015, the      again 

- One or two axial vector          states?  

- One resonance pole, two peaks 

- Extraction of the axial vector mass, width, and branching 
fractions
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How is the a_1 produced?  

• Quantum numbers forbid      decay into      ;           is simplest 

• Well studied reaction is                      .  At high energy and small 
momentum transfer to the target, “beam excitation” meson 
systems can be separated from “target excitation” N*’s 

• Another environment is a weak process such as heavy lepton 
decay  

• Selected hadronic experiments: 

- CERN-IHEP group, 25 and 40 GeV/c, 70K events, Antipov, Ascoli 
et al, Nucl Phys B63, 153 (1973); Phys Rev D7, 669 (1973) 

- ACCMOR, 63 and 94 GeV/c, ~600 K events, Daum et al Nucl 
Phys B182, 269 (1981) 

- E-852, 18 GeV/c, ~5 M events, Dzierba et al PRD 73 (2006) 

- COMPASS 190 GeV/c, 50 M events, Adolph et al arXiv:
1501.05732 [hep-ex] (2015)
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Characteristics of the hadronic data - 1

• Broad invariant mass distribution (COMPASS data as example) 
and sharply falling momentum transfer distribution 

!

!

!

!

!

!

!

!

!
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Light-Meson Spectroscopy Tests of Chiral Dynamics
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Characteristics of the hadronic data - 2

• Mass distribution changes with selections on the range of momentum 
transfer 

!

!

!

!

!

!

!

• This correlation of the slope with mass is reasonably well understood 
theoretically (feature of the doubly-peripheral Deck mechanism) 

!
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Light-Meson Spectroscopy Tests of Chiral Dynamics
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Spin & parity content of the distribution

• Extracting the spin and parity of 3 body systems is more difficult 
for 3 body systems than for 2 body systems 

• Special methods developed based on an isobar approach  

• Think of the 3pi system X as a superposition of quasi two body 
systems  

!

!

!

!

!

!

• Are there 3-body contributions not well represented this way? 
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Example of a Dalitz plot 

• Take slices of 3 pi mass and look at the Dalitz plot — evidence of 
isobars is evident  

•                   region exhibits  

!

!

!

!

!

!

!

!

!
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Light-Meson Spectroscopy Tests of Chiral Dynamics

Partial Wave Analysis - Formalism
Step One: Decomposition in Spin-Parity States

Florian Haas — COMPASS Hadron 8/37

Spin-Parity Decomposition for each bin of t and m3⇡ (2D)
Assumption 2: Factorisation of production and decay vertex.
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Spin & parity content of the distribution

• The intensities in the different spin-parity          waves, and the 
relative phases among them are extracted from the isobar model 
fits to data 

!

!

!
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Two prominent waves at low mass

• Intensities of the                                                   waves  

!

!

!

!

!

!

!

!

!

!
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Interpretation of the J^P = 1+ wave

• There is no longer the uncertainty there was in ~1975 that  
the enhancement is resonant 

• Nevertheless, determination of the mass and width of the 
a_1 resonance requires an understanding of what else in 
going on in that partial wave 

• One question: why does the phase of the 1+ wave change 
slowly with respect to other partial waves, unlike the rapid 
behavior expected of a Breit-Wigner amplitude 

• In mid 1970’s we treated                                                                
as a coupled channel system 

• Theoretical reasons: extra channel provides inelasticity and 
affects phase motion; SU(3) …..
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Deck Production Mechanism  

• Examine                        at large incident     momentum and 
small momentum transfer to the target.   

• Think of the 3 pion system as a superposition of quasi-two-
body systems                                          likewise for  

• One pion (one Kaon) exchange production, followed by 
diffractive scattering of the virtual pion from the target: 

!

!

!

!

!

• Also graphs in which the rho or the K* are exchanged
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fully our method for incorporating unitarity cor-
rections, and we provide analytic forms for the re-
sulting amplitudes. Section IV contains our numeri-
cal results, and finally, in Sec. V we discuss these
results and present concluding remarks.

1T n =gp~t (t,,), is„e"~o„
m~ —t2

(2 I)

Here gt is the pew coupling constant, Kt(f, ) is the
incident pion momentum in the, p rest frame, g is
the slope of the mXelastic diffraction peak, and a,~
is the mP total cross section. The invariants g»,
t„and t, are defined in Fig. 1(a). For similicity in
the above equation we have not introduced Reggeiza-
tion of the pion propagator, ' nor any off-mass-
shell dependence, nor lower-lying trajectories in
the wN amplutide. To Eq. (2.1) must be added the
contribution of the vector-meson-exchange graph'
of Fig. 1(b).
We are interested in the J ~ =1+ $-wave pro-

jection (in the final ps system) of the Deck ampli-

II. BACKGROUND DECK AMPLITUDES

A. Generahties

The Deck amplitudes which contribute to the dif-
f' active productionof the nonresonant pm system are
well known. '6 Diagrams are shown in Figs. 1(a)
and l(b). The pion-exchange amplitude of Fig. 1(a)
contributes a term to the total invariant amplitude
having the form

tude, with t-channel helicity g, =0. The resulting
expression is straightforward to obtain. ' At
fixed s, it depends on the momentum transfer g, and
on the invariant mass M of pg. Among its impor-
tant properties, we note the following:
(a) In the limit of forward production (t, -0), at

large values of s, the J =1+ 5-wave ~, =0 pro-
jection of Eq. (2.1),

Ttp -,+(M2, s, f, ),
takes on a very simple form, '

where n is a known constant, discussed below in
subsection C.
(b) For t, g0, the S-wave projection of Eq. (2.1)

exhibits a mass-slope dependence which can be
represented to a good approximation as'

Tz&,+(M, s, i, )=—Ttt, +(M, s, 0)e '
(2 3)

As we shall see presently, this mass-slope corre-
lation is of practical importance when theoretical
results are compared with the experimental spec-
tra. We remark that the mass-slope correlation
observed experimentally' is in agreement with the
predictions of the Deck model. ' Between jM =0.9
and 1.5 GeV, an acceptable parametrization of
X(M ) is (all units in GeV)

(2.4)
In the next subsection, we discuss certain prac-

tical considerations which are important for con-
frontations with data. Formal theorists and other
readers not actually concerned with such detail may
skip to subsection C.

i
p /
/

p /
/

M

B. Mass-slope correlations and fits to experimental spectra

For analytical convenience [see Eq. {2.2)j, and to
avoid the introduction of parameters which might
obscure the results, we choose to compute am-
plitudes at I;, = 0. However, the data' consist of
cross sections integrated over some limited range
in t„which does not reach t, =0. For theoretical
purposes, it would obviously be preferable to com-
pare with data extrapolated to t, = 0. Present sta-
tistical precision apparently does not permit a re-
liable extrapolation.
A second possibility, which w'e adopt, is to in-
tegrate the cross section obtained from Eq. {2.3)
over the experimental t, range, i.e., to compute

(b)
FIG. &. Deck diagrams for 7fp—pap. (a) 7j.-exchange

graph, (b) p-exchange graph. P stands for Pomeron
exchange. The kinematic variables are indicated.

g t t
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UNITARY COUPLED-CHANNEL ANALYSIS OF DIFFRACTIVE. . .

Since z(iIP) decreases by a factor of -2 between
M =1.0 and 1.4 GeV, Eq. (2.5) shows that obsevve'd
spectra (which correspond typically to t'I--0. 1
GeV' and tI"--0.3 GeV')' will be depleted at low
masses when compared to the g, =0 Deck model
In our opinion, this is a relevant observation fox
oux' present A, calculation as well as for similar
approaches, as in the ease of the Q problem. ' The
apparent discrepancy between theory and experi-
ment at low values of M is perhaps mainly due to
the fact that the influence of the mass-slope cor-
relation has not been fully appreciated.
We shall use Eq. (2.5) in comparing our results

with experiment. However, we emphasize that
Eq. (2.3) taken at face value would not be an ap-
propriate expression for the dispersion-relation
calculations done in Sec. III. Because of its awk-
ward analyticity properties in M', Eq. (2.3) cannot
be used as it stands. It is only valid in a limited
range in flP Afu.lly rigorous treatment for

~ f, ]
&0 would consist in calculating first the true par-
tial-wave projection of Eq. (2.1) for

~ f, ~
&0 [which

would be close but not identical to Eq. (2.3)], and
then performing the t, integration after the disper-
sion-relation calculation. At the present level of
experimental accuracy, we believe that this is an
unnecessary complication. We are not concerned
with effects which could have a 20 to 30% influence
on the results. Our aim is to extract the main
qualitative and quantitative aspects within the sim-
plest possible framework.
We shall therefore work at t, =0 and apply the

dispersion relations rigorously to T(fIP, 8, 0), ig-
nox'ing the M' dependence of e '~'~~~"'~'j. We then
use Eq. (2.5) to compare with the data. A possible
u posteriori justification stems from the expex'i-
mental results themselves. Indeed, the data show
a mass-slope correlation. By fitting the data to
obtain the resulting pRI'Rnletel' A. (M ) [which Rgl'ees
with Eq. (2.4)] and assuming that, for the pIIysI'caf
amplitude, Eq. (2.5) is col'I'ect Ill tile flP I'Rllge of
interest, one can invex t this lattex equation to ex-
tract the value of do/dMdf, at fI =0. This amounts
to doing a simple extrapolation to f, , =0.

C. Speci6c Deck amplitudes

We choose to work wltll the simplest and mo8t
transparent Deck amplitude. It is clear that im-
provements can be made, but our main ambition
here is to exhibit the essential features of unitarity
(or final-state-interaction) corrections to such an
amplitude. We feel thRt given px'e8ent statistics
it is inappropriate to introduce too many refine-
ments and parameters. However, one essential
feature of our appx'oach is the inclusion of channels
other than the "elastic" pg channel. A glance at

K

P r

FIG. 2, Kaon-exchallge Deck diagram for +-E*gp.

SU(3) coupling coefficients shows that the A, state
may be strongly coupled to the K~g channel, as
well as to pg. While neglect of K*g is understand-
able if the A, is a narrow resonance with mass
-1.1 GeV, the same is not true for a potentially
broad resonance with higher mass.
In this article we provide a coupled-channel

treatment of the mN- pm@, mN-K*KN, and mN
-K*K/ amplitudes. As remarked in subsection
8, we specialize to forward production (fI -0),
whereupon simple analytic forms for the J'~ =I'
8-wave pF RIld E K Deck amplitudes Rre eRslly ob-
tained' from the complete amplitudes for Figs. 1(a)
and 2. These J~ = I"Beck amplitudes with iso-
spin I=1 and f-channel helicity X, =0 are."

2~~ ~
' gjo~+~- +qo&&+

III w ) gr*oII+ r- Kr*&r~z
(2.3)

We have written the amplitude as a two-compon-
ent vector to emphasize the two-channel natux'e of
our problem. The mass dependence (M'- m, ') '
is common to the two channels. The upper element
of Eq. (2.6) refers to the pII system with f=1 (thus
the W factor). The lower element refers to the
f=1, Q =+1 combination (W) '(K*K-K~K) (not
just K*K alone). For notational simplicity, we use
++@1n the remainder of th18 paper to x'epx'eseIlt
the C =+1 combination. The established coupling
constants areg, o,+, = 4II(2.4) and gr+or+, -= 4II(1.66);
o,& and o~~ axe the mp and Kp total cross sections,
24 Rlld 19 mb, I'espec'tlvely, RIId Kp (Kr+) ls tile
magnitude of the incident m momentum evaluated
in the p(K~) rest frame at t, =0.'
We comment briefly here on the normalization

constants N, and N„in Eq. (2.6), for two reasons.
First, the relative normalization of the pg and
g*g Deck terms plays R x"ole ln determining the
final parameters of our A., resonance. Second, as
a result of including the 3,, resonance and final-
state interactions, we enhance the cross section

KK̄⇡
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Deck Amplitude - 1

• Deck amplitude for   

!

•  Similar expression for     

• In the        rest frame, the Deck amplitude contributes to several 
partial waves.    

• For                       we must project out the S wave component                                                  

• Re-express the invariants                          in terms of t-channel angles 

!

!

• Deck amplitude is a rational function so we can project 
analytically all partial waves S, P, D, … (all m), for any value of      . 
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Deck Amplitude - 2 

• Perform an expansion for small        (where the data are 
concentrated) of the partial wave projections of the Deck production 
amplitude.  Define a dimensionless expansion parameter  

!

!

• The S-wave projection is   

!

!

• Note that the Deck amplitude is a pure S-wave at             .   Angular 
dependence cancels in the numerator and denominator.  

• Aside: Would not be right to think of pion exchange here as feeding 
only high partial waves.  Also question of how seriously to take 
details.  
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Deck Amplitude - 3

• Deck amplitudes with isospin 1 and t-channel helicity 0, written 
as a two-component vector: 

!

!

!

!

• Upper component refers to       and the lower to  

!

!

!

!

!
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UNITARY COUPLED-CHANNEL ANALYSIS OF DIFFRACTIVE. . .

Since z(iIP) decreases by a factor of -2 between
M =1.0 and 1.4 GeV, Eq. (2.5) shows that obsevve'd
spectra (which correspond typically to t'I--0. 1
GeV' and tI"--0.3 GeV')' will be depleted at low
masses when compared to the g, =0 Deck model
In our opinion, this is a relevant observation fox
oux' present A, calculation as well as for similar
approaches, as in the ease of the Q problem. ' The
apparent discrepancy between theory and experi-
ment at low values of M is perhaps mainly due to
the fact that the influence of the mass-slope cor-
relation has not been fully appreciated.
We shall use Eq. (2.5) in comparing our results

with experiment. However, we emphasize that
Eq. (2.3) taken at face value would not be an ap-
propriate expression for the dispersion-relation
calculations done in Sec. III. Because of its awk-
ward analyticity properties in M', Eq. (2.3) cannot
be used as it stands. It is only valid in a limited
range in flP Afu.lly rigorous treatment for

~ f, ]
&0 would consist in calculating first the true par-
tial-wave projection of Eq. (2.1) for

~ f, ~
&0 [which

would be close but not identical to Eq. (2.3)], and
then performing the t, integration after the disper-
sion-relation calculation. At the present level of
experimental accuracy, we believe that this is an
unnecessary complication. We are not concerned
with effects which could have a 20 to 30% influence
on the results. Our aim is to extract the main
qualitative and quantitative aspects within the sim-
plest possible framework.
We shall therefore work at t, =0 and apply the

dispersion relations rigorously to T(fIP, 8, 0), ig-
nox'ing the M' dependence of e '~'~~~"'~'j. We then
use Eq. (2.5) to compare with the data. A possible
u posteriori justification stems from the expex'i-
mental results themselves. Indeed, the data show
a mass-slope correlation. By fitting the data to
obtain the resulting pRI'Rnletel' A. (M ) [which Rgl'ees
with Eq. (2.4)] and assuming that, for the pIIysI'caf
amplitude, Eq. (2.5) is col'I'ect Ill tile flP I'Rllge of
interest, one can invex t this lattex equation to ex-
tract the value of do/dMdf, at fI =0. This amounts
to doing a simple extrapolation to f, , =0.

C. Speci6c Deck amplitudes

We choose to work wltll the simplest and mo8t
transparent Deck amplitude. It is clear that im-
provements can be made, but our main ambition
here is to exhibit the essential features of unitarity
(or final-state-interaction) corrections to such an
amplitude. We feel thRt given px'e8ent statistics
it is inappropriate to introduce too many refine-
ments and parameters. However, one essential
feature of our appx'oach is the inclusion of channels
other than the "elastic" pg channel. A glance at

K

P r

FIG. 2, Kaon-exchallge Deck diagram for +-E*gp.

SU(3) coupling coefficients shows that the A, state
may be strongly coupled to the K~g channel, as
well as to pg. While neglect of K*g is understand-
able if the A, is a narrow resonance with mass
-1.1 GeV, the same is not true for a potentially
broad resonance with higher mass.
In this article we provide a coupled-channel

treatment of the mN- pm@, mN-K*KN, and mN
-K*K/ amplitudes. As remarked in subsection
8, we specialize to forward production (fI -0),
whereupon simple analytic forms for the J'~ =I'
8-wave pF RIld E K Deck amplitudes Rre eRslly ob-
tained' from the complete amplitudes for Figs. 1(a)
and 2. These J~ = I"Beck amplitudes with iso-
spin I=1 and f-channel helicity X, =0 are."

2~~ ~
' gjo~+~- +qo&&+

III w ) gr*oII+ r- Kr*&r~z
(2.3)

We have written the amplitude as a two-compon-
ent vector to emphasize the two-channel natux'e of
our problem. The mass dependence (M'- m, ') '
is common to the two channels. The upper element
of Eq. (2.6) refers to the pII system with f=1 (thus
the W factor). The lower element refers to the
f=1, Q =+1 combination (W) '(K*K-K~K) (not
just K*K alone). For notational simplicity, we use
++@1n the remainder of th18 paper to x'epx'eseIlt
the C =+1 combination. The established coupling
constants areg, o,+, = 4II(2.4) and gr+or+, -= 4II(1.66);
o,& and o~~ axe the mp and Kp total cross sections,
24 Rlld 19 mb, I'espec'tlvely, RIId Kp (Kr+) ls tile
magnitude of the incident m momentum evaluated
in the p(K~) rest frame at t, =0.'
We comment briefly here on the normalization

constants N, and N„in Eq. (2.6), for two reasons.
First, the relative normalization of the pg and
g*g Deck terms plays R x"ole ln determining the
final parameters of our A., resonance. Second, as
a result of including the 3,, resonance and final-
state interactions, we enhance the cross section

⇢⇡ K⇤K̄



Low mass enhancement 

!

!

!

!

!

!

!

• The differential cross section                     at              for  

• Focus now only on the LONG DASHED curve:  The non-resonant 
Deck amplitude provides a broad enhancement just above threshold. 
Discuss the solid and short dashed curves later
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Unitarization - 1

• Deck amplitude            produces                      non resonant 
enhancements near threshold in                      . 

• The                       are strongly interacting systems.  They 
interact in the final state, even in the one channel       case.  
These final state interactions must be incorporated in the full 
amplitude.  They are inevitable and non- negligible if there is a 
resonance, such as the                            state of the quark 
model. 

• Construct a full amplitude            that includes final state 
interactions, the      state, and respects unitarity (no double 
counting) 

• For essential details see Basdevant and Berger, Phys Rev D16, 
657 (1977)
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JPC = 1++TDeck
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qq̄
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Unitarization - 2
• Impose unitarity by requiring that the full amplitude               

satisfies proper discontinuity relations in the variable M.  

• In the unitarity relation, we retain 2-body intermediate states       
(                      ) treating the vector mesons as stable and 
restricting to S-wave orbital angular momentum states 

•                 has a right-hand unitarity discontinuity starting at the 
lowest threshold,                             

•        is its value above the cut;        is the value below the cut.   

• Unitarity relationship                     ;      is the strong interaction 
unitary     matrix that describes   

!

• Aside: We do not know     .  We will parametrize it in terms of a K 
matrix and determine the parameters by comparing with data. 
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Analyticity and Unitarity - 1

• Theory task: Construct an analytic and unitary         from 
knowledge of its singularities: (a) right hand unitarity 
discontinuities; and (b) “left-hand” pole singularity supplied by 
the Deck production amplitude,  

• Solution in terms of an analytic 2 X 2               matrix that has 
only a right hand unitarity discontinuity:                                     ; 
also invertible — determinant of D should not vanish anywhere 
on the first sheet. 

• By construction,                            has only a right-hand 
discontinuity,    

• Write dispersion integral for  

• Dispersion integral leads to   

!

!

21

Tu
D(M2) = TD(M2)� 1

⇡
D(M2)⇥

Z 1

(m⇢+m⇡)2
ds0

ImD(s0)TD(s0)

(s0 �M2)
. (1)

Tu
D

T�1
D ⇠ (M2 �m2

⇡).

D+(M) = SD�(M).
D(M2)

D�1[Tu
D � TD]

D�1[Tu
D � TD]



22

Analyticity and Unitarity - 2

!

• Dispersion integral leads to   

!

!

• This expression is our production amplitude (modified Deck 
amplitude) with resonant final state interactions included.  

• Properties: (a) same left-hand production singularity as            ; 
(b) satisfies unitarity; (c) reduces to             if no rescattering.   
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Unitarization - “Practical” details 

• Parametrize the coupled channel S matrix in terms of a K matrix: 

!

!

!

• Simple pole parametrization yields analytic expression for D 
matrix.               are coupling strengths to the two channels.   

!

!

• The denominator                                                                       
has the appearance of a resonance factor.   In the one channel 
case                                 

•                                               are Chew-Mandlestam functions 
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Chew-Mandelstam function

• Chew-Mandelstam function: analytic function of the invariant 
mass squared s of two particles, with a right hand cut where the 
imaginary part is equal to the phase space factor             ;              
is the c.m. momentum: 

!

!

!

!

!

!

!

!

!
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Behavior of D(M)

!

!

!

!

!

!

!

!

!

!
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Direct Production Term

• In addition to its FSI affects manifest in the unitarized Deck 
amplitude, the resonance may be produced directly via a 
diffractive coupling,  

!

!

!

!

!

• Those acquainted with the study of         scattering in photo-
production,                        , will recognize this term as the analog 
of the “vector- dominance” term in        production; the Deck term 
in the photo production case plays a role in modifying the        
line shape (e.g., Paul Soding, 1966).   
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Discussion of the one-channel case - 1

!

• Very simple parameterization of resonant amplitude 

• For a narrow resonance of                                       , the 
parameters are fixed by  

!

!

• Introduce bare Deck amplitude  

• Yields unitarized Deck amplitude  

!

• This amplitude has a real zero near 
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Discussion of the one-channel case - 2

• Unitarized Deck amplitude  

!

• This amplitude has a real zero near  

• For a narrow resonance, the zero occurs near the resonance 

• Thus, the unitarized production amplitude changes sign near the 
resonance position and its phase jumps by  

• Because               vanishes near                 , for a narrow 
resonance, we can write the M dependence as   

!

• Even for a broad resonance, the net effect of the zero is 
significant and causes a sharp structure in the mass distribution 
near the resonance position, seen near M = 1.3 GeV in the a_1 
case 
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Discussion of the one-channel case - 3

• Unitarized Deck amplitude  

!

• This amplitude has a real zero near  

• Now add a direct production term 

!

• Resulting full amplitude has its zero shifted to  

!

• Shift is accompanied by an enhancement compared to the Deck 
amplitude.    

• Example 1: if              , amplitude enhanced by 

• Example 2: if                  , resonance produces a dip in    
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One channel solution

• One channel case corresponds to purely elastic rho pi 
scattering, parametrized with a simple one-pole K matrix.  No 
inelasticity. 

!

!

!

!

!

!

• Solid curve is the full result. Sharp decrease from 1.2 to 1.4 GeV 
arises from FSI (e.g., zero near s_1).  More pronounced if direct 
production (short dashed curve) is omitted.  Large peak in range 
1.1 to 1.2 GeV is the FSI enhanced Deck, NOT the resonance 
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One channel case and the data

• Mass spectrum in the one-channel case agrees well with data 
but the phase does not.  The unitary amplitude changes sign 
owing to the zero near s_1, and the phase changes by 180.  
(Data Antipov, Ascoli, et al) 

!

!

!

!

!

!

• Resonance in this one-channel case is 1.36 GeV, close to 
K*Kbar threshold — cannot avoid including inelasticity if want to 
deal with the region above 1.4 GeV.  
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Shift of the rho mass in photoduction

!

• Simpler case: 

• Diagrams show (a) the direct coupling (vector dominance) 
coupling to the    ,                  , and (b,c) the Deck graphs for  

!

!

!

!

!

!

!
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P (a) P' P (b) (c) 

Fig.  1. Diagrams  cor responding  to the th ree  m a t r i x  e l e -  
men t s  M 1, M 2 and M 3 for  the p r oce s s  7 + p  --~ ? r++y-+p.  

s u c h  t h a t  a d o w n w a r d  s h i f t  r e s u l t s  i f  I m  Tp(s, t) 
> 0 a n d  if  gpyy h a s  t he  s a m e  s i g n  a s  t he  c h a r g e  
of the  p ion .  The  m a x i m u m  i s  t h e n  s h i f t e d  to  
750 MeV,  a n d  the  m e a n  v a l u e  of t he  p o i n t s  a t  
h a l f  m a x i m u m  b e c o m e s  740 MeV,  s o  t h a t  a n  e f -  
f e c t i v e  s h i f t  of t he  p e a k  of a b o u t  25 M e V  w i l l  b e  
o b s e r v e d .  

T h e s e  r e a u l t s  do no t  d e p e n d  c r i t i c a l l y  o n  t h e  
p h o t o n  e n e r g y ,  s i n c e  the  t h r e e  a m p l i t u d e s  c o n -  
s i d e r e d  h e r e  h a v e  a s i m i l a r  s d e p e n d e n c e .  W e  
do no t  w o r r y  a b o u t  p o s s i b l e  m o d i f i c a t i o n s  to  
m a k e  the  a m p l i t u d e  g a u g e - i n v a r i a n t  [9] b e c a u s e  
the  e s s e n t i a l  r e s u l t  w i l l  r e m a i n  u n c h a n g e d .  

An  o b v i o u s  f u r t h e r  c o n t r i b u t i o n  to r e a c t i o n  (1) 
i s  g i v e n  b y  the  o n e - p i o n - e x c h a n g e  m a t r i x  e l e -  
m e n t  [10,  11] *. I t s  s i z e  c a n n o t  b e  c a l c u l a t e d  b e -  
c a u s e  t he  p ~ r  c o u p l i n g  c o n s t a n t  i s  u n k n o w n .  T h e  
e x p e r i m e n t s  [1 -3 ]  i n d i c a t e ,  h o w e v e r ,  t h a t  i t s  
c o n t r i b u t i o n  i s  c o m p a r a t i v e l y  s m a l l .  F u r t h e r -  
m o r e ,  a f t e r  s u m m i n g  o v e r  p o l a r i z a t i o n s  t h e r e  
a r e  no  i n t e r f e r e n c e  t e r m s  b e t w e e n  t he  a m p l i t u d e s  
c o n s i d e r e d  h e r e ,  a n d  t he  o n e - p i o n - e x c h a n g e  a m -  
p l i t u d e .  It  i s  t h e r e f o r e  no t  l i k e l y  to a f f e c t  o u r  
c o n c l u s i o n s .  

I wou ld  l ike  to t h a n k  P r o f e s s o r  G. K r a m e r  a n d  
D r s .  E .  L o h r m a n n ,  P .  S t i c h e l  a n d  G. Wolf  f o r  h e l p -  
fu l  d i s c u s s i o n s .  

According to Soloviev [12] a lso in photoproduct ion 
+ y ~ y + v on pio~s the rho  meson  peak should 

appear  shif ted towards lower  m a s s  values .  Ex tend-  
ing the a rgument  to v i r tua l  pions,  one expects  a 
s i m i l a r  shi f t  in case  of a one-pion-exchange  m e c h a -  
n i sm  for  reac t ion  (1). 

> 40- '~ 
0 

"-  

.Q \ . . . .  

-~0" 

Ml1" Tr (GeV) 

Fig. 2. Cross  sect ion as a function of the (~+~) m a s s .  
Curve Ca) gives the contr ibut ion of M 1, while (b} shows 
the contr ibut ion of M~. and M 3 and the i r  mutual  in t e r -  
fe rence  t e rm,  and (c)-that of the in te r fe rence  t e r m  be-  
tween M 1 and M2, and between M 1 and M 3. The full 

curve  is the sum of all s ix t e r m s .  
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Shift of the rho mass in photoduction

•                  

• P. Soding, Phys. Lett. 19, 702 (1966) 

!

!

!

!

!

!

• Notice the unitary preserving zero in the unitarized Deck curve 
(c) and shift plus enhancement of the peak on the low mass side 
in the final result (solid curve)    

!
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men t s  M 1, M 2 and M 3 for  the p r o ce s s  7 + p  --~ ? r++y-+p.  

s u c h  t h a t  a d o w n w a r d  s h i f t  r e s u l t s  i f  I m  Tp(s, t) 
> 0 a n d  if  gpyy h a s  t he  s a m e  s i g n  a s  t h e  c h a r g e  
of the  p ion .  The  m a x i m u m  i s  t h e n  s h i f t e d  to  
750 MeV,  a n d  the  m e a n  v a l u e  of t he  p o i n t s  a t  
h a l f  m a x i m u m  b e c o m e s  740 MeV,  s o  t h a t  a n  e f -  
f e c t i v e  s h i f t  of t he  p e a k  of a b o u t  25 M e V  w i l l  b e  
o b s e r v e d .  

T h e s e  r e a u l t s  do no t  d e p e n d  c r i t i c a l l y  o n  t h e  
p h o t o n  e n e r g y ,  s i n c e  the  t h r e e  a m p l i t u d e s  c o n -  
s i d e r e d  h e r e  h a v e  a s i m i l a r  s d e p e n d e n c e .  W e  
do no t  w o r r y  a b o u t  p o s s i b l e  m o d i f i c a t i o n s  to  
m a k e  the  a m p l i t u d e  g a u g e - i n v a r i a n t  [9] b e c a u s e  
the  e s s e n t i a l  r e s u l t  w i l l  r e m a i n  u n c h a n g e d .  

An  o b v i o u s  f u r t h e r  c o n t r i b u t i o n  to r e a c t i o n  (1) 
i s  g i v e n  b y  the  o n e - p i o n - e x c h a n g e  m a t r i x  e l e -  
m e n t  [10,  11] *. I t s  s i z e  c a n n o t  b e  c a l c u l a t e d  b e -  
c a u s e  t he  p ~ r  c o u p l i n g  c o n s t a n t  i s  u n k n o w n .  T h e  
e x p e r i m e n t s  [1 -3 ]  i n d i c a t e ,  h o w e v e r ,  t h a t  i t s  
c o n t r i b u t i o n  i s  c o m p a r a t i v e l y  s m a l l .  F u r t h e r -  
m o r e ,  a f t e r  s u m m i n g  o v e r  p o l a r i z a t i o n s  t h e r e  
a r e  no  i n t e r f e r e n c e  t e r m s  b e t w e e n  t h e  a m p l i t u d e s  
c o n s i d e r e d  h e r e ,  a n d  t h e  o n e - p i o n - e x c h a n g e  a m -  
p l i t u d e .  It  i s  t h e r e f o r e  n o t  l i k e l y  to a f f e c t  o u r  
c o n c l u s i o n s .  

I wou ld  l ike  to t h a n k  P r o f e s s o r  G. K r a m e r  a n d  
D r s .  E .  L o h r m a n n ,  P .  S t i c h e l  a n d  G. Wolf  f o r  h e l p -  
fu l  d i s c u s s i o n s .  

According to Soloviev [12] a lso in photoproduct ion 
+ y ~ y + v on pio~s the rho  meson  peak should 

appear  shif ted towards lower  m a s s  values .  Ex tend-  
ing the a rgument  to v i r tua l  pions,  one expects  a 
s i m i l a r  shi f t  in case  of a one-pion-exchange  m e c h a -  
n i sm  for  reac t ion  (1). 

> 40- '~ 
0 

"-  

.Q \ . . . .  

-~0" 

Ml1" Tr (GeV) 

Fig. 2. Cross  sect ion as a function of the (~+~) m a s s .  
Curve Ca) gives the contr ibut ion of M 1, while (b} shows 
the contr ibut ion of M~. and M 3 and the i r  mutual  in t e r -  
fe rence  t e rm,  and (c)-that of the in te r fe rence  t e r m  be-  
tween M 1 and M2, and between M 1 and M 3. The full 

curve  is the sum of all s ix t e r m s .  
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Two channel, one resonance case - 1

• Since the mass of the a_1 can extend into the range above 1350 
MeV, it is interesting, if not necessary, to include the K*Kbar 
channel   

• K matrix in the two-channel case has a single factorized pole, 
and ratio of couplings                       expected from SU(3) 

!

!

!

!

!

!

!
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g1/g2 =
p
2
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Two channel, one resonance case - 2

• The final                 partial wave amplitude becomes 
!!

!

!

•       is related to the squared mass of the  

• For each of the two channels, this expression has the 
appearance of a resonance factor  

!

!

• Multiplied by a complex zero near                 . The zero is shifted 
into the complex plane, leading to slow phase variation 

!
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J. L. BASDEVANT AND EDMOND L. BERGER

For the final Z~ = 1' partial-wave amplitude, we use Eq. (3.5) to obtain

1
s M' g 'C (M') -g 'C (M')

Tn(pr) [s, —M' —g,'C,(M') —g,'C, (m, ') ]
+g,g,TD(K*K) [C,(M') —C,(m, ') ]

TD(K*K)[s, -M' -g, 'C, (M')-g, 'C,(m, ')]
+g,g, Tn(pn) [C,(M') —C,(m, ') ]

(3.16)

For each of thetwo channels, our Eq. (3.16) has
the appearance of a resonance factor

D (M') = [, M' g, 'C, (M') g, 'C—,(M')]
=8"sin6

is illustrated in Fig. 3. The corresponding ampli-
tude is similar to Eq. (3.13):

T (s M' f)=der l l 1 D (M2)

multiplied by a function which contains a complex
zero near M'= s,. It is important that the zero is
now shifted into the complex plane. This permits
a more slovenly varying phase in the region
where the cross section shows a break &dip),
as opposed to the one-channel case, where the
phase jumps by 180'.
By simple algebraic manipulation, Eg. (3.16)

may be recast in a form with the appearance of
a sum of amplitudes: Deckresonance. However,
both are modified by the requirements of unitarity.
We observe again that Eq. (3.16) has the desirable
properties that Ts(M') tends to the unmodified
To,~(M') if the resonance is absent (g, = 0), or if
M'-m, ', or if M'-~. We remark also that T~D

—= Tn „(M'}if the resonance is orthogonal to the
Deck mixture g, /g, = TD(K*K)/Tn-(pv) [in the exact-
SU(3)-symmetric case with C, = C,], as found4 to
be the approximate physical situation for the Q~.
For the parallel mixture, where g, /g, = Ts(pv}/
T (K~K), the two-channel problem reduces to an
effective one-channel case, and

s, —M' —g, 'C, (m, ) -g, 'C, (m, )
-M2 — 2C (M2)- 2C (M )

(3.17)
A direct production term may also be present, as

D(M ) — . (3.18)
0

3. Two-channel, two-pole K matrix

In our investigations, we have also studied a
slightly more sophisticated expression than Eq.
(3.14) for the K matrix. The reason is primarily
to be able to modify the inelasticity independently
of the relative coupling of the A, to prr and K*K.
The p~ channel, for instance, has a threshold at
-1550 MeV, the P-wave em, D-wave pm channels,
etc. are present, and there are other possible in-
elastic effects which we represent globally by the
sole K*K channel. We also want to have more
flexibility in our parametrization of the pseudosca-
lar-vector coupled-channel amplitude, and to be
able to incorporate a nonresonant background con-
tribution and/or a second resonance.
A simple two-pole form for the K matrix is

fr gig2 fA
K=

The D matrix becomes

/ g, (s, —M') -C,(M') f,A f,(s, -M') +g,C,(M')A
D (g,(s -M )+C,(M'}f,A f,(s, -M')- g,C,(M')A

Here A=g, f, g,f, and-
D,(M') = (s, —M')(s, —M') -C,(M') [g,'(s, —M') +f,'(s, —M'}]

C,(M') [g,'(s, —M') -+f,'(s, —M') ]+C,(M')C, (M')A'.

As before, we use Eq. (3.5} to obtain Ts(M'). All
the necessary integrals may be evaluated analyti-
cally again and yield simple, if lengthy, results in
closed form. The polynomial P(M'} of Eg. (3.6) can

have the form

(3.22}
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-1550 MeV, the P-wave em, D-wave pm channels,
etc. are present, and there are other possible in-
elastic effects which we represent globally by the
sole K*K channel. We also want to have more
flexibility in our parametrization of the pseudosca-
lar-vector coupled-channel amplitude, and to be
able to incorporate a nonresonant background con-
tribution and/or a second resonance.
A simple two-pole form for the K matrix is

fr gig2 fA
K=

The D matrix becomes

/ g, (s, —M') -C,(M') f,A f,(s, -M') +g,C,(M')A
D (g,(s -M )+C,(M'}f,A f,(s, -M')- g,C,(M')A

Here A=g, f, g,f, and-
D,(M') = (s, —M')(s, —M') -C,(M') [g,'(s, —M') +f,'(s, —M'}]

C,(M') [g,'(s, —M') -+f,'(s, —M') ]+C,(M')C, (M')A'.

As before, we use Eq. (3.5} to obtain Ts(M'). All
the necessary integrals may be evaluated analyti-
cally again and yield simple, if lengthy, results in
closed form. The polynomial P(M'} of Eg. (3.6) can

have the form

(3.22}

JP = 1+

s1

M2 = s1

a1



Two-channel, one resonance

!

!

!

!

!

!

!

• Resonance position and width are very close to one-channel 
solution, but the phase is more acceptable, up to ~ 1.5 GeV. 
Passes through       near 1.36 GeV; cusp at           threshold 

• Phase of the rho pi to rho pi shown in (c) follows unitarity circle 
until 1.39 GeV, where it enters sharply and has elasticity  
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FIG. 5. Two-channel, one-pole model, solution 8, described in the text and in Tables I and II. Data points in (a) are
taken from Ref. 2. The points for the absolute phase of the 4+=1' S-wave amplitude in (b) are reconstructed from the
experimental difference Q(2') —$(l'), as described in the text. (a) Mass spectrum. The solid line is our solution 8,
integrated over the range Itl =O.l to 0.3 GeVz, as described in the text, and normalized to the data. For absolute nor-
malization and the g& resonance parameters, consult Table II. (b) The phase of our 1' S-wave pm amplitude in np

{pm)p. (c}The phase-shift and (inset) inelasticity parameters of the pfr p7r S-wave amplitude as computed from our
model B. (d} The differential cross section der jdf~dM at t~ ——0 for the specific charge state m p—( p n~)p. The solid line
represents our full solution 8; the dashed line is the pure Deck "background, "without unitarity corrections; the dotted
line is the contribution of the direct production term alone.

phase $(I") for Ma 1.5 GeV seems to us unaccept-
able abrupt. In order to correct for this, a simple
and reasonable procedure is to use a pn and /*K
vector-pseudoscalar two-channel 8 matrix which is
more sophisticated than the very simple one-pole
K matrices of solutions A and B.

T~o-channel, two-pole model

Solution C, displayed in Fig. 6, corresponds to
a two-pole K matrix and a two-component "direct
production" term. It is also constructed so as to
be very close to solutions A and B as far as pm- ~
scattering is concerned, below the inelastic K*R
threshold, and to have similar parameters for the
A, resonance. We notice that (a) the behavior of
the phase jn Fig. 6(b) ls now much smoother and
therefore more acceptable, and (b) the mass spec-
trum also is improved above 1.4 GeV.
From the three solutions A, 8, and C, we de-

duce the following observations:
(I) The elastic pw- pw phase shifts below the

%*Kthreshold are extremely similar in these so-
lutions [cf. Figs. 4(b), 5(c), and 6(c)]. It is this
phase shift which really determines the shape of
the mass spectrum below M= 1.4 GeV. Thus, it
is not surprising that the resulting spectra are
also similar.

(2) The three solutions differ considerably above
1.4 GeV. These differences are apparent in the
pw- pw amplitude and in our amplitude T(M'). It
is clear that inelasticity must be introduced in or-
der to yield a flattening of the phase above 1.4
GeV. Furthermore, a sophisticated treatment is
required of both the pm and K*K 2 2 coupled am-
plitude and the "direct production" term, which
contains direct production of the resonance and
contributions of omitted left-hand singularities in
M.
(3) It is interesting, however, that the two re-

gions above and below 1.4 GeV seem to be dis-
connected. We can modify what happens above
this energy without changing appreciably what hap-
pens below.
(4) The 8-wave scattering l.ngths in these three

solutions can be considered in acceptable agree-
ment with the current-algebra prediction, since
the predicted value is expected to be increased
owing to the presence of a resonance, as in the
case of the I = 0 8-wave m'm amplitude.
(5) The absolute normalizations at f, = 0, w, are

somewhat higher (by -25%) than the experimental
value. We do not consider this to be an important
flaw. It could be repaired by a reduction of 10%%uo

in the absolute normalization of our Deck ampli-

90o

⌘ = 0.7

K⇤K̄
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FIG. 8. Two-channel, one-pole model with background in the K matrix, solution E, described in the text and in Tables
I and II. Data points in (a) are taken from Ref. 2. The points for the absolute phase of the 4+=1' S-wave amplitude in
(b) are reconstructed from the experimental difference Q(2') —Q(1'), as described in the text. (a) Mass spectrum. The
solid line is our solution E, integrated over tbe range ~tl =O.i to 0.3 GeV, as described in the text, and normalized to
the data. The dashed curve is obtained by setting g = 0—i.e., no direct production. For absolute normalization and the
g f resonance parameters, consult Table II. (b) The p hase of our 1' S-wave p71 amplitude in mp ( pm)p . The solid line
corresponds to g = 0.48. and the dashed line to g = 0 (no direct production). The dotted data points are obtained by shift-
ing the solid data. points down by 10, under the assumption of a 10 difference in the production phases of the 2' and 1'
waves. (c) The phase-shift and (inset) inelasticity parameters of the p~—p7r S-wave amplitude as computed from our
model E. (d) The phase difference Q(2') -$(1') computed from our model is compared with the data from Ref. 2. Here
=0, and the difference of the production phases of the 2' and 1+ waves (cf. Ref. 11) has been assumed to be

(e) The differential cross section do'/dt~dM at t&-—0 for pn production in the reaction m p (p x")p. The solid line
represents our full solution E, with u =0.48» For the dotted curve, the direct production term is omitted fg =0). The
dashed curve is the pure Deck background without unitarity corrections. (f) The differential cross section da'/dt}, dM
at t~ —-0 for E'~g' production in ~ p—(g* K )p. The solid line is our solution E with a= 0.48. whereas the dashed curve
is obtained by setting ~ = 0 (no direct production). The dotted curve in the pure Deck background without unitarity cor-
rections.

Solution with all the bells and whistles



Extraction of mass and width

• Our mass and width determinations in 1977 of the a_1 from the 
pole positions on the second sheet, averaged over various 
solutions  

-                                  GeV 

-                               MeV 

• Uncertainties: how much do reasonable variations of the bare 
Deck amplitude affect these values of the mass and width?; 
additional channels in the analysis?; amplitude is analytic and 
unitary, but not crossing symmetric; …
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M = 1.3± 0.15
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Heavy lepton decay to a_1

• The three pion tau decay spectrum based on two of the solutions 
found in the hadronic study (Basdevant and Berger, Phys Rev Lett 40, 994 
(1978)) 

!

!

!

!

!

!

!

!

!

• DORIS data on the left and SPEAR data on the right.   

39

VOLUME 40, NUMBER 15 PHYSICAL REVIEW LETTERS 10 APRIL 1978

corresponding amplitude is
%= l pHp, (1)

where l& is the usual lepton current u, y&(1 —y,)u, ~ The hadronic axial-vector (2 = 1+) current may be
formed from the four-vectors e q~, representing the polarization of the final p, and the momenta p~
and p' of the final p and m, respectively. The most general form is

P K- 2 2-
(2)

where Q=p~+p", and h=p~ —p'. The axial form factors E, and E, depend only on the pv invariant
mass, M'=(p~+p")'. The relative size of E, and E, determines the proportion of the D-wave and S-
wave contributions in A, decay. In this article we set I', =0, and retain only E,. This corresponds to
predominantly S-wave decay of the A„as is true of the hadronic data. "We also ignore absolute nor-
malization (absolute decay rate).
After squaring Eq. (1) and summing over spins, we obtain a differential probability distribution for

the decay:
d$' , d' " d' ~ d'p', ,- Zl~tl, ,' 5(p -p p -p"-)5(M-'-(p"p")'),

g I&&l'= IE, I'p' p'+ 2 p' p'p" p" + M-, Vi'V. —M'. V2'@2 ~, 2 V,
P

V, =p'-p~(p' p')/m, ', V =m 'p'- m, 'p'.

(3)

(
V,l /a+PM'l

=D(M')I
V,~ (@+&M)

(5)

We compute the axial form factor F,(M') using
the standard formalism of final-state interactions'
and the p& scattering amplitude derived in Ref. 4.
Beginning with the 2&&2 D ma.trix in Eq. (3.20) of
Ref. 4, we find that E,(M') is provided by the
upper component of the vector

! (M„,, Q =(1185 MeV, 395 MeV), and solution C
with (M„, I') =(1383 MeV, 425 MeV). Also shown
in Fig. 2 is the distribution we obtain if we set
F,(M') =1, retaining only the structure of the
weak-interaction matrix element, without any pm
interaction. In these calculations, m, = 0 and m,
=1,9 GeV. The curves in Figs. 2 and 3 for our
solution E peak at M = 1180 MeV and have a full

that is, E,(M') = V,. The component V, would
yield the axial form factor for 7 —vK*K. In Eq.
(5), o, P, y, and 5 are arbitrary constants, in
principle, They could be determined if one had
enough statistics in 7 —vpv (and in T—vK*K) to
observe details of the M' dependence. Such M'
dependence is not negligible in the pion electro-
magnetic form factor, for example. ' Here we
set

@=1, P=y= 5=0.

CO
C) 6—
CAI—
LLI)
UJ

SOLUTION E of B 8 B
————SOl UTION C of B 8 B
--------- F(M j = I 02

This is the simplest choice. Adding nonzero val-
ues of P, y, and 6 would only improve the fit we
obtain. Our choice in Eq. (6) and our D matrix
are such that our expressions reduce to the stand-
ard Omnes formula' in the simple case in which
inelasticity is ignored in the form factor.
The mass distributions we obtain are compared

with the data in Figs. 2 and 3. In Fig. 2 we show
the results which emerge for two of the solutions
reported in Ref. 4, solution E (preferred) with

I

I.O 2.0
M& GeV

FIG. 2. Data from DORIS, Ref. 2. The solid curve is
obtained from solution E of Ref. 4, as described in the
text. The dashed curve represents solution C. The
dotted curve results from retaining the weak-interaction
matrix element alone, with E&(M~) = 1, &2——0. Normali-
zations of the theory curves are arbitrary.
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width at half-maximum of -320 MeV.
A few obvious conclusions emerge from inspec-

tion of Figs. 2 and 3. (1) The preferred solution
E of our fit to the diffractive data yields a good
representation of the p& mass distribution in 7.

decay. In this sense, there is complete agree-
ment between the diffractive data on the A, and
the T decay results. The T data confirm our
previous analysis of hadronic A, production,
(2) Our solution C, with M„,-1385 MeV does not
agree with 7. decay. Therefore, the ~ data re-
strict the range of A, mass parameters previous-
ly determined in fits to hadronic data. (3) It is
unlikely that the 7 spectrum can be explained
without an A, resonance. For example, we tried
varying the v, mass, with F,(M') =1. Only for
m, as large as 400 or 600 MeV can a pr mass
spectrum be obtained at all resembling the data,
The results just reported above in (1) and (2) are
insensitive to reasonable variations of m V~

We have examined the changes which occur
when we include nonzero values of E,(M') in Eq
(2l( ). For example, if we choose E,/I', such that
the pv system is purely in an S wave, there are
no appreciable differences from our results.
However, if we retain only F„corresponding to
D/S = -W2, then our A, peak position is shifted

-4
0

M~~ GeV

FIG. B. Data from SPEAR, Ref. 1. The curve is ob-
tained from solution E of Ref. 4.

up by 90 MeV. Thus, our fit to the T data prefers
a predominantly S-wave A „as in the hadronic
data. '
A few technical remarks are perhaps in order.

The reason that our calculated pm mass spectrum
has a width narrower than the 394 MeV, which we
quote for the A, resonance, is that our resonance
parameters are those of the second-sheet pole.
For a very broad resonance, physical-region ef-
fects are distorted by phase-space factors and
the like. The parameters of a broad resonance
are difficult to establish from peak shapes alone.
Second, it is an accident that the A p& mass~ p
spectrum in T decay resembles the spectrum in
diffractive production to the extent that it does.
As shown in Ref. 4, the shape of the diffractive
p~ mass spectrum results from interference ef-
fects between the resonance and the unitarized
Deck background. In T decay, the peak shape is
determined by the rapid variation near threshold
of phase space and of the weak-interaction ma-
trix element, on which a broad, distorted Breit-
Wigner amplitude is superimposed. We have not
included "smearing" effects associated with the
finite p width. This can be done with little trouble.
Finally, we comment on the absence of a signif-

icant A, signal in charge-exchange reactions'
such as & p-(pv)on and m'p-(pv)oa''. This is
a paradox which we do not pretend to understand
completely. However, we are not altogether con-
vinced by phenomenological estimates' of the ex-
pected A, cross section in charge exchange since
they are known to be very sensitive to the un.—

known D/S ratio in the A, decay. (Changing D/S
from -0.07 to 0 reduces the estimated cross
section by a factor of 20.) In addition, we specu-
late that the p exchange amplitude contains an
additional suppression factor —vanishing near
t,~ =0. This guess is based on one of the con-
clusions of our study of diffractive production of
the A,. We found that the direct coupling of the
Pomeron to the &A, vertex is consistent with
zero. 4 If f dominance of Pomeron couplings, or
Pomeron-f identity is invoked, then the direct f
coupling is also expected to vanish. Next p-f ex-
change degeneracy provides a zero in the direct
p coupling. An additional zero of this type in the
p residue function is also predicted along entire-
ly different lines, from chiral-symmetry argu-
ments. ' Thus our view is that the A, resonance
is not seen in charge-exchange reactions, for
perhaps good reasons, while it is observed clear-
ly in 7 decay and in diffractive hadronic reactions.
To conclude, we believe we have established
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ture functions and the coupling constant entering
in the basic quark, gluon diagrams. These calcu-
lations do, of course, suffer from the problem
regarding the ' soft" behavior of the basic @CD
diagrams, discussed in this paper.
This work was supported in part by the Univer-
sity of Wisconsin Research Committee with funds
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We show that the observation of the A& resonance in ~ decay agrees with diffractive A&
production and that it confirms our previous analysis of the diffractive data.

Recent observations'' of a strong enhancement
of the pv mass distribution near p& threshold in
the decay of the heavy lepton v —v, pv, and their
interpretation as evidence for the A, resonance,
raise the important question of the compatibility
of these new observations with older data' on the
A, system obtained in diffractive hadronic pro-
duction experiments. The peak observed in v de-
cay has a mass M~ - 1150 MeV and a width I"
-200—300 MeV. On the other hand, in a recent
paper' we showed that the diffractive data imply
the existence of a "broad" A, resonance, I -400
MeV, whose mass we could establish only within
the bounds M„,= 1350+ 150 MeV. In the hadronic
data, this large uncertainty in the probable mass
can be traced to various uncertainties in the theo-
retical analysis, including the parametrization
of the Deck diffractive background, and to the
relative paucity of the data. Based on the diffrac-
tive data alone, the parameters of our preferred
so)ution are M~, = 1185 MeV, and F= 395 MeV
(solution E of Ref. 4). These parameters are

those of the position of the second-sheet pole of
the pv-pr amplitude in Ref. 4.
The purpose of this Letter is to demonstrate

that a careful analysis of the data from z decay
leads to good agreement with the A, resonance
deduced from diffractive data, that the v data re-
strict the range of solutions obtained in our ear-
lier work, 4 and that our preferred solution F of
Ref. 4 provides a good representation of the pm

mass distribution from v decay.
The diagram in Fig. 1 represents v. decay. The

FIG. 1. Diagram for ~ decay.
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Strangeness +/- 1 axial vector mesons

• Illustration of the vector multiple of the quark model 

!

!

!

!

!

!

!

• Turn attention to S = +1 and S= -1 members of the axial vector 
multiplets.  Notation is K_1.   Formerly Q.   

• Studied in                  

• Much less data than in the case of the _ 

40

Kp ! K⇡⇡p

a1



        data

• Brandenberg et al publications based on 13 GeV/c SLAC data 
from                                      Phys Rev Lett  36, 703 and 706 (1976) 

•                                                                                                           in the 
mass interval                                         GeV   

• Partial wave analysis shows that two                   states are 
produced:  

!

!

• Invitation to consider a coupled channel study with two poles in 
the K matrix.  Two                  S-wave channels  

• Basdevant and Berger, Phys Rev D19, 246 (1979)  

!

!
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K±⇡+⇡�

K±p ! K±⇡+⇡�p

JP = 1+

\

1.0 < M(K⇡⇡) < 1.6
72000 K+p+⇡� events and 56, 000 K�p+⇡� events

“Q1” and“Q2”

“Q1”(1300), � ⇠ 200 MeV couples principally to ⇢K

“Q2”(1400), � ⇠ 160 MeV couples principally to K⇤⇡

JP = 1+ K⇤⇡, ⇢⇡



Intensities and phases

• Mass dependences of the intensities of various waves, and their 
phases relative to  

!

!

!

!

!

!

!

!

!
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FIG. 3. Mass dependence of the 1+0+ and 1+1+pk.
waves. The phase, y,~&, is measured with respect to
1+0+ K*71.. The shaded area indicates the range of am-
biguity.

FIG. 2. Mass dependence of the 1+0+, 1+1+, and 2+1
I'*~ waves. The phase, y«&, is measured with respect
to 1+0 E*m. The shaded area indicates the range of
ambiguity.

and E data. In the 1'O'K*& waves, there are
clearly two peaks in the K data but only a peak-
shoulder structure in the K data. The higher
mass peak in the K data occurs at -1380 MeV,
well beyond the ambiguous region. As seen in
Figs. 2(e) and 2(f), there is little phase variation
(& 45 ) of the 2'1+K*& wave in the vicinity of
1420 MeV. The 1 1 K*n' waves are significant
in the 1200-MeV region, but are & 10% of the 1+0+
K*r waves in intensity, indicative of t-channel
helicity conservation for the 1'K*&waves.
In the 1+ pK system (Fig. 3), peaks of width

-200 MeV are observed in all waves at -1280
MeV. Furthermore, there are pronounced phase
variations: a forward motion of - 70' for 1.20
&m(K~n) & 1.35 GeV and a backward motion of - 50'
for 1.35&m(Km~) & 1.45 GeV. The ratio of 1'1' pK
to 1+0+ pK (-—,) is certainly not indicative of t
channel helicity conservation. " The measured
coherence between the pK and 1+0+ K*m waves is-0.75 for the entire Km7t mass range. '

These features may be explained qualitatively
in terms of two 1' resonances, Q, at - 1300 MeV
coupling principally to pK and Q, at -1400 MeV
coupling principally to K*&, and a "Deck" back-
ground peaking at - 1200 MeV in the 1'K~m sys-
tem. The evidence for such an interpretation is
summarized as follows.
(a) There are comparatively narrow peaks in

the partial-wave mass spectra. Q, has a width
of -200 MeV and Q„awidth of -160 MeV. Such
narrow peaks are not expected to result from
"Deck" mechanisms.
(b) The large forward phase variation of the pK

waves would correspond to a resonance if the ref-
erence wave were approximately constant in
phase. This would be the case if a significant
background were present in 1'K*& and jor the
Q, coupling to K*& were small.
(c) The suppressed phase variation of K*(1420)

relative to 1+O' K*g would indicate that this ref-
erence wave is also executing a Breit-Wigner
phase variation in the region of 1400 MeV. In ad-
dition, if Q, couples weakly to pK, a backward
phase motion for the 1 pK waves would then be
expected.
(d) The residual low-mass peaks in 1+K*~ may

be associated with a "Deck" background. Indeed
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and E data. In the 1'O'K*& waves, there are
clearly two peaks in the K data but only a peak-
shoulder structure in the K data. The higher
mass peak in the K data occurs at -1380 MeV,
well beyond the ambiguous region. As seen in
Figs. 2(e) and 2(f), there is little phase variation
(& 45 ) of the 2'1+K*& wave in the vicinity of
1420 MeV. The 1 1 K*n' waves are significant
in the 1200-MeV region, but are & 10% of the 1+0+
K*r waves in intensity, indicative of t-channel
helicity conservation for the 1'K*&waves.
In the 1+ pK system (Fig. 3), peaks of width

-200 MeV are observed in all waves at -1280
MeV. Furthermore, there are pronounced phase
variations: a forward motion of - 70' for 1.20
&m(K~n) & 1.35 GeV and a backward motion of - 50'
for 1.35&m(Km~) & 1.45 GeV. The ratio of 1'1' pK
to 1+0+ pK (-—,) is certainly not indicative of t
channel helicity conservation. " The measured
coherence between the pK and 1+0+ K*m waves is-0.75 for the entire Km7t mass range. '

These features may be explained qualitatively
in terms of two 1' resonances, Q, at - 1300 MeV
coupling principally to pK and Q, at -1400 MeV
coupling principally to K*&, and a "Deck" back-
ground peaking at - 1200 MeV in the 1'K~m sys-
tem. The evidence for such an interpretation is
summarized as follows.
(a) There are comparatively narrow peaks in

the partial-wave mass spectra. Q, has a width
of -200 MeV and Q„awidth of -160 MeV. Such
narrow peaks are not expected to result from
"Deck" mechanisms.
(b) The large forward phase variation of the pK

waves would correspond to a resonance if the ref-
erence wave were approximately constant in
phase. This would be the case if a significant
background were present in 1'K*& and jor the
Q, coupling to K*& were small.
(c) The suppressed phase variation of K*(1420)

relative to 1+O' K*g would indicate that this ref-
erence wave is also executing a Breit-Wigner
phase variation in the region of 1400 MeV. In ad-
dition, if Q, couples weakly to pK, a backward
phase motion for the 1 pK waves would then be
expected.
(d) The residual low-mass peaks in 1+K*~ may

be associated with a "Deck" background. Indeed
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Basic Deck diagrams
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• Basic non-resonant Deck production diagrams:  
BERgERq A» EASDEVANB250

dby theck round p
~ d

u led channe
ljtudDeck or b

i in the o
e which

a
ents of unltar

nd term is on
requjreme

The seco
K+p and pK

*g system.
' nof the

pK and K . t' production
t length

represen
oach is de

ts direc
scribed a

arize the
Our appro

we summar
systems ~

&4 In this sectio
and we estab-features oessential

~e beg~n in
uss how un

r notRtion
IB we disc

].ish ou " . In Sec II
h new De kresent t e nd rd. ;th t.'f' d in accorp

n . we desents ot f unitarity. n
duction terrry.direct pro u

I
/P/

A. Deck amplitudes

J+=1' partialts in the J
re generateK*@ thresh

extensive y

thpnalytic e
r notation,In vector

t- channel helicifor -c
1 y0

O -=~'-",KT'g(s, M 2, t = 0)—=
i

pK

P /
/

b)
del diagrams for pi eF . . xcIQ. 4. Basic del ia

(a) K-exch'. ge g

t2

/P/

(a}
U2

M—
gpKK Kwm system.mass of the

e-mo-
evaluat-i the E* (p)

ed wi

i o i g.
db th theM d'p

norm ali zation o e o

dth tdoscalar-

nnel helicity one,

&Itl 2is gz z,

/P/

FIG. . Deck-model
p(b) K* exchange

Kinematic varia es
(a) x exc

change. inPomeron excsents o
s trated.

is layed explicitly inI o d spl
de endences

than the

es are roug
roximatioriwhat of a apprp ts somew a

the &)-

proximaterovides approcess p

but ap
onserva i

roximateand negative,

K⇤⇡ and ⇢K



44

Unitarization - 1

• Deck amplitude            produces                      non resonant 
enhancements near threshold in                        . 

• The                         are strongly interacting systems.  They 
interact in the final state.  These final state interactions must be 
incorporated in the full amplitude.  They are inevitable and non- 
negligible if there is a resonance, such as the                            
state of the quark model. 

• Construct a full amplitude            that includes final state 
interactions, the      state, and respects unitarity (no double 
counting) 

• For the full treatment of                         see Basdevant and Berger, 
Phys Rev D19, 246 (1979) and Phys Rev D 19, 239 (1979)

4444

JPC = 1++TDeck

qq̄
Tu
Deck

qq̄

K⇤⇡ and ⇢K

K⇤⇡ and ⇢K

JP = 1+

K⇤⇡ and ⇢K
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Unitarization - 2
• Impose unitarity by requiring that the full amplitude               

satisfies proper discontinuity relations in the variable M.  

• In the unitarity relation, we retain 2-body intermediate                  
states                        , this time treating the vector mesons as 
unstable, but still restricting to S-wave orbital angular momentum 
states in                         

•                 has a right-hand unitarity discontinuity starting at the 
lowest threshold,                             

•        is its value above the cut;        is the value below the cut.   

• Unitarity relationship                     ;      is the strong interaction 
unitary     matrix that describes   

!

• We do not know     .  We will parametrize it in terms of a K matrix 
and determine the parameters by comparing with data. 
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Analyticity and Unitarity - 1

• Theory task: Construct an analytic and unitary         from 
knowledge of its singularities: (a) right hand unitarity 
discontinuities; and (b) “left-hand” pole singularity supplied by 
the Deck production amplitude 

• Solution in terms of an analytic 2 X 2               matrix that has 
only a right hand unitarity discontinuity:                                     ; 
also invertible — determinant of D should not vanish anywhere 
on the first sheet. 

• By construction,                            has only a right-hand 
discontinuity,    

• Write dispersion integral for  

• Dispersion integral leads to   

!

!
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We define lmD '(M ) =- (g'+& 'g '&) ImC(M'). (16)

Using the matrix C(M ) of unstable particle Chew-
Mandels tarn func tions introduced in Ref. 14, we
write the 2~2 4~=1' 8-wave t matrix for K*m
-K*m, K*m pK, and pK- pK as

t(M2) =(1—KC) iK.
The D matrix which is of fundamental importance
in our calculation is defined here as'4

D(M') = (1—KC)-'Z. (15

In our equations, we encounter ImD '(M2) which is
expressed explicitly as

A dispersion relation may be written' for the
coupled-channel amplitude T(M2). In addition to
its unitarity or right-hand cut structure, just dis-
cussed, T(M2) has a left-hand discontinuity pro-
vided by the Deck production amplitude. We choose
to write our dispersion integral along the right-
hand cut. " Our full unitary solution has the form

T(M ) =T"(M ) + T "(M )

where 7.'& is the unitarized Deck amplitude, and
T "represents direct production, discussed in
Sec. III C.
The unitarized Deck amPlitude is~

Co

Tn(M ) =Tp(M2) ——D(M2) ImD '(s')Tn(s') (18
(111~~2~)2 S' —M

The usual (nonunitary) Deck amplitude Tn(M ) is provided in Eqs. (5) and (6). We note that if a nonvanish-
ing constant contribution (&) is included in the K matrix, the integral in Eq. (18) is not convergent, and a
subtraction procedure is required. We adopt the following method. Since Tn(M ) is of the form

T (M)=~

and ImD '(M2) is provided by Eq. (16), we define

ImD '(s'}T (s'}, ~=- [g'+b, '(M2}g ' Ct]f oy «M')-C(s )
(m&+2m~)2 8 —M M —s 0

(20}

It is easy to verify that any subtraction constants
can be absorbed into the definition of the term
T "(M2), which we now discuss.

C. Direct production

In addition to its production through the unitar-
ized Deck amplitude, the Kmm system may also be
produced ' directly. " For one resonance, the
meaning of the direct production amplitude was
discussed at some length in Ref. 11. Direct pro-
duction of Q mesons is illustrated in Fig. 5. As
shown in Ref. 11, the direct production term is of
the form

matrix 8, nor do we try to assign precise physical
significance to the direct production term which
results from our fits to data. We have obtained
solutions with Q=O which do not differ significant-
ly from those with ~40.
In our calculations we choose A. and 8 in Eq.

(21) to be real constants, assuming implicitly that
the "direct production" amplitude has the same
energy (s) dependence is in Phase with the Deck
amplitude in Eqs. (5) and (6). There is no a Priori
reason for these two components to be perfectly in
phase at 13 GeV/c, where, for example, Regge
exchange effects might play a dominant role in the

Td" (M2) =is D(M2)l( (21)

where & and B are constant free parameters.
Equation (21) applies for f-channel helicity A., =0;
for X, = l

1 l, an additional factor v' f is inserted-
on the right-band side.
We remark that owing to the necessity for sub-
tractions in Eq. (18) if +4 0, the notion that Eq.
(21) represents "direct-production" is somewhat
ill defined if ~4 0. This issue is not of substantive
importance here since we. do not make great use of

FIG. 5. Diagram representing the direct production
of Q meson resonances and their subsequent decay into
pK or K*g.



Two channel, two pole K matrix

• Include the possibility of a non-resonant part  
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• Full unitary solution is  

• Helicity indices are not shown, but               stands for two 
equations, one for t-channel helicity                 .  

•  Each              is also a two-component vector, upper/lower for   
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• Range of good solutions found in fits to data, as in the a_1 case  
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conservation in the pK case, with Repro near zero.
These facts are represented by the choic.e of the
negative sign in Eq. (6}, and by the value of the
coefficients, 1 and 2.5, which multiply the K*m
and pK components. Our normalization is such
that the absolute square of Eq. (6) yields the full
helicity-one cross section, summed over both
A.

&
—1 and -1. The expressions in Eqs. (5) and (6)

are valid for the specific charge states K* m' and
p K'. So that the K*w and pK channels will form
an eigenstate of isospin (f = a), we multiply the
pK components in Eqs. (5) and (6) by ~2.
The Eqs. (5) and (6) represent on+ the diffrac-

tive Pomeron exchange contribution to K*m and
pK production. As discussed in Sec. II, insepar-
able Regge-exchange contributions are' also pres-
ent at 13 GeV/c. To account for these Regge terms
in a purely ad Aoc fashion, we multiply the Deck
amplitudes in Eqs. (5) and (6) by a factor of 1.2.
This represents our estimate that the K'mm cross
section should drop by about the square of this
factor from 13 GeV/c to asymptotic energies, as
is approximately true in A& production. ' This
factor plays a role in our fit because we insist on
reproducing the absolute normalization of the data.
We could achieve an excellent fit without it, at the
price of including somewhat more direct produc-
tion. However, since we believe there are non-
negligible Regge exchange effects, we judge that
ignoring them is less justified than our ad hoc pro-
cedure of incorporating them.
The cross sections for KP A*BP are calculated

do 1 q~g~
0.3893 8(2v)sam I A

where q~+~ is the magnitude of the three-vector
momentum of A* in the A*B rest frame. All ap-
propriate isospin factors are to be included in

The factor (0.3893) ' is present in the de-
nominator because &,~ and o'»~ in Eqs. (5} and (6)

B. Final-state interactions

In this subsection we describe the requirements
of unitarity in the coupled K*v and pK channels.
We follow the method presented in detail in Refs.
11 and 14.
We let the theo compo-nent vector T(M2) repre

sent the full 8"=1' amP/itude for KP -K*mP and
KP—pKP. Apart from other singularities, it has
a right-hand unitarity cut in M2. If T' and T rep-
resent the values of T above and below this cut,
the statement of unitarity is
T'=ST, (8)

where the operator S is simply related to the sym-
metric unitary strong-interaction S matrix for
the coupled-channel scattering K*@-K*m, K*m—pK, and pK- pK. the precise behavior of
S(M2) is, of course, the unknown of our problem.
We parametrize S(M2) in terms of a K matrix and
then seek to use data to determine these parame-
ters.
We begin with a two-pole K matrix, with the ad-

ditional possibility of a "nonresonant" part repre-
sented by constant elements a~&.'

is expressed in mb units; all other quantities are
in GeV units.
The cross sections obtained from our basic non-

unitary Deck amplitudes are presented as dashed
lines in Fig. 1. In these results, the factor of 1.2
discussed above is included. In computing the
threshold momentum factors q, » and q»~, [q„*sof
Eq. (7)], we use the explicit smearing method de-
vised in Ref. 14 to take into account effects of the
finite widths of the p and K*. Thus, q~+~ —2M
ImC(M2), where the function C(M2) is the Chew-
Mandelstam function of Ref. 14. We note that the
basic Deck model provides substantial enhance-
ments, particularly in the K*m channels. However,
in all cases, this enhancement is too broad and
deficient in absolute normalization. These points
have been noted before. ' '~

gw ga2 2

2+ -~+8 )(S~™Sg-
K=

g~f~ + Zafs a +&&2

r~f~ „ rafa
Sg—M SB—M

fA fs
sg-M s~-M

(9)

The matrix K may be reexpressed as

K =g&g'+ ~, (10) le fB

where the matrices g and & are defined below, and
8 is the matrix of the coefficients a&;, g is the
transpose of g.

1
sg-M2

(12)

aij
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We define lmD '(M ) =- (g'+& 'g '&) ImC(M'). (16)

Using the matrix C(M ) of unstable particle Chew-
Mandels tarn func tions introduced in Ref. 14, we
write the 2~2 4~=1' 8-wave t matrix for K*m
-K*m, K*m pK, and pK- pK as

t(M2) =(1—KC) iK.
The D matrix which is of fundamental importance
in our calculation is defined here as'4

D(M') = (1—KC)-'Z. (15

In our equations, we encounter ImD '(M2) which is
expressed explicitly as

A dispersion relation may be written' for the
coupled-channel amplitude T(M2). In addition to
its unitarity or right-hand cut structure, just dis-
cussed, T(M2) has a left-hand discontinuity pro-
vided by the Deck production amplitude. We choose
to write our dispersion integral along the right-
hand cut. " Our full unitary solution has the form

T(M ) =T"(M ) + T "(M )

where 7.'& is the unitarized Deck amplitude, and
T "represents direct production, discussed in
Sec. III C.
The unitarized Deck amPlitude is~

Co

Tn(M ) =Tp(M2) ——D(M2) ImD '(s')Tn(s') (18
(111~~2~)2 S' —M

The usual (nonunitary) Deck amplitude Tn(M ) is provided in Eqs. (5) and (6). We note that if a nonvanish-
ing constant contribution (&) is included in the K matrix, the integral in Eq. (18) is not convergent, and a
subtraction procedure is required. We adopt the following method. Since Tn(M ) is of the form

T (M)=~

and ImD '(M2) is provided by Eq. (16), we define

ImD '(s'}T (s'}, ~=- [g'+b, '(M2}g ' Ct]f oy «M')-C(s )
(m&+2m~)2 8 —M M —s 0

(20}

It is easy to verify that any subtraction constants
can be absorbed into the definition of the term
T "(M2), which we now discuss.

C. Direct production

In addition to its production through the unitar-
ized Deck amplitude, the Kmm system may also be
produced ' directly. " For one resonance, the
meaning of the direct production amplitude was
discussed at some length in Ref. 11. Direct pro-
duction of Q mesons is illustrated in Fig. 5. As
shown in Ref. 11, the direct production term is of
the form

matrix 8, nor do we try to assign precise physical
significance to the direct production term which
results from our fits to data. We have obtained
solutions with Q=O which do not differ significant-
ly from those with ~40.
In our calculations we choose A. and 8 in Eq.

(21) to be real constants, assuming implicitly that
the "direct production" amplitude has the same
energy (s) dependence is in Phase with the Deck
amplitude in Eqs. (5) and (6). There is no a Priori
reason for these two components to be perfectly in
phase at 13 GeV/c, where, for example, Regge
exchange effects might play a dominant role in the

Td" (M2) =is D(M2)l( (21)

where & and B are constant free parameters.
Equation (21) applies for f-channel helicity A., =0;
for X, = l

1 l, an additional factor v' f is inserted-
on the right-band side.
We remark that owing to the necessity for sub-
tractions in Eq. (18) if +4 0, the notion that Eq.
(21) represents "direct-production" is somewhat
ill defined if ~4 0. This issue is not of substantive
importance here since we. do not make great use of

FIG. 5. Diagram representing the direct production
of Q meson resonances and their subsequent decay into
pK or K*g.

T (M2)
�t = 0, 1

T (M2)
K⇤⇡, ⇢K



Intensities in solution 1

• Solution 1 shows the significant enhancement and change of 
shape between the final unitary solution and the basic Deck 
cross sections (left, helicity 0; right, helicity 1) 
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suppose that the differential cross section has the
exponential form

d
—
d
——Ao exp(bot) (2)

for the t-channel helicity-zero cross sections, and

6 I
I

I

I OK 7T

TOTAL
- —-- BASIC DECK

SOLUTION I

6 I
I

I
I

I
I

I

=
I
t IA1 exp(bIt)

for t-channel helicity 1. The slopes bo and b&, and
the coefficients A. o and A& are functions of M. The
forms in Eq. (2) and Eq. (3) are judged to fit the
data adequately. s'4 In Refs. 3 and 4, values are
published for b'0 at several discrete values of M.
Over the range 1 &M &2 GeV, these are fitted
roughly by the continuous expressions

(KIIII)'XI =0, bo ——1.3 + 14.6/M, (4.a)
(KIIII) X, =0, bo —3+10/M2, (4.b)
(Km}'XI =1, b', =4+12/M (4.c)

E 0
I

(c)
b
IO—

0.8—

IOp K

IA

OP
CD

6
I

I
I

0 '
I

l2 —(d j

IO—

I
I

I
I

I

I Ip K

We use the same values of b for (K*II) and (pK)
states. The differences between b' and b are not
great, and our results do not depend in a sensi-
tive way on the specific numerical values chosen
in Eqs. (4). However, the fact that b decreases
with M has its consequences. This mass-slope
correlation implies that the peak position in the
mass distribution shifts to larger M as It I

is in-
creased. The relative height of the two peaks in
the K~m mass distribution is also affected. %ere
we to extrapolate to t =0 with values of b indepen-
dent of M, we would erroneously bias our results
in favor of Q, and Q, resonances of different (high-
er} mass.
%e extrapolate the K' and K data separately,

and we average the t =0 results [Eq. (1)] after-
wards. Shown in Fig. 1 are the values we obtain
for the t-channel helicity-zero and -one cross
sections do0'/dtdM and t'IdoI/dtdM at t '=0. Our
extrapola. ted results are in good agreement with
those presented in Ref. 3, but averaged there over
wider intervals in &M.

8. Phases
There are no data available to us which permit

an extrapolation of the experimental phases (more
precisely, phase differences} to t =0. We there-
fore compare our theoretical results, calculated
at t =0, with phases averaged over the interval
0 & I t I

& 0.3 GeV2. If only diffractive exchange
were present, this comparison would not be par-
ticularly questionable since the phase of the Pom-
eron amplitude is believed to vary slowly with
It I (o'z =0.3 GeV ). Only drastically different t
variation of the different diffractive amplitudes
could result in any appreciable t dependence of
phase differences. However, other situations can

0.4—

0.2— I

t i

0 I l- I I I

1.0 I.2 l.4 I.6

Kmx

I.O I.2 I.4
(GeVj

I.6 l.8

FIG. 1. Points with error Qags are the values of the ex-
perimental J'+ = 1'partial-wave cross sections, do/dtdM
and t"'do/dtdl, from Ref. 2, extrapolated to t=o, withthe
K' and K induced cross sections averaged: (a) Ã~p K*og+p,
with the K *~ system having t-channel helicity zero;
(b) K~p K * r ~p, with the K *x system having t-channel
helicity one; (c) K~p p K~p, with the pK system hav-
ing t-channel helicity zero; (d) K'p p'K'p, with the
pK system having t-channel helicity one. The dashed
curves show the 4~=1 ' cross sections predicted by the
basic nonunitary Deck amplitudes discussed in Sec. III,
Eqs. (5) and (6) (including the factor of 1.2 mentioned
in Sec. III). The solid curves are the results of our full
unitary solution l.
be imagined in which phase differences would be
affected by the t interval; e.g. , if direct production
were dominant for some amplitudes and if direct
production were mediated by pure Regge exchange
[n(t) =0.6+ 0.9t].
For phases, in contrast to cross sections„a

simple average of the E. and K data does not elim-
inate Regge exchange effects. In our analysis, we
implicitly ignox'e all Regge exchange effects. Only
data on the energy (s) dependence of the results,
which we do not yet have, would justify the addi-
tional complexity. Consequently, we shall define
our parameters primarily by fits to the shape and
absolute normalizat;ion of mass spectra. Phase
differences then serve as a "prediction" or con-
sistency check. As will be shown in Sec. IV, we
achieve a good representation of the M dependence



Intensities in solution 2

• Intensities of the various waves in solution - 2 (no constant terms 
in the K matrix); note the roles of direct production 
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FIG. 6. The data points are identical to those pre-
sented in Fig. 1. The solid curves are the results of
our full unitary solution 2. The dashed curves show the
cross sections obtained from the unitarized Deck ampli-
tude alone, with the direct production amplitude omitted.

—&P&+&'. This parameter is intended to represent
the effects of averaging over the interval ~If ~

&0.3
GeV, a possible phase difference between the di-
rect production and Deck amplitudes, and other
possible phase effects which may not be accommo-
dated by our model. To obtain the curve presented
in Fig. 2(a) we reduce the theoretical result from
solution 1 by 34'. Likewise, in Fig. V(a), we re-
duce the theoretical value from solution 2 by 24'.
We note that the same reductions also bring theory
and data in reasonable accord for the phase differ-
ence Q&+,—&f&&,e' between the helicitymne pK wave
and the helicity-zero K*m reference wave, as shown
in Figs. 2(b) and 7(b). No correction phase is ap-
plied for the ~& ——1, X&——0 &*m phase differences
shown in Figs. 2(c) and 7(c). It is interesting that
the same correction phase shift seems to work for
both the X&—1 and X, =0 pK waves, whereas none
appears required (at least in solution 1) between
the X, =1 and ~&—0 E*m amplitudes. This would
indicate that whatever its physical origins, the
correction phase shift is helicity independent.
It is gratifying that the correction phase differ-

ence in solutions 1 and 2 is small in magnitude and
consistent with having no dependence on M. In the
absence of the correction phase shift, our model
predicts that the phase difference between helicity-
zero states (or between helicity-one states) should
go to zero at the Krm threshold, whereas that be-
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FIG. 7. The data are identical to those presented in Fig. 2. The solid curves are the results of our full unitary
solution 2. In (a) and (b), the theoretical results are reduced by 24'. No correction is applied in part (c).



Relative phases in solution 2

• Relative phases of different waves 

!

!

!

!

!

!

!

!

50

254 J. -L. BASDEVANT AND E. L. BERGER

I I

(o)

SOLUTION 2

—TOTA L
———UNITARIZEO

DECK

o

3 — /i"

E 0

I.O—

1

I
l

I
I

I

10 p0K

)
cu
CD

E
+-

I

(d)b
I 10—

I
44» o

I I p0K

0.8— 8—

0.6— oh 6—ll
Il o

0.4— 4—

I.O 1.2 1.4 1.6 1.8 1.0 1.2 1.4 1.6 1.8
M„„(Gev)

FIG. 6. The data points are identical to those pre-
sented in Fig. 1. The solid curves are the results of
our full unitary solution 2. The dashed curves show the
cross sections obtained from the unitarized Deck ampli-
tude alone, with the direct production amplitude omitted.

—&P&+&'. This parameter is intended to represent
the effects of averaging over the interval ~If ~

&0.3
GeV, a possible phase difference between the di-
rect production and Deck amplitudes, and other
possible phase effects which may not be accommo-
dated by our model. To obtain the curve presented
in Fig. 2(a) we reduce the theoretical result from
solution 1 by 34'. Likewise, in Fig. V(a), we re-
duce the theoretical value from solution 2 by 24'.
We note that the same reductions also bring theory
and data in reasonable accord for the phase differ-
ence Q&+,—&f&&,e' between the helicitymne pK wave
and the helicity-zero K*m reference wave, as shown
in Figs. 2(b) and 7(b). No correction phase is ap-
plied for the ~& ——1, X&——0 &*m phase differences
shown in Figs. 2(c) and 7(c). It is interesting that
the same correction phase shift seems to work for
both the X&—1 and X, =0 pK waves, whereas none
appears required (at least in solution 1) between
the X, =1 and ~&—0 E*m amplitudes. This would
indicate that whatever its physical origins, the
correction phase shift is helicity independent.
It is gratifying that the correction phase differ-

ence in solutions 1 and 2 is small in magnitude and
consistent with having no dependence on M. In the
absence of the correction phase shift, our model
predicts that the phase difference between helicity-
zero states (or between helicity-one states) should
go to zero at the Krm threshold, whereas that be-
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FIG. 7. The data are identical to those presented in Fig. 2. The solid curves are the results of our full unitary
solution 2. In (a) and (b), the theoretical results are reduced by 24'. No correction is applied in part (c).



S-wave phase shifts and inelasticities

• S-wave phase shifts and inelasticities from our solutions 
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• Behavior of          characteristic of narrow resonance near 1.25 
GeV;            suggests second broader resonance above 1.4GeV 
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tween helicity-one and he~licity-zero states should
be 180'. This is a consequence of the negative
sign in Eq. (6) relative to that in Eq. (5), and it is
connected with the t-channel helicity-conserving
properties of our Deck amplitudes. Except for the
small correction phase shift, the data in Figs. 2
and 7 are consistent with these expectations.
In Fig. 8 we display the absolute phase of our
4 =1' X&—0 partial-wave amplitude for KP-K*mP
[but with the diffractive factor of i in Eqs. (5}, (6),
and (21) removed]. This is our reference phase.
Solutions 1 and 2 are essentially identical up to
M =1.6 GeV. Above M = 1.6 GeV, there are no
data to constrain our fit; the two solutions shown
in Fig. 8 suggest that wide latitude is possible for
the behavior of the phase above M =1.6 GeV. Our
1'0 phase rises by about 45 through the region
1.36 &M &1.48 GeV. This behavior may well ac-
count for the observed small variation of the phase
differences between the 2'1 K~v wave [K*(1420}]
and our 1'0 reference wave.
A comparison of the results of our full unitary

solution in Fig. 1 with the predictions of the basic
Deck model shows that the Q-meson effects are
substantial. The full cross section is enhanced and
its shape is very different from that of the nonuni-
tary Deck contribution. In Fig. 6 we show the
cross sections which are obtained if we set the
direct production terms to zero in our solution 2.
Thus, the dashed curves in Fig. 6 are obtained
from keeping only the term Tn in Eq. (17}. In all
four cases, the cross section is dominated by the
contribution from the unitarized Deck amplitude
TD. The cross section supplied by the direct pro-
duction term T~" alone (not shown) is its largest
for the 4~=1' A., = l1 ~

pK case, Fig. 6(d), where
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it peaks at M = 1.28 GeV with a cross section val-
ue of only f 'dv/dtdM =1 mb/GeV~, a factor of 3.5
or more below the unitarized Deck contribution.
We will discuss the structure of the unitarized
Deck contribution in more detail below.
It is interesting to examine the S-wave phase

shifts 5&+, and 6,~ and the elasticity parameter g
which our model provides for the coupled channel
scattering K*71' K*m, pK pK, and pK K*m.
These quantities are presented in Fig. 9. The be-
havior of 6,& is characteristic of a relatively nar-
row resonance with mass in the neighborhood of
1.25 to 1.3 GeV, whereas 5+*, suggests a second
broader resonance at higher mass, above 1.4
GeV. Analyzing our results for 5 and g in more
detail, we obtain the resonance parameters listed
in Table II. Essentially all our solutions imply
the existence of two resonances, which, following
a growing tradition, we denote Q& and Q&. The
first resonance, Q„ is coupled primarily to pK,
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FIG. 8. The absolute phase of the J~=1+ t-channel
helicity zero A,, =0K~m amplitude for Kp ~*xp. Shown
are the results of our solutions 1 and 2. The diffractive-
production phase fa,ctor (i) has been omitted.

FIG. 9. The S-wave phase shifts (a) 6&~~ and (b) 6zz,
and (c) the elasticity parameter r; for the coupled-chan-
nel scatteringK*7t K*m, pK—pK, and pK X*n,
from solutions 1 and 2.
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K_1 Resonance Parameters

• Intensities and phases are consistent with the presence of two 
resonances, but the interplay of these resonances with the Deck 
mechanism has its subtleties.   

• Parameters of one of the resonances are well determined:  
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• The second is determined less precisely:   
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!
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for the narrow resonancelike peaks in the pK spec-
tra, 20 Figs. 1(c) and 1(d}, or Figs. 6(c) and 6(d).
The operative physical mechanism is essentially
the one we proposed earlier. If SU(3}were exact,
with, e.g. , mK+=m, and m, =mK, the Deck pro-
cess would produce the K*m and pK system in a
state of pure C =+1. In this situation, a Qs state,
with C =—1 and fs/gs =- 1, would be orthogonal
to the Deck amplitude, and the Qs state could not
be observed through final-state interactions. How-
ever, owing to the breaking of SU(3) in the Deck
amplitudes, and because our fitted fs/gs 0—1, a
resonance of the Qs type may indeed be observed
through final-state interactions. As discussed in
Ref. 9, this single resonance will produce an en-
hancement of the K*@' amplitude below the reso-
nance location, a rapid drop of the K*m amplitude
near 1.26 GeV (the opening of the pK channel} and
a sharp peak in the pK mass spectrum. All of
these features are observed in the unitarized Deck
cross sections, shown as dashed lines in Fig. 6,
and they pin down the parameters of our Q&. We
remark that the sharp decrease of the J X&—1'0
K*@cross sections near the opening of the pK
channel can be obtained only with some coupling of
the Q~ to K*v; this effect provides a lower bound
on the branching fraction of Q&-K*m (recall that
the J X, = 1'1 K*m spectrum sets an uPPer limit,
cf our discussion of solution 3). The peak in the
pK cross sections and drop in the K*m spectra
requires, at least in our K-matrix formalism, that
the relative coupling of the Q, to pK and K"v be
negative.
The physical evidence in the mass spectra for

the second resonance, Q2, is less direct. Above
M =1.4 GeV, the K*@spectra decrease rapidly
and drop below the Deck cross section. This effect
is illustrated in Fig. 1, and is very similar to that
already noticed in the A.

&
situation. ~ Here, the

final-state interactions of a resonance and Deck
mechanism which are essentially parallel (both
have C = +1}, cause the following effects: The
Deck mechanism is enhanced below the resonance
position, and suppressed above (the cos5 effect
discussed in Ref. 11}. The absence of any marked
enhancement or structure in the pK cross sections
near 1.4 to 1.5 GeV sets an upper limit on the Q2
pK branching fraction (the data are perhaps too

sketchy to allow a firm statement).
Regarding the resonance status of the Q's, we

judge that our analysis of the SLAC data establishes
that a Q& resonance is present, and that a Q2 reso-
nance is highly probable. In this respect we con-
firm the interpretation of the SLAC group ' as
well as the analysis of Bowler. 8 The Q, is coupled
mainly to pK and the Q2 to K"m. Our resonance
parameters differ somewhat from those of previous
analyses.

The mass of the Q, is rather well defined. Its
width is smaller in our solutions 1 and 2 than in the
SLAC or Bowler fits, but in agreement, for ex-
ample, wi;th the recent data of Gavillet et al. '
However, we have obtained other solutions with
F, - 140 MeV, and it is clear that our curves are
somewhat narrower at high mass than the data on
the pK spectra would suggest. We described above
our limits on the K~@branching ratio. We sum-
marize with some confidence by stating the follow-
ing parameters:

Mz —1.28+0.02 GeV,
1

70& F&' &140 MeV,
FK+I'

&%& -'~.~ & lo%.F('
Our neglect of possible K& and vm P-wave decay
channels, found to be important in experimental
analyses, ' suggests that we underestimate the
total widt F,"'.
The mass of the Q2 is less precisely determined,

and its width is large. We estimate

Mg ——1.42 +0.06 GeV,

F. 2"—230 + 50 MeV,
FPK

1%&F2"
It is appropriate to ask how sensitive our re-

sults are to our choice of Deck amplitudes. For
example, in Eq. (6}, we have chosen the numeri-
cal coefficients -1 and -2.5 as multiplicative
factors for the K*m and pK helicity-one amplitudes.
This was done so that the Deck amplitudes will
reproduce approximate t-channel helicity conser-
vation for K*m, and approximate s-channel heli-
city conservation for pK production. Setting these
coefficients free, we find that a best fit is obtained
if -1-—1.2 and -2.5 —3.9. Little change is ob-
served in the resonance parameters of the Q& and
Q2, and the fraction of direct production in the fin-
al fit is reduced below its previously small value.
We remark that this new "best fit" preserves the
hypotheses that the Deck process provides approx-
imate t- and s-channel helicity conservation for
K+m and pK, respectively, and it confirms the an-
alysis of Ref. 12. We reject more drastic modi-
fications of the Deck amplitudes, such as a de-
pendence on M which falls off much faster than the
form (M —mr ) ' which we employ. The physical
origin of a more rapid dependence on M might be
sought in the presence of form factors in t2 or in
u2 in Figs. 3 and 4. However, plausible form fac-
tors induce only a modest change in the M depen-
dence in the region of interest to us and conse-
quently have a correspondingly limited effect on
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that a Q& resonance is present, and that a Q2 reso-
nance is highly probable. In this respect we con-
firm the interpretation of the SLAC group ' as
well as the analysis of Bowler. 8 The Q, is coupled
mainly to pK and the Q2 to K"m. Our resonance
parameters differ somewhat from those of previous
analyses.

The mass of the Q, is rather well defined. Its
width is smaller in our solutions 1 and 2 than in the
SLAC or Bowler fits, but in agreement, for ex-
ample, wi;th the recent data of Gavillet et al. '
However, we have obtained other solutions with
F, - 140 MeV, and it is clear that our curves are
somewhat narrower at high mass than the data on
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marize with some confidence by stating the follow-
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sults are to our choice of Deck amplitudes. For
example, in Eq. (6}, we have chosen the numeri-
cal coefficients -1 and -2.5 as multiplicative
factors for the K*m and pK helicity-one amplitudes.
This was done so that the Deck amplitudes will
reproduce approximate t-channel helicity conser-
vation for K*m, and approximate s-channel heli-
city conservation for pK production. Setting these
coefficients free, we find that a best fit is obtained
if -1-—1.2 and -2.5 —3.9. Little change is ob-
served in the resonance parameters of the Q& and
Q2, and the fraction of direct production in the fin-
al fit is reduced below its previously small value.
We remark that this new "best fit" preserves the
hypotheses that the Deck process provides approx-
imate t- and s-channel helicity conservation for
K+m and pK, respectively, and it confirms the an-
alysis of Ref. 12. We reject more drastic modi-
fications of the Deck amplitudes, such as a de-
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sought in the presence of form factors in t2 or in
u2 in Figs. 3 and 4. However, plausible form fac-
tors induce only a modest change in the M depen-
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Fast Forward to 2014

• COMPASS: evidence for an axial vector                    peak in 
the P wave                   channel at about 1420 MeV. 

• The usual      is in the S-wave      channel at about 1260 
MeV.   

• Two     so close in mass or is the P wave        another decay 
mode of the usual     ? If so, why at a different mass?     

- Counterintuitive to have two states with identical quantum 
numbers so close in mass (           was a different story)         

- Revive unitary coupled-channel research done in 1975 - 
1979 on                    ; this time with both S and P wave 
channels 

• Describe here the new study we published recently. 

• Conclusion: One      suffices to explain the two peaks. 
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New Resonance?

• COMPASS data — intensity and phase 

!

!

!

!

!

!

!

• Observed in the the P wave channel at about 1420 MeV 

• Only             of the intensity in the                   channel 

• Never seen before (statistics) 
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Three-Pion Final States
1++0+f0(980) ⇡ P wave

Intermediate state with same
quantum numbers as the first
wave (JPC = 1++), but
decaying into f0(980) ⇡

The f0(980) has the quantum
numbers JPC = 0++

Only 0.25% of the intensity in
the ⇡�⇡+⇡� channel

This a1(1420) was never
seen before due to its small
intensity, but here it appears
in both channels

Only visible because of the
large COMPASS data set
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Repeat previous study: 
 2 channels, one resonance 

• Deck mechanism for production of non-resonant      and       
in the mass range M = 1 to 2 GeV 

• Incorporation of resonant behavior                 ,                                                                      
One resonance.  New: one S wave and one P wave 
channel 

• Final state unitarization: — two channel, strong interaction S 
matrix, ……  reaction amplitude that includes both Deck 
“background” and resonance  

• Results: (a) separate mass peaks in                      S wave        
and P wave         channels, and (b) relative phase between 
the two amplitudes — consistent with data  

“Peak locations and relative phase of different decay modes ofthe a_1 axial vector 
resonance in diffractive production” [arXiv:1504.05955], Phys Rev Lett. 114, 192001 
(2015); J.-L. Basdevant and E. L. Berger
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Deck Production Mechanism  

• Consider                       at large incident     momentum 
and small momentum transfer to the target.   

• Think of the 3 pion system as a superposition of quasi-
two-body systems 

• One pion exchange production, followed by diffractive 
scattering of the virtual pion from the target: 

!

!

!

!

!

!
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Deck Amplitude - 1

• Deck amplitude for   

!

• Similar expression for  

• In the        or         rest frame, the Deck amplitude contributes to 
several partial waves.    

• For                       one must project the S wave component for                                                   
and the P wave component for    

• Re-express the invariants                          in terms of t-channel angles 

!

!

• Deck amplitude is a rational function so one can project 
analytically  all partial waves S, P, D, … (all m), for any value of  
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Deck Amplitude - 2 
• Consider an expansion for small        (where the data are 

concentrated) of the partial wave projections of the Deck production 
amplitude.  Define expansion parameter  

!

• The S-wave projection is   

!

!

• The P-wave projection is  

!

!

!

• The P-wave projection vanishes at              ; more importantly, it 
passes through 0 for a special value of M — sign change 
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P wave projection vs M

!

!

!

!

!

!

• P wave amplitude crosses zero near                    GeV 

• This sign change drives the relative phase change between the 
P wave and other waves 

• P wave intensity is also much smaller (            ) than the S wave

59

⇠ 10�3

M ' 1.38



Unitarization - 1

• Deck amplitude            produces                      non resonant 
enhancements near threshold in                      . 

• The                      are strongly interacting systems.  They interact 
in the final state, even in the one channel       case.  Final state 
interactions must be included.  They are inevitable and non- 
negligible if there is a resonance, such as the                           
state of the quark model. 

• Construct a full amplitude            that includes final state 
interactions, the      state, and respects unitarity (no double 
counting).
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Unitarization - 2

• Impose unitarity by requiring that the amplitude          
satisfies proper discontinuity relations. 

•                 has a right-hand unitarity discontinuity starting at 
the lowest threshold,                             

•        is its value above the cut;        is the value below the 
cut.   

• Unitarity relationship                     ;      is the strong 
interaction unitary     matrix that describes   

!

• Aside: we do not know    .  Parametrize it in terms of a K 
matrix and determine the parameters by comparing with 
data. 
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Unitarization - 3

• Theory task: Construct an analytic and unitary         from 
knowledge of its singularities: (a) right hand unitarity 
discontinuities; and (b) “left-hand” pole singularity supplied by 
the Deck production amplitude,  

• Solution in terms of an analytic 2 X 2               matrix that has 
only a right hand unitarity discontinuity:  

• Dispersion integral leads to   

!

!

• Expression is our Deck amplitude with resonant final state 
interactions taken into account.  

• Properties: (a) same left-hand production singularity as            ; 
(b) satisfies unitarity; (c) reduces to             if no rescattering.   
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• Parametrize the coupled channel S matrix in terms of a K matrix: 

!

!

!

• Simple pole parametrization yields analytic expression for D 
matrix.               are coupling strengths to the two channels.   

!

!

• The denominator                                                                       
has the appearance of a resonance factor.   In the one channel 
case                                 

•                                               are Chew-Mandlestam functions 
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Behavior of D(M)

!

!

!

!

!

!

!

!

!

!
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Direct Production Term

• In addition to its affects manifest in the unitarized Deck 
amplitude, the resonance may be produced directly via a 
diffractive coupling,  

!

!

!

!

!

• Those acquainted with the study of         scattering in photo-
production,                        , will recognize this term as the analog 
of the “vector- dominance” term in        production; the Deck term 
in the photo production case plays a role in modifying the        
line shape (e.g., Paul Soding, 1966).   
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Final Amplitude and Parameters

• Recall that                 is a two-dimensional vector; upper and 
lower components for                       , respectively  

• Parameters are the K matrix pole position      and the pole 
coupling strengths  

• Plus the two coupling strengths in the “direct” term,                         

!

!

!

66

T (M2) = Tu
D(M2) + Tdir(M

2) (1)

T (M2)
⇢⇡ and f0⇡

s1
g1 and g2

Gf1 and Gf2



Comparison with COMPASS data

• We have not made a        fit.   

• Focus on the momentum transfer t interval [0.10 to 0.13]  

• Trial and error: find appropriate values of the      mass and width 
(defined by the position of the pole on the second sheet) that 
give the observed mass peaks. Obtain: 

!

• These values fix  

• The ratio                    was varied to give the observed relative 
intensity of the two peaks: central value 

• Determine the amount of “direct” production by placing the two 
peaks at the desired locations:                                                                 
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�2

M(a1) ' 1.40± 0.02 GeV,
�(a1) ' 0.30± 0.05 GeV.

s1 ⇠ 2.002 GeV2; g1 ⇠ 0.732 GeV.

� = g2/g1
� = g2/g1 = �0.08.
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             mass distribution

!

!

!

!

!

!

!

!

• Note that unitarization sharpens the Deck amplitude 

• Overall peak location at about 1260 MeV, width about 280 MeV 

• The peak does not have a symmetric Breit-Wigner form 
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               mass distribution

!

!

!

!

!

!

!

• Deck in           is narrow and very near threshold 

• The final peak is pushed higher in mass, close to 1420 MeV; 
width about 140 MeV 

• Note the second peak in            predicted just below 1200 MeV
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Both on the same figure

• Scale up the        distribution by X 650 

!

!

!

!

!

!

!

!

!
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Relative phase 

!

!

!

!

!

!

!

• Curves showing the relative phase as a function of M for three 
choices of the ratio of coupling strengths. 

• Sharp rise of the relative phase related to the zero in the P wave 
production amplitude.   

!
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Dependence on momentum transfer

• We have results for arbitrary values of the momentum 
transfer to the target,    ; the changes in mass spectra and 
phases are modest.  Paper in preparation.   

• What about the differential cross section as a function 
of     ? 

• Recall: the final amplitude is a sum of two terms:  

!

• Each term has its own    dependence properties; the direct 
term has the same      dependence for both channels.   

• However, there is a (well known) strong mass dependence 
of the      distribution for the Deck term, both in theory and 
experiment.    The slope is considerably steeper at low M 
than at higher M.  Moreover, there is the kinematic 
suppression at small     for the P-wave channel.     
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Outlook and perspectives

• Main features of the COMPASS data, two mass peaks 
separated by about 160 GeV, with pronounced relative phase 
motion, are compatible with a single        

• New determination of the mass and width of the      along with its 
branching fraction into        possible  

• Rediscovered in this example that, although a peak is often 
associated with a resonance, its precise mass and width depend 
also on the dynamics of the mechanism by which it is produced. 

• Here, the same Deck production mechanism has very different 
character in the S-wave and P-wave channels, leading to a shift 
by about 160 MeV in the observed positions of the                                        
state.  

• If one could do low-energy                       elastic scattering, one 
would observe a single resonance peak with mass and width 
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Heavy lepton decay (under construction)

• Data much improved: ALEPH, Physics Reports 421 (2005) 191–284; CLEO 
Phys Rev Letters, 90 181802 (2003); BELLE Phys Rev D81, 113007 (2010) 

!

!

!

!

!

!

!

!
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FIG. 7 (color online). The unfolded mass spectra of the three-prong decays, 1=NðdN=dMÞ: (a) Mð!!!Þ distribution of "# !
!#!þ!##", (b) MðK!!Þ distribution of "# ! K#!þ!##", (c) MðKK!Þ distribution of "# ! K#Kþ!##", and (d) MðKKKÞ
distribution of "# ! K#KþK##". The black points correspond to the unfolded mass spectra with statistical uncertainties only, and the
gray bands correspond to the systematic uncertainty. The solid histograms are the model predictions implemented in the current
TAUOLA MC simulation.

TABLE III. Summary of the relative errors of the unfolded mass spectra, 1=NðdN=dMÞ (in %) from different sources of
uncertainties: the unfolding procedure (UNF1, UNF2), the kaon identification (KID), the background estimation (BGE), the $ veto
(GAM), and the momentum scale (MOM). The ‘‘average’’ uncertainties (the second, fourth, sixth, and eighth columns) are evaluated
by taking average of errors in all bins. The ‘‘peak’’ uncertainties (the third, fifth, seventh, and ninth columns) represent the errors at the
peak position of the spectra. See the text for a more detailed description.

Sources of uncertainties " ! !!!# " ! K!!# " ! KK!# " ! KKK#
average peak average peak average peak average peak

UNF1 0.5 0.5 0.1 0.1 0.4 0.4 0.6 0.6
UNF2 0.1 0.1 1.6 1.5 0.9 0.9 7.3 4.0
KID 0.4 0.4 1.0 0.8 1.5 1.1 1.9 0.9
BGE 0.2 0.2 0.6 0.5 0.4 0.3 1.9 1.1
GAM 0.6 0.4 0.9 0.4 1.2 0.9 4.6 3.2
MOM 0.1 0.0 0.4 0.2 0.3 0.3 2.7 3.1

Total systematics 0.7 0.7 2.2 1.9 2.2 1.7 9.5 6.2
Statistics 0.2 0.2 1.1 0.8 1.0 0.8 7.1 4.6

Total 0.9 0.8 2.4 2.0 2.4 1.9 11.8 7.7

M. J. LEE et al. PHYSICAL REVIEW D 81, 113007 (2010)
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Heavy lepton decay data

• CLEO data 

!

!

!

!

!
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!
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Summary - 1

1. Axial-vector mesons — names, symbols 

2. Features of the data 

3. Production dynamics 

- Deck model (non-resonant) 

- Final state interactions  

- Unitarity and analyticity 

4. Phenomenology of the  

- One pole, one channel case (     ) 

- One pole, two channel case (                         ) 

- Heavy lepton decay 

5. Photoproduction of          , and final state interactions 
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Summary - 2

1. Axial-vector mesons in  

- Two resonances (poles), two peaks 

- Mixing 

2. Fast forward to 2014 - 2015, the      again 

- One or two axial vector          states?  

- One resonance pole, two peaks 

- Extraction of the axial vector mass, width, and branching 
fractions

7777
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Future

• Other channels, e.g.,  

• Detailed fits to COMPASS data to extract mass, width, branching 
fractions of the a_1.   

• Challenge of data handling — cannot be done by theorists alone 

• Heavy lepton decay data; solutions consistent with hadron 
production     

• X, Y, Z      

• Pass the baton                        

!

!

!
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Unitarization - “Practical” details 

• Parametrize the coupled channel S matrix in terms of a K matrix: 

!

!

!

• Simple pole parametrization yields analytic expression for D 
matrix.               are coupling strengths to the two channels.   

!

!

• The denominator                                                                       
has the appearance of a resonance factor.   In the one channel 
case                                 

•                                               are Chew-Mandlestam functions 
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