Argonneo

NATIONAL LABORATORY

Production Dynamics of
Axial Vector Mesons

2015 Reaction Theory Summer Workshop, Indiana University
Bloomington, IN  June 8-19, 2015

Edmond L Berger (verger@ani.gov)
High Energy Physics Division, Argonne National Laboratory

| (@) ENERGY



Acknowledgement

e Much of the work summarized in these lectures was done in
collaboration with Jean-Louis Basdevant off-and-on over
about 40 years

e Thanks to Adam Szczepaniak, Geoffrey Fox, ...., Moya
Wright for the opportunity to be here



Axial vector (pseudo-vector) mesons

® SpinJandparity P J” =17F

® Quark model qq states with orbital angular momentum ¢ = 1

e Multiplet like the pseudo-scalar J© = 0~and vector J© = 1
states (whose ¢ = 0)

® Particle Data Book names:
— a_1(1260) Isospin | =1 JP¢ = 1++
—b_1(1235) =1 JPC = 1+—

o —K 1(1270), K_1(1400) 1=1/2, strangeness S = +/- 1

® Focus in these lectures primarily on the | =1 a_1 state; with some
discussion of the K_1 states

® a 1 forbidden to decay in two pions; 3 pions is the simplest



Outline - 1

. Axial-vector mesons — names, symbols

. Features of the data

. Production dynamics

- Deck model (non-resonant)

- Final state interactions

- Unitarity and analyticity

. Phenomenology of the a;

- One pole, one channel case (pm)

- One pole, two channel case (pm and K*K)
- Heavy lepton decay 7 — aqv

. Photoproduction of 77 , and final state interactions




Outline - 2

1. Axial-vector mesons in K«
- Two resonances (poles), two peaks
- Mixing

2. Fast forward to 2014 - 2015, the a7 again
- One or two axial vector w7 states?
- One resonance pole, two peaks

- Extraction of the axial vector mass, width, and branching
fractions



How is the a_1 produced?

® Quantum numbers forbid a1 decay into 77r; w7 is simplest

e \Well studied reaction is mp — wmmp. At high energy and small
momentum transfer to the target, “beam excitation” meson
systems can be separated from “target excitation” N*’s

® Another environment is a weak process such as heavy lepton
decay T — TV

® Selected hadronic experiments:

- CERN-IHEP group, 25 and 40 GeV/c, 70K events, Antipov, Ascoli
et al, Nucl Phys B63, 153 (1973); Phys Rev D7, 669 (1973)

- ACCMOR, 63 and 94 GeV/c, ~600 K events, Daum et al Nucl
Phys B182, 269 (1981)

- E-852, 18 GeV/c, ~5 M events, Dzierba et al PRD 73 (2006)

- COMPASS 190 GeV/c, 50 M events, Adolph et al arXiv:
1501.05732 [hep-ex] (2015)



Characteristics of the hadronic data - 1

® Broad invariant mass distribution (COMPASS data as example)
and sharply falling momentum transfer distribution

%108 ap — n wtn p (COMPASS 2008) ap — x wta p (COMPASS 2008)
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Characteristics of the hadronic data - 2

® Mass distribution changes with selections on the range of momentum

transfer
605 10° 7p — a wtw p (COMPASS 2008) %<10° ap — 7w wtw p (COMPASS 2008)
S i 0.10 = ' <0.12 GeV¥/c2 | & - 044 < t' < 1.0 GeV?%/ 2

A 3 “or
> - > -
o) S0r v 351
= 2 300
0 40 2 -
e [8a} C
b - S 25
b 30; 5 C
e T 20
= = -
Z B Z u
20 15F
: tof-
10— E
. 50

07 lllllllllllllllllllllllllllllllllll 07 llllllllllllllllllllllllllllllllllll

06 08 1 12 14 16 18 2 22 24 06 08 1 12 14 16 18 2 22 24

Mass of 7~ z*~ System (GeV/c?) Mass of 7~ " System (GeV/c?)

® This correlation of the slope with mass is reasonably well understood
theoretically (feature of the doubly-peripheral Deck mechanism)



Spin & parity content of the distribution

® Extracting the spin and parity of 3 body systems is more difficult
for 3 body systems than for 2 body systems

® Special methods developed based on an isobar approach

® Think of the 3pi system X as a superposition of quasi two body
systems X = pm, fo(980)m, ....

7t (bachelor)
7t (beam) 1

€ =+ :natural
parity exchange

€ = —:unnatural
parity exchange

p (target) p (recoil)

® Are there 3-body contributions not well represented this way?
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Example of a Dalitz plot

e Take slices of 3 pi mass and look at the Dalitz plot — evidence of
isobars is evident

e 75(1670) region exhibits pr, fo(1270)7, fo(980)7

3 np — nnntp (COMPASS 2008)
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Spin & parity content of the distribution

® The intensities in the different spin-parity J©'¢ waves, and the
relative phases among them are extracted from the isobar model
fits to data



Two prominent waves at low mass

Intensities of the J* = 1T pr1r
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Interpretation of the JAP = 1+ wave

There is no longer the uncertainty there was in ~1975 that
the enhancement is resonant

Nevertheless, determination of the mass and width of the
a_1 resonance requires an understanding of what else in
going on in that partial wave

One question: why does the phase of the 1+ wave change
slowly with respect to other partial waves, unlike the rapid
behavior expected of a Breit-Wigner amplitude

In mid 1970’s we treated 7p — 7rmp and mp — K Kmp
as a coupled channel system

Theoretical reasons: extra channel provides inelasticity and
affects phase motion; SU(3) .....



Deck Production Mechanism
e Examine wp — mwrwwp at large incident m momentum and
small momentum transfer to the target.

e Think of the 3 pion system as a superposition of quasi-two-
body systems (7T7T7T§ — TP, 7 fo, .... likewise for K K

® One pion (one Kaon) exchange production, followed by
diffractive scattering of the virtual pion from the target:

e Also graphs in which the rho or the K* are exchanged

14



Deck Amplitude - 1

Deck amplitude for mp — p7p

2

b2

I
TP = gprn K, (t2) ; zslgebtlaﬁp
Similar expression for mp — K*Kp

In the p™ rest frame, the Deck amplitude contributes to several
partial waves.

For JP¢ — 11+ we must project out the S wave component

Re-express the invariants s13 and to in terms of t-channel angles

ta = g1(M,t1) + g2(M, 11) cos 0,
s13 = g3(s, M) + g4(s, M,t1) cos 0; + gs5(s, M, t1) sin 6; cos ¢,

Deck amplitude is a rational function so we can project
analytically all partial waves S, P, D, ... (all m), for any value of ?1.



Deck
Tg = —

"
Deck Amplitude - 2

Perform an expansion for small t1 (where the data are
concentrated) of the partial wave projections of the Deck production
amplitude. Define a dimensionless expansion parameter

t
(M2 —mZ2)

0, =

The S-wave projection is

s ><(1_1@1((3]\4 +mﬂ)_§_:)(

(M2 — 2 (M2~ m2) 1 ))

1
2 y 11—y

Note that the Deck amplitude is a pure S-wave at t{ = 0. Angular
dependence cancels in the numerator and denominator.

Aside: Would not be right to think of pion exchange here as feeding
only high partial waves. Also question of how seriously to take

details.



Deck Amplitude - 3

Deck amplitudes with isospin 1 and t-channel helicity 0, written
as a two-component vector:

- TD k (p#)
T30, s, 0 s[ o ....}
D ( s Sy ) T\Deck (I{*K)

_ 2iV2 s Ewontn=Kpor,Ny
T (MP = m?) | gyxog+ g Koy, Ny |~

Upper component refers to p7r and the lower to K* K



Low mass enhancement

ONE CHANNEL
{c)

FULL SOLUTION
— —-— DECK
------- DIRECT TERM

do/drdM at t=0 (mb/Gev>)

WL Spatiy ! | ik | I

ol hee--
09 10 1 kL2 13 14 15 t6 1.7
Mow {Gev)

The differential cross section do /dMdt, at t; = 0 for mp — p7p

Focus now only on the LONG DASHED curve: The non-resonant
Deck amplitude provides a broad enhancement just above threshold.
Discuss the solid and short dashed curves later



Unitarization - 1

Deck amplitude TP~ produces J©¢ = 17 non resonant
enhancements near threshold in pm and K* K

The pm and K* Kare strongly interacting systems. They
interact in the final state, even in the one channel p7 case.
These final state interactions must be incorporated in the full
amplitude. They are inevitable and non- negligible if there is a
resonance, such as the J©'¢ = 177+ ¢q state of the quark
model.

Construct a full amplitude 175, that includes final state
interactions, the g state, and respects unitarity (no double
counting)

For essential details see Basdevant and Berger, Phys Rev D16,
657 (1977)



Unitarization - 2

Impose unitarity by requiring that the full amplitude 77 (M)
satisfies proper discontinuity relations in the variable M.

In the unitarity relation, we retain 2-body intermediate states
(pm, K* K, ...) treating the vector mesons as stable and
restricting to S-wave orbital angular momentum states

TH(M) has aright-hand unitarity discontinuity starting at the
lowest threshold, M/ = M, + My

T+ is its value above the cut; 7— is the value below the cut.

Unitarity relationship 7+ = ST —; S is the strong interaction
unitary S matrix that describes

om — pm, K*K — K*K, pn — K*K

Aside: We do not know S . We will parametrize it in terms of a K
matrix and determine the parameters by comparing with data.

20



Analyticity and Unitarity - 1

Theory task: Construct an analytic and unitary 25 from
knowledge of its singularities: (a) right hand unitarity
discontinuities; and (b) “left-hand” pole smgularlty supplled by
the Deck production amplitude, TD1 ~ (M — mﬂ).
Solution in terms of an analytic 2 X 2 D(M?) matrix that has
only a right hand unitarity discontinuity: D™ (M) = SD~(M);
also invertible — determinant of D should not vanish anywhere
on the first sheet.

By construction, D~![T% — T'p] has only a right-hand
discontinuity,

Write dispersion integral for D~1[T% — T)p]

Dispersion integral leads to

TH(M2) = Tp(M?) — ~ D(M?) x / T [m(lj(fﬂi)(sl) Gy

@ (mp+mzx)?

21



Analyticity and Unitarity - 2

Dispersion integral leads to

w2y 2 _l 2 OO S ImD(s")Tp(s')
T (M) = Tp(M?) — ~D(M?) x /(mﬁmﬂ)z i O

This expression is our production amplitude (modified Deck
amplitude) with resonant final state interactions included.

Properties: (a) same left-hand production singularity as 1peck ;
(b) satisfies unitarity; (c) reduces to 1'p.ci if No rescattering.

22



Unitarization - “Practical” details

® Parametrize the coupled channel S matrix in terms of a K matrix:

9% gig2

— A2 _A\J2
K(MQ): s1—M s1—M

gi192 g2

81—M2 81—M2

® Simple pole parametrization yields analytic expression for D
matrix. g1, g2 are coupling strengths to the two channels.

2y 1 g1 —g2(s1 — M?* — a?C))
l)(A4-)'__ZDO(A12) g2 qi(s1 — M? —a*Ch)

® The denominator Dy(M?) = (s; — M? — g2C1(M?) — g5C5(M?))
has the appearance of a resonance factor. In the one channel
case D;'(M?) ~ e“sinéd

e o? =g+ g3; C; and C, are Chew-Mandlestam functions

23



Chew-Mandelstam function

Chew-Mandelstam function: analytic function of the invariant
mass squared s of two particles, with a right hand cut where the

imaginary part is equal to the phase space factor 2p/\@; p
Is the c.m. momentum:

Cm,u(s) =C(s;m, 1) =

2 1
2 Lm ) — o[ ) — 5]
I R S e (R L e
TEMEE
2 _ 2 2 2
— 1
FI i PR i ln@——}

24



Behavior of D(M)

— I L I T T " A - . IR I - - B -

Il'vi{ﬂﬂ‘v'} .

05 1 1,5 .
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Direct Production Term

® |n addition to its FSI affects manifest in the unitarized Deck
amplitude, the resonance may be produced directly via a
diffractive coupling, mp — a1p

P:(t[)
e
p

SO p G
Tdir(SaMz) — go(mz) ( ;; ) ;

® Those acquainted with the study of 77T scattering in photo-
production, Yp — 7T7TN will recognize this term as the analog
of the “vector- dominance” termin p production; the Deck term
in the photo production case plays a role in modifying the O
line shape (e.g., Paul Soding, 1966).

26



Discussion of the one-channel case - 1

K =g*/(s1 — M?)
D_l(MZ) = 81 — M? — gQCl(MQ)
® \ery simple parameterization of resonant amplitude

® For a narrow resonance of mass m and width I, the
parameters are fixed by

s1 ~ m? + g*ReC(M?) ~ m?
g*ImC1(m?) ~ mT’

(87

® Introduce bare Deck amplitude Tp(M?) = 3%

® Yields unitarized Deck amplitude

u 2\ _ o s1—M?*—g>Ci(s,)
TD(M )— MQ—SO 31—M2—92C'1(M2)

® This amplitude has a real zero near M2 = s,

27



Discussion of the one-channel case - 2

® Unitarized Deck amplitude

u 2\ _ _ « s1—M?—g°Ci(so)
TD(M )— MZ—SO 81—M2—9201(M2)

e This amplitude has a real zero near M? = s,
® For a narrow resonance, the zero occurs near the resonance

® Thus, the unitarized production amplitude changes sign near the
resonance position and its phase jumps by 7T

e Because coOs( vanishes near M? = sy, for a narrow
resonance, we can write the M dependence as

TH(M?) ~ expid cosd

® Even for a broad resonance, the net effect of the zero is
significant and causes a sharp structure in the mass distribution
near the resonance position, seen near M = 1.3 GeV in the a_1
case

28



Discussion of the one-channel case - 3

Unitarized Deck amplitude

u 2\ _ _ « s1—M?—g°Ci(so)
TD(M )— MZ—SO 81—M2—9201(M2)

This amplitude has a real zero near M? = s,

Now add a direct production term

dir (A f2\ — 5
T (M ) T 81—M2—92C1(M2)
Resulting full amplitude has its zero shifted to

2 _ a[s1—9°C1(s0)]—B5so
M= = "
Shift is accompanied by an enhancement compared to the Deck
amplitude.

Example 1:if o = (3, amplitude enhanced by ~ m /T°
Example 2: if o >> ﬁ resonance produces a dip in da/dM

29



One channel solution

® One channel case corresponds to purely elastic rho pi
scattering, parametrized with a simple one-pole K matrix. No
inelasticity. e e e e M

ONE CHANNEL

{c)

FULL SOLUTION
— —=— DECK
------- DIRECT TERM

do/drdM at t:0 (mb/Gev>)

3 r -

2 7T T =
| \\\..__

| 1 T —— |
!

L S USRS & e W B B el p B
09 10 11 12 13 14 15 16 I.7

MP” (GQV)

® Solid curve is the full result. Sharp decrease from 1.2 to 1.4 GeV
arises from FSI (e.g., zero near s_1). More pronounced if direct
production (short dashed curve) is omitted. Large peak in range
1.1to 1.2 GeV is the FSI enhanced Deck, NOT the resonance
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One channel case and the data

Mass spectrum in the one-channel case agrees well with data
but the phase does not. The unitary amplitude changes sign

owing to the zero near s_1, and the phase changes by 180.
(Data Antipov, Ascoli, et al)

I I I I I I T ] I T I T I

(o) ONE CHANNEL () ONE CHANNEL

——— pT——pT PHASE

—— pHASE 4" 1t mp—1(p7ip o
120 — —
1500

o: U + _

1000

NUMBER OF EVENTS /50 MeV
3 (degrees)

500

-30 —

S N T T
09 {0 W L2 1.3 L4 15 16 i | 1 | | | | |

MP,,(GeVl 09 10 W1 L2 1.3 14 15 16 1T

Moy (GeV)

Resonance in this one-channel case is 1.36 GeV, close to
K*Kbar threshold — cannot avoid including inelasticity if want to
deal with the region above 1.4 GeV.
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Shift of the rho mass in photoduction

® Simpler case: YpP — TP

® Diagrams show (a) the direct coupling (vector dominance)
coupling to the p, 7P — pp, and (b,c) the Deck graphs for

Yp — TTP

32



Shift of the rho mass in photoduction

® Yp — TWTP

e P. Soding, Phys. Lett. 19, 702 (1966)

80+

Fbarns/ GeV
S

® Notice the unitary preserving zero in the unitarized Deck curve
(c) and shift plus enhancement of the peak on the low mass side
in the final result (solid curve)
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Two channel, one resonance case - 1

® Since the mass of the a_1 can extend into the range above 1350
MeV, it is interesting, if not necessary, to include the K*Kbar
channel

¢ K matrix in the two-channel case has a single factorized pole,
and ratio of couplings g1 /g2 = V2 expected from SU(3)

34



Two channel, one resonance case - 2

e The finalJ¥ = 11 partial wave amplitude becomes

ra’D(P'”) [31 - M? —gzzcz(Mz) "glzcl(mrz)] )

e 1 +g1g2TD(K*R) [Cz(Mz)"' Cz(mrz)]
TSI = OO =87CI) | 1oy (s, - MP — g,7C, (M9 7C,m )
+8:8.T plpm) [C.(M?) - Ci(m,?) ]_J

-
® 3y isrelated to the squared mass of the a4

® For each of the two channels, this expression has the
appearance of a resonance factor

DY (M?) = s, - M? - g,°C(M?) - g,°C(M?) ]
=ei%gind

® Multiplied by a complex zero near M? = s;. The zero is shifted
into the complex plane, leading to slow phase variation

35



Two-channel, one resonance

I T I I | I T I
(b} TWO CHANNELS-ONE POLE

I I I | I I
wp— (pmip

TWO CHANNELS —ONE POLE

90—

1500

30

P I* PHASE (degrees)
N
o
T
I

1000

80—

NUMBER OF EVENTS /50 MeV

500
60—

8 (degrees)

0k 10 .
g"0.5{ —
0 S S S SR R N
09 10 11 L2 13 L4 15 16 09 10 11 12 13 14 15 16 L7
Moy (Gev) Mo (GeV)

Resonance position and width are very close to one-channel
solution, but the phase is more acceptable, up to ~ 1.5 GeV.
Passes through 90° near 1.36 GeV; cusp at K * K threshold

Phase of the rho pi to rho pi shown in (c) follows unitarity circle
until 1.39 GeV, where it enters sharply and has elasticity 7 = 0.7
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NUMBER OF EVENTS /50 MeV

Solution with all the

T
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Extraction of mass and width

® QOur mass and width determinations in 1977 of the a_1 from the
pole positions on the second sheet, averaged over various
solutions

- M =13=+0.15GeV
- 1'=400= 100 MeV

® Uncertainties: how much do reasonable variations of the bare
Deck amplitude affect these values of the mass and width?;
additional channels in the analysis?; amplitude is analytic and
unitary, but not crossing symmetric; ...
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Heavy lepton decay to a_1

® The three pion tau decay spectrum based on two of the solutions

found in the hadronic study (Basdevant and Berger, Phys Rev Lett 40, 994
(1978))

AN 1 I
N 16 }— ]
T—(3m)v
P L —— BASDEVANT-BERGER
b

Sol. E

SOLUTION E of B &B

———— SOLUTION C of B 8B
--------- F(MZ)=1.0

EVENTS /100 MeV

EVENTS /100 MeV

e DORIS data on the left and SPEAR data on the right.

39



Strangeness +/- 1 axial vector mesons

e |llustration of the vector multiple of the quark model

*

K K™ -

® Turn attention to S = +1 and S= -1 members of the axial vector
multiplets. Notationis K_1. Formerly Q.

e Studiedin Kp — Knmp

® Much less data than in the case of the a1

40



K*¥ntn~ data

Brandenberg et al publlcatlons based on 13 GeV/c SLAC data
from K*p — K*7 77D Phys Rev Lett 36, 703 and 706 (1976)

72000 Ktpt7m~ events and 56,000 K~ pT7~ events in the
mass interval 1.0 < M (Knm) < 1.6 GeV

Partial wave analysis shows that two JY =17 states are

produced: “Q)1” and“Q2”
“Q17(1300), T" ~ 200 MeV couples principally to pK
“Q27(1400), T' ~ 160 MeV couples principally to K*m

Invitation to consider a coupled channel study with two poles In
the K matrix. Two J* = 17 S-wave channels K*, pm

Basdevant and Berger, Phys Rev D19, 246 (1979)
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Mass dependences of the intensities of various waves, and their
phases relative toJ© = 17 )\; = 0 K*m (K*7 left; pK right)

Intensities and phases

K K
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Basic Deck diagrams

® Basic non-resonant Deck production diagrams: K *m and pK
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Unitarization - 1

Deck amplitude TP¢¢* produces J¥¢ = 11+ non resonant
enhancements near threshold in K *7 and pK.

The K*m and pK are strongly interacting systems. They
interact in the final state. These final state interactions must be
incorporated in the full amplitude. They are inevitable and non-
negligible if there is a resonance, such as the q¢ J* = 11
state of the quark model.

Construct a full amplitude 1 5.1, that includes final state
interactions, the gq state, and respects unitarity (no double
counting)

For the full treatment of K *m and pK see Basdevant and Berger,
Phys Rev D19, 246 (1979) and Phys Rev D 19, 239 (1979)
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Unitarization - 2
Impose unitarity by requiring that the full amplitude 1’5 (M)
satisfies proper discontinuity relations in the variable M.

In the unitarity relation, we retain 2-body intermediate

states pK' and K™, this time treating the vector mesons as
unstable, but still restricting to S-wave orbital angular momentum
states inpK and K*7

TH(M) has a right-hand unitarity discontinuity starting at the
lowest threshold, M = m g + 2m,

T+ is its value above the cut; 7 is the value below the cut.

Unitarity relationship 7 = ST —; S is the strong interaction
unitary S matrix that describes

pK — pK, K™t — K™, K*m — pK

We do not know S'. We will parametrize it in terms of a K matrix
and determine the parameters by comparing with data.
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Analyticity and Unitarity - 1

Theory task: Construct an analytic and unitary 25 from
knowledge of its singularities: (a) right hand unitarity
discontinuities; and (b) “left-hand” pole singularity supplied by
the Deck production amplitude

Solution in terms of an analytic 2 X 2 D(M?) matrix that has
only a right hand unitarity discontinuity: D™ (M) = SD~(M);
also invertible — determinant of D should not vanish anywhere
on the first sheet.

By construction, D~![T% — T'p] has only a right-hand
discontinuity,

Write dispersion integral for D~1[T% — T)p]

Dispersion integral leads to

T'HM?) =T p(M?) --;1T-D‘(M2) , ImD ™ (s")T p(s”) s—,i'_l_—s—m :

(m gr+2myg)
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Two channel, two pole K matrix

Include the possibility of a non-resonant part @;;

ga gp gafa + gpfB

+ +a
SA"'JZW2 SB—M2 1 SA—M2 SB—‘M

gafa_ ., &5fs fa® /5’
+ +a
sa-M sy -MT T g At Tt

7 + a4
K=

Full unitary solution is T(M?) =T%(M?) + T4 (M?),

Helicity indices are not shown, but T(MQ) stands for two
equations, one for t-channel helicity A\, = 0,1 .

E(iCh T MQ) is also a two-component vector, upper/lower for
T, p

Range of good solutions found in fits to data, as in the a_1 case

47



Intensities in solution 1

® Solution 1 shows the significant enhancement and change of
shape between the final unitary solution and the basic Deck
cross sections (left, helicity 0; right, helicity 1)

| SOLUTION |
6 T l T ] T [ T : 6 T ' T l T [ T
(a) 1o Kot
5 4 s
—— TOTAL
- —~==BASIC DECK__

———

do/dM ¢t (mb/Gevd)
(o]
t1do/dM dt (mb/Gevd)

i l 1
1.0 1.2 1.4 1.6 1.8 1.0
My (GeV)




Intensities in solution 2

® |ntensities of the various waves in solution - 2 (no constant terms

in the K matrix); note the roles of direct production

SOLUTION 2
6 T [ T [ T [ T
(o) o K7
5 — —
— TOTAL
- =~ UNITARIZED

RN

4o/ dM dt (mb/GeV’)
[

t1do/dM dt (mb/Gev®)

o

e
="

0.6

0.4

0.2

Loy 0
1.0 .2 1.4 1.6 1.8 1.0
Mera (GeV)




Relative phases in solution 2

® Relative phases of different waves

SOLUTION 2
T l T T l T T [ T I T ] 1§ T l T I T i T
(a) - 201 (c)
I ¥ + *
60 l+OpK-I+OK*1r__ 240 |- MK 7 -1"0K' 7 _|
200 — + +
£ 40~ — 220 |- + =
> 180 — ++H‘
= 20 = 200 - + =
S 160 . +
S ol - 180 —
L 1 140 — h
s i "l pK- 'O K| 'S0 I 7
T -40 - 140 ~
' 100 |~ =
-60 — ? — ¢ 120 — —
0 . +
4 00 — 7
L | ] 3 ] | 1 l I | | L | 1
0 12 14 16 18 10 12 .4 16 18 10 12 14 1.6 18
My (G€V)
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S-wave phase shifts and inelasticities

® S-wave phase shifts and inelasticities from our solutions

. T I T
140 |~ - -

(a) .2
120 - 4 —
’g y/
£ 100~ | , -
= 80 / —
= ;T SoL. |
L 60 -
« / ----50L. 2
40 - .
£
20~ / .
7
140 — | |

SPK (degrees)

1.0 1.2 .4 1.6 1.8 2.0
M T (Gev)

e Behavior of 0 pK characteristic of narrow resonance near 1.25
GeV, 5K*7r suggests second broader resonance above 1.4GeV
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K 1 Resonance Parameters

Intensities and phases are consistent with the presence of two
resonances, but the interplay of these resonances with the Deck
mechanism has its subtleties.

Parameters of one of the resonances are well determined:
Mg, =1.28+0.02 GeV,
70 < T}°' <140 MeV,

I-vK*ﬂ‘

It <10%.
1

<
2%1,

The second is determined less precisely:
Mgq,=1.42+0.06 GeV,
't =230 50 MeV,

» T"K
1%<i1_i26.f_<20%‘ )
2
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Fast Forward to 2014

COMPASS: evidence for an axial vector J©¢ — 1t+tpeakin
the P wave 7 f((980) channel at about 1420 MeV.

The usual a; is in the S-wave wpchannel at about 1260
MeV.

Two a1so close in mass or is the P wave  f; another decay
mode of the usual a1 ? If so, why at a different mass?

- Counterintuitive to have two states with identical quantum
numbers so close in mass (/X 7r7rwas a different story)

- Revive unitary coupled-channel research done in 1975 -
1979 onmr, WK Kthis time with both S and P wave
channels

Describe here the new study we published recently.

Conclusion: One a1 suffices to explain the two peaks.
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intensity (per 40 MeV/c?)

24
22
20
18
16
14
12
10

ON-IAO\OO

New Resonance?

o

«10° COMPASS 2008 (p—>(31) )
F 170" £,(980) = P
— b n7°, nnmt (scaled)
3 6¥100 <t' < 1.000 GeV?/c?
- ﬁ (incoherent sum)
; *ﬁ

? Wﬂ» %

- . 1t
- ft dy ft +
F + o Tt

- AL ok + L
\l\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\I\
06 08 1 12 14 16 18 2 22 24

m; - (GeV/c?)

o

o

o

Phase (deg)

100

n
o o

)
o

_T\’—V_r\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\

-100

-150

o
)
S

Never seen before (statistics)

COMPASS data — intensity and phase

0.100 =< t' <0.113 GeV’c?  wp — wn'x’p (COMPASS 2008)
~ Phase [(1170" f,(980) = P) - (110" p(770) = S)]

+

i
+

—

| 111 | 111 | 111 | 11 | 111 | 1 1 | 111 | 111 | 111 | |
06 08 10 12 14 16 18 20 22 24
Mass of n m*n~ System (GeV/c?)

Observed in the the P wave channel at about 1420 MeV

Only 0.25% of the intensity in the ™~ 77~ channel
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Repeat previous study:
2 channels, one resonance

e Deck mechanism for production of non-resonant pm and fo7
in the mass range M =1 to 2 GeV

e Incorporation of resonant behavior a; — fom, a1 — p7
One resonance. New: one S wave and one P wave
channel

e Final state unitarization: — two channel, strong interaction S
matrix, ...... reaction amplitude that includes both Deck
“background” and resonance

e Results: (a) separate mass peaks in J¢ = 1T+ S wave p7
and P wave fom channels, and (b) relative phase between
the two amplitudes — consistent with data

“Peak locations and relative phase of different decay modes ofthe a_1 axial vector
resonance in diffractive production” [arXiv:1504.05955], Phys Rev Lett. 114, 192001
(2015); J.-L. Basdevant and E. L. Berger
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Deck Production Mechanism
Consider mp — mwrwp at large incident m# momentum
and small momentum transfer to the target.

Think of the 3 pion system as a superposition of quasi-
two-body systems (wwmw) — wp, 7 fo, ...

One pion exchange production, followed by diffractive
scattering of the virtual pion from the target:

- [ R N
\(}MZ ‘ T M>
: . | N
4 ‘ P/ 5 s | y T

'“"’p t 0 /SIB, 'L/f\/sm’

tl R
(o) (6)
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Deck Amplitude - 1

Deck amplitude for mp — p7p

1 .
7 = gmpr(tg)m2 ; zslgebtlaﬁp

b2

Similar expression for ™p — fomp

In the pm or fym rest frame, the Deck amplitude contributes to
several partial waves.

For J©¢ = 171 one must project the S wave component for p7
and the P wave component for fom

Re-express the invariants S13 and ta in terms of t-channel angles

to = g1 (M, t1) 4+ g2(M,t1) cos by
s13 = g3(s, M) + g4(s, M, t1) cos 0y + g5(s, M, t1) sin 6, cos ¢y

Deck amplitude is a rational function so one can project
analytically all partial waves S, P, D, ... (all m), for any value of ¢
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Deck Amplitude - 2

® Consider an expansion for small t1 (where the data are
concentrated) of the partial wave projections of the Deck production
amplitude. Define expansion parameter

i1
0, = :
L (M2 —m2)
® The S-wave projection is
1 (3M?+m2) E, 1. 1+y
TDeck::_ 5 1 — -6 LA — —1
g <M2—m%)x< 2 1((J\f-’*—m% Ew)(ynl—y)

® The P-wave projection is

3 S

TDeck _ e e}

P o —my) o
(B3M? +m?2) Ey, (—2+1 14y
(M2-m2) E.) 'y vy? ‘1-y

)

® The P-wave projection vanishes att; = 0 ; more importantly, it
passes through 0 for a special value of M — sign change
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P wave projection vs M

15

N /M(:}ew

0 . .
0 12 / 14 16 18
10 //

15 /

-20

-25

-30
P wave amplitude crosses zero near M ~ 1.38 GeV

This sign change drives the relative phase change between the
P wave and other waves

P wave intensity is also much smaller ¢~ 1072 ) than the S wave
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Unitarization - 1

Deck amplitude T7¢°* produces J©¢ = 111 non resonant
enhancements near threshold in pm and fo7.

The pm and fym are strongly interacting systems. They interact
in the final state, even in the one channel p7 case. Final state
interactions must be included. They are inevitable and non-
negligible if there is a resonance, such as the J©¢ = 171 ¢¢
state of the quark model.

Construct a full amplitude 15, that includes final state
interactions, the qq state, and respects unitarity (no double
counting).
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Unitarization - 2

Impose unitarity by requiring that the amplitude 13 (M)
satisfies proper discontinuity relations.

TH(M) has a right-hand unitarity discontinuity starting at
the lowest threshold, M = m, + m,

T~ is its value above the cut; T~ is the value below the
cut.

Unitarity relationship 7'+ = ST~ ; S is the strong
interaction unitary S matrix that describes

pm — pm, fom — fom, pm — forr

Aside: we do not know S. Parametrize it in terms of a K
matrix and determine the parameters by comparing with
data.
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Unitarization - 3

Theory task: Construct an analytic and unitary 1’7 from
knowledge of its singularities: (a) right hand unitarity
discontinuities; and (b) “left-hand” pole smgularlty supplled by
the Deck production amplitude, T, " ~ (M? —m?2).
Solution in terms of an analytic 2 X 2 D(M?) matrix that has
only a right hand unitarity discontinuity: D (M) = SD~(M).

Dispersion integral leads to

() = T - D0 x [~ v RSy

Expression is our Deck amplitude with resonant final state
iInteractions taken into account.

Properties: (a) same left-hand production singularity as 1'p..1 ;
(b) satisfies unitarity; (c) reduces to I 'p..k if no rescattering.
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K matrix

Parametrize the coupled channel S matrix in terms of a K matrix:

9% gig2

— A2 _A\J2
K(Z\F): s1—M s1—M

gi192 g2

81—M2 81—M2

Simple pole parametrization yields analytic expression for D
matrix. g1, g2 are coupling strengths to the two channels.

2y 1 g1 —g2(s1 — M?* — a?C))
l)(A4-)'__ZDO(A12) g2 qi(s1 — M? —a*Ch)

The denominator Dy(M?) = (s; — M? — g2C1(M?) — g2C(M?))
has the appearance of a resonance factor. In the one channel
case D;'(M?) ~ e“sinéd

o? = ¢g? + g3; C1 and C, are Chew-Mandlestam functions
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Behavior of D(M)

— I L I T T " A - . IR I - - B -

Il'vi{ﬂﬂ‘v'} .

05 1 1,5 .
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Direct Production Term

® |n addition to its affects manifest in the unitarized Deck
amplitude, the resonance may be produced directly via a
diffractive coupling, mp — a1p

P:(t[)
e
p

SO p G
Tdir(SaMz) — go(mz) ( ;; ) ;

® Those acquainted with the study of 77T scattering in photo-
production, Yp — 7T7TN will recognize this term as the analog
of the “vector- dominance” termin p production; the Deck term
in the photo production case plays a role in modifying the O
line shape (e.g., Paul Soding, 1966).
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Final Amplitude and Parameters

T(M?) = Tp(M?) + Tair (M?) (1)

Recall that T'(M?) is a two-dimensional vector; upper and
lower components for pm and fo7 | respectively

Parameters are the K matrix pole position S1 and the pole
coupling strengths g1 and gs

Plus the two coupling strengths in the “direct” term, G f1 and G f5
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Comparison with COMPASS data

We have not made a X2 fit.
Focus on the momentum transfer t interval [0.10 to 0.13] GeV?

Trial and error: find appropriate values of the @1 mass and width
(defined by the position of the pole on the second sheet) that
give the observed mass peaks. Obtain:

M(a1) ~ 1.40 +0.02 GeV,
['(a1) ~ 0.30 £ 0.05 GeV.
These values fix 51 ~ 2.002 GeV?; g; ~ 0.732 GeV.

The ratio v = g2 / g1 was varied to give the observed relative
intensity of the two peaks: central value 7 = g2/g1 = —0.08.

Determine the amount of “direct” production by placing the two
peaks at the desired locations:

Gorpf1 =120; Gorpfa = 5.5
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PC _ - - -
J7Y =17"pr mass distribution
25
Unitarized + Direct production
20
15
10
5
M(GeV)
0 I 1

0 08 1 12 1,4 16 1,8
Note that unitarization sharpens the Deck amplitude
Overall peak location at about 1260 MeV, width about 280 MeV

The peak does not have a symmetric Breit-Wigner form
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JPC = 1T+ for mass distribution

0,05

Backeground Deck

0,045

0,04

Unitarized + Direct production

0,035

0,03

0,025

0,02

\ l/Unitarized

0,015

/]

0,01

—
>

0,005
0 =

M(GeV)

1.2 1.4 1.6

Deck in f07T IS narrow and very near threshold

The final peak is pushed higher in mass, close to 1420 MeV,
width about 140 MeV

Note the second peak in f07T predicted just below 1200 MeV
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Both on the same figure

Scale up the fo7 distribution by X 650
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Relative phase

v=-0,065

0 1,2 14 16

® Curves showing the relative phase as a function of M for three
choices of the ratio of coupling strengths.

® Sharp rise of the relative phase related to the zero in the P wave
production amplitude.
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Dependence on momentum transfer

We have results for arbitrary values of the momentum
transfer to the target, ¢;; the changes in mass spectra and
phases are modest. Paper in preparation.

What about the differential cross section as a function
of tl?

Recall: the final amplitude is a sum of two terms:
T(M?,t1) = TH(M?,t1) + Taer (M2, 1)

Each term has its own?; dependence properties; the direct
term has the same ¢; dependence for both channels.

However, there is a (well known) strong mass dependence
of the ¢; distribution for the Deck term, both in theory and
experiment. The slope is considerably steeper at low M
than at higher M. Moreover, there is the kinematic
suppression at small ¢, for the P-wave channel.
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Outlook and perspectives

Main features of the COMPASS data, two mass peaks
separated by about 160 GeV, with pronounced relative phase
motion, are compatible with a single a1

New determination of the mass and width of the @1 along with its
branching fraction into fo7 possible

Rediscovered in this example that, although a peak is often
associated with a resonance, its precise mass and width depend
also on the dynamics of the mechanism by which it is produced.

Here, the same Deck production mechanism has very different
character in the S-wave and P-wave channels, leading to a shift
by about 160 MeV in the observed positions of the J£¢ — 11+
state.

If one could do low-energy pm and fo7 elastic scattering, one
would observe a single resonance peak with mass and width
M ~1.36 GeV and I' ~ 0.31 GeV
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Heavy lepton decay (under construction)

® Data much improved: ALEPH, Physics Reports 421 (2005) 191-284; CLEO
Phys Rev Letters, 90 181802 (2003); BELLE Phys Rev D81, 113007 (2010)

0.6
KR ALEPH 91-95 0.025
05 | %
'* S  0.02 -
0.4 | ¥ é
f S 0.015 -
i i <
o 0.3 } ! —
- s
! 4 S 001
I | P
0.2 | | ]
. | | = 0.005 |-
t j S
0.1 f kst | -
’0’ ! "‘:i
[ ’ H O o L | )
0 "t Ll 06 08 1 12 14 16 18
0 1 2 3
Mass® (GeV/c?)? (a) M(rrr) [GeV/c?]
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Heavy lepton decay data

e (CLEO data

100
2000

1000 50

Events / 20 (MeV/c?)
o

0
1 (d) |
- Data |
— allMC
----- T Background |
1251 -- Continuum 12
I Background .
0

- e — ] ] ]
05 0.9 13 17 1.4 16 1.8
(3h)~ Mass (GeV/c?)
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Summary - 1

. Axial-vector mesons — names, symbols

. Features of the data

. Production dynamics

- Deck model (non-resonant)

- Final state interactions

- Unitarity and analyticity

. Phenomenology of the a;

- One pole, one channel case (pm)

- One pole, two channel case (pm and K*K)
- Heavy lepton decay 7 — aqv

. Photoproduction of 77 , and final state interactions
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Summary - 2

1. Axial-vector mesons in K«
- Two resonances (poles), two peaks
- Mixing

2. Fast forward to 2014 - 2015, the a7 again
- One or two axial vector w7 states?
- One resonance pole, two peaks

- Extraction of the axial vector mass, width, and branching
fractions
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Future

Other channels, e.g., m2(1670) and 7

Detailed fits to COMPASS data to extract mass, width, branching
fractions of the a_1.

Challenge of data handling — cannot be done by theorists alone

Heavy lepton decay data; solutions consistent with hadron
production

X, Y, Z

Pass the baton
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Unitarization - “Practical” details

® Parametrize the coupled channel S matrix in terms of a K matrix:

9% gig2

A2 _A\J2
K(M2): s1—M s1—M

gi192 g2

s1—M?2 s1—M?2

® Simple pole parametrization yields analytic expression for D
matrix. g1, g2 are coupling strengths to the two channels.

1 —go(s1 — M? — a?Cs)
D(M?2) — g1 g2\51 2
(M) Dy (M?) ( g2 gi(s1 —M?* —a”Cy)

® The denominator Do(M?) = (s; — M? — ¢2C1(M?) — g2Co(M?))
has the appearance of a resonance factor. In the one channel
case D;'(M?) ~ e“siné

e o= g%+ g5; C; and C, are Chew-Mandlestam functions

79



