

$$\begin{aligned} \operatorname{disc}_{m^{2}=9} \Phi(s_{+}, m^{2}) &= \Phi(s_{+}, m^{2}_{+}) - \Phi(s_{+}, m^{2}_{-}) = \\ 2M(s_{+}) \int_{-\infty}^{(m-1)^{2}} \Delta_{1} [\Phi(\lambda^{2}_{+}, m^{2}_{+})] - \Phi(\lambda^{2}_{-}, m^{2}_{-})] \\ \Phi_{++} - \Phi_{--} &= (\Phi_{++} - \Phi_{+-}) + (\Phi_{+-} - \Phi_{--}) \\ &= \left[\operatorname{disc}_{m^{2}=9} \Phi(\lambda^{2}_{+}, m^{2}) + \operatorname{disc}_{\lambda^{2}=4} \Phi(\lambda^{2}, m^{2}_{-})\right] \end{aligned}$$

Will get integral eqn for ${\rm disc}_{m^2=9}\Phi$ We know ${\rm disc}_{\lambda^2=4}\Phi(\lambda^2,m_-^2)$ from subenergy unitarity

1

$$F(\lambda^2, t(\lambda^2, x), m^2)$$

disc_{$$\lambda^2=4$$} $\Phi(\lambda^2, m_-^2) =$
2i $\rho(\lambda_+^2)M(\lambda_+^2)F^0(\lambda_-^2, m_-^2)\theta(\lambda^2 - 4)$

$$F^{0}(\lambda^{2}, m^{2}) = \frac{1}{2} \int_{-1}^{1} F(\lambda^{2}, t(\lambda^{2}, x), m^{2}) dx$$

Integral eqn: disc_{m^2=9} \Phi(s_+, m^2) = $2M(s_+) \int_4^{(m-1)^2} d\lambda^2 \Delta_1 2i\rho(\lambda_+^2) M(\lambda^2) F^0(\lambda_-^2, m_-^2)$ $+ 2M(s_+) \int_{-\infty}^{(m-1)^2} d\lambda^2 \Delta_1 disc_{m^2=9} \Phi(\lambda^2, m^2)$ Solve by iteration

First iterate is the inhomogeneous term:

$$2M(s_{+}) \int_{4}^{(m-1)^{2}} d\lambda^{2} \Delta_{1} 2i\rho(\lambda_{+}^{2}) M(\lambda^{2}) F^{0}(\lambda_{-}^{2}, m_{-}^{2})$$

$$M(\lambda^{2}) \frac{\Delta_{1}(\lambda^{2}, m^{2}, s)}{\sigma(\lambda^{2}, m^{2})} M(s) \equiv \Psi^{(1)}(\lambda^{2}, m^{2}, s) \equiv B(\lambda^{2}, m^{2}, s)$$

$$M(\lambda^{2}) \frac{\Delta_{1}(\lambda^{2}, m^{2}, s)}{\sigma(\lambda^{2}, m^{2})} M(s) \equiv \Psi^{(1)}(\lambda^{2}, m^{2}, s) \equiv B(\lambda^{2}, m^{2}, s)$$

$$M(\lambda^{2}) \frac{\Delta_{1}(\lambda^{2}, m^{2}, s)}{\sigma(\lambda^{2}, m^{2})} M(s) \equiv \Psi^{(1)}(\lambda^{2}, m^{2}, s) \equiv B(\lambda^{2}, m^{2}, s)$$
So first iteration gives

$$disc_{m^{2}=9}^{(1)} \Phi(s_{+}, m^{2}) = 4i \int_{4}^{(m-1)^{2}} d\lambda^{2} \{F^{0}(\lambda^{2}_{-}, m^{2}_{-})\rho(\lambda^{2}_{+})\sigma(\lambda^{2}_{+}, m^{2}_{+})\Psi^{(1)}(\lambda^{2}_{+}, m^{2}_{+}, s_{+})\}$$

$$M(\lambda^{2}) \frac{\Phi(s_{+}, m^{2})}{\sigma(\lambda^{2}_{+}, m^{2}_{+})} \Psi^{(1)}(\lambda^{2}_{+}, m^{2}_{+}, s_{+})$$

$$M(\lambda^{2}) \frac{\Phi(s_{+}, m^{2})}{\sigma(\lambda^{2}_{+}, m^{2}_{+})} \Phi(\lambda^{2}_{+}) \frac{\Phi(s_{+}, m^{2}_{+})}{\sigma(\lambda^{2}_{+}, m^{2}_{+})} \frac{\Phi(s_{+}, m^{2}_{+})}{\sigma(\lambda^{2}_{+})} \frac{\Phi(s_{+}, m^{2}_{+})}{\sigma(\lambda^{2}_{+}, m^{2}_{$$

2i λ^2

The model satisfies THREE body unitarity!

But note:

(a) Ψ should be symmetric in $s \leftrightarrow \lambda^2$; not the case for $\lambda^2 \leq 0$ bits \rightarrow cut-off at $\lambda^2 = 0$ (b) "rescattering series" not same as Feynman graphs (apart from triangle) In practice, especially within the context of an isobar-like approach, we don't focus on three-body unitarity, but rather on "quasi two-body" unitarity i.e. particle + resonance scattering

4.2 Particle-resonance scattering

we are interested in m^2 structure of $\phi(s_{\rm C}, m^2)$, specifically identifying particle + resonance branch point at $m^2 = (\sqrt{s_{\rm C}} + 1)^2$ and associated disc

$$\Phi(s, m^2) = M(s) +$$

$$2\int^{(m-1)^2} d\lambda^2 \Delta_1(\lambda^2, m^2, s) M(\lambda^2) \phi(\lambda^2, m^2)$$
1. Branch point at $m^2 = (\sqrt{s_c} + 1)^2$

$$m^2 = 9$$

As we continue down in m^2 through the $m^2 \ge 9$ cut, the end-point of the λ^2 -contour at $\lambda^2 = (m-1)^2$ goes into the second λ^2 sheet across the $\lambda^2 \ge 4$ cut, and will hit the pole at $\lambda^{2II} = s_{\rm C}$. Singularity at $(m-1)^2 = s_{\rm C}$ i.e. $m^2 = (\sqrt{s_{\rm C}} + 1)^2$. Will see it is sq root branch point ("woolly cut")

2. Discontinuity across woolly cut = difference between two m^2 -continuations which leave the pole on RHS of λ^2 contour and on LHS of λ^2 contour. This difference is

 $\Phi(s_{+}, m_{+}^{2}) - \Phi(s_{+}, m_{-}^{2}) = 2M(s_{+}) \int^{(m-1)^{2}} \{ d\lambda^{2} \Delta_{1}[M(\lambda_{+}^{2II})\phi(\lambda^{2II}, m_{+}^{2}) - M(\lambda_{-}^{2II})\phi(\lambda^{2II}, m_{-}^{2})] \}$ [...] = $M(\lambda_{+}^{2II})[\phi(\lambda^{2II}, m_{+}^{2}) - \phi(\lambda^{2II}, m_{-}^{2})] + \phi(\lambda^{2II}, m_{-}^{2})[M(\lambda_{+}^{2II}) - M(\lambda_{-}^{2II})]$

Last difference is $2\pi i \phi(\lambda^{2II}, m_{-}^2) \delta(\lambda^{2II} - s_c)$. First difference is $\Phi(\lambda_{+}^{2II}, m_{+}^2) - \Phi(\lambda_{+}^{2II}, m_{-}^2)$

So $\operatorname{disc}_{wc} \Phi(s_+, m^2) = 4\pi i g^2 M(s_+) \phi(s_{\rm C}, m^2) \Delta_1(s_{\rm C}, m^2, s_+) + 2M(s_+) \int^{(m-1)^2} \mathrm{d}\lambda^2 \Delta_1(\lambda^2, m^2, s_+) \operatorname{disc}_{wc} \Phi(\lambda_+^{2\rm II}, m^2)$ Another integral eqn for the disc, but this time the inhomogeneous term is not an integral!

 $\sigma(s_{\rm C}, m^2) = \{ [m^2 - (\sqrt{s_{\rm C}} + 1)^2] [m^2 - (\sqrt{s_{\rm C}} - 1)^2] \}^{1/2} / m^2$

Here R is the particle-resonance scattering

amplitude

 ${\it R}$ satisfies quasi two-body discontinuity

Substantial m^2 -dependence can be generated in some cases, using truncated integration. Could impact the extraction of resonance pole positions.

Implementation of these woolly disc relations: use effective K matrix/P-vector formalism, with phase space σ instead of ρ

Summary

- two-body unitarity + analyticity + crossing
 → linear single-variable integral equations
 for isobar correction functions
- "minimal" set of constraints
- needs only two-body amplitudes
- employs standard angular momentum decomposition of IM
- surprising (?) three-body structure included
- now: include in exptal fits and compare with other approaches (effective Hamiltonians, relativistic scattering formalisms)