Unitarity, Analyticity and Crossing
 Symmetry in Twoand Three-Hadron Final State Interactions Ian J. R. Aitchison

2015 International School on Reaction Theory, Indiana University
N.B. Fuller write-up available on Workshop Resources

Motivation

"Isobar Model"

$\left|A_{1} t_{1}+A_{2} t_{2}\right|^{2} \quad t_{i}$ two-hadron amplitudes
Interference term $\operatorname{Re}\left[\left(A_{1} A_{2}^{*}\right)\left(t_{1} t_{2}^{*}\right)\right]$
Extract phase of $A_{1} A_{2}^{*}$ IF know phase of $t_{1} t_{2}^{*}$ But rescattering alters phases
Similarly for extraction of weak CP-violating phases
Three-body problem!

"Minimum Theory of FSI"

Lecture 1: Two-hadron fsi
Unitarity $\rightarrow K$-matrix, P-vector

+ Analyticity \rightarrow M-O solution, dispersion relations
Lectures 2, 3, 4: Three-hadron fsi
2: Kinematics, Dalitz plot, isobar model;
sub-energy unitarity; violated by isobar model; U+analyticity \rightarrow K-T type equations for isobar correction factors
3: Single variable integral equation for correction factors; RPE process; examples ($\pi \pi \pi$, $\pi \pi N$)
4: 3-body unitarity; particle-resonance scattering

1. Two-hadron fsi

1.1 Elastic $2 \rightarrow 2$ unitarity, s-waves

$$
T(s)-T^{*}(s)=2 \mathrm{i} \rho(s) T^{*}(s) T(s)
$$

$$
\rho(s)=\frac{1}{16 \pi}\left(\frac{s-4}{s}\right)^{1 / 2}
$$

$$
T(s)=\mathrm{e}^{\mathrm{i} \delta} \sin \delta / \rho=(\rho \cot \delta-\mathrm{i} \rho)^{-1}
$$

$$
\mathrm{BW}: \rho \cot \delta=\left(s_{\mathrm{R}}-s\right) / g^{2}
$$

$$
T_{\mathrm{res}}=g^{2} /\left(s_{\mathrm{R}}-s-\mathrm{i} \rho(s) g^{2}\right)
$$

will allow s to be a complex variable

Physical limit for $s \geq 4$ is $s+\mathbf{i} \epsilon \quad\left(s_{+}\right)$ Hermitian analyticity: $f^{*}(s)=f\left(s^{*}\right)$
unitarity $T_{+}-T_{-}=2 \mathrm{i} \rho T_{+} T_{-}$
$\Theta-\Theta=2 i=\square$ U Θ unitarity tells us the discontinuity of T across the $s \geq 4$ cut

$$
\mathrm{U}: T_{+}^{-1}-T_{-}^{-1}=-2 \mathrm{i} \rho
$$

Since $\rho_{+}-\rho_{-}=2 \rho$, can satisfy U by

$$
T^{-1}=K^{-1}-\mathrm{i} \rho
$$

$$
K^{-1} \equiv \rho \cot \delta ; \text { e.g. } K_{\text {res }}=g^{2} /\left(s_{\mathrm{R}}-s\right)
$$

$$
T=K(1-\mathrm{i} \rho K)^{-1}=(1-\mathrm{i} K \rho)^{-1} K
$$

generalizes to matrices in space of channels Plus can add resonances in K, add background still T is unitary!
e.g. $K_{i j}=\sum_{a} g_{i a} g_{a j} /\left(s_{a}-s\right)+B_{i j}$

1.2 Unitarity in 2-hadron f.s.i.

$$
\operatorname{Im} F=T \rho F^{*}=T^{*} \rho F
$$

So unitarity $\rightarrow F$ must have the phase of T (Watson's Thm) provided only one strong f.s.i.

$$
F_{+}-F_{-}=2 \mathrm{i} T_{-} \rho F_{+} \Rightarrow\left(1-2 \mathrm{i} T_{-} \rho\right) F_{+}=F_{-}
$$

But $T_{-}=(1+\mathrm{i} K \rho)^{-1} K$. So substituting,

$$
\frac{1}{1+\mathrm{i} K \rho}(1-\mathrm{i} K \rho) F_{+}=F_{-}
$$

which by inspection is satisfied by

$$
F_{+}=\frac{1}{1-i K \rho} P
$$

where P has no branch point at $s=4$.

Generalizes again to many channels. P is a vector (which f.s. channel).

$$
\text { e.g. } \quad P_{i}=\sum_{a} g_{i a} \frac{1}{s_{a}-s} f_{a p}+B_{i} .
$$

Note P also has the resonance poles IJRA Nucl. Phys. A 189417 (1972)
$K_{1}(1270), K_{2}(1400) \quad P=$ two resonances + Deck B M. G. Bowler et al. Nucl. Phys. B97, 227 (1975)

$\alpha=\left|F_{\rho K} / F_{K^{*} \pi}\right|$
See lectures by Ed Berger!
1.3 $\frac{\text { Unitarity }+ \text { analyticity }}{\text { Elastic } 2 \rightarrow 2 \text { reactions }}$ If $f(s)$ has ONLY the $s=4$ branch point,

$$
f(s)=\frac{1}{2 \pi \mathrm{i}} \int_{4}^{\infty} \frac{f\left(s_{+}^{\prime}\right)-f\left(s_{-}^{\prime}\right)}{s^{\prime}-s} \mathrm{~d} s^{\prime}
$$

discf i.e. unitarity + analyticity will determine f (assuming convergence)

Indeed, $\operatorname{disc} T^{-1}=-2 \mathrm{i} \rho$. So maybe

$$
T^{-1}(s) \stackrel{?}{=}-\frac{1}{\pi} \int_{4}^{\infty} \frac{1}{16 \pi} \sqrt{\frac{s^{\prime}-4}{s^{\prime}}} \frac{\mathrm{d} s^{\prime}}{s^{\prime}-s} \equiv I(s)
$$

But the integral diverges. So add one parameter, value of $T^{-1}(s)$ at some point s_{0}. Then $T^{-1}(s)=I\left(s_{0}\right)+\left[I(s)-I\left(s_{0}\right)\right]$ and the "subtracted" integral converges. Convenient

$$
\begin{gathered}
\text { to take } s_{0}=4 . \text { Then } \\
T^{-1}(s)=\text { constant }+L(s) \text { where } \\
L(s)=\frac{1}{16 \pi^{2}} \sqrt{\frac{s-4}{s}} \ln \left(\frac{\sqrt{s-4}+\sqrt{s}}{-\sqrt{s-4}+\sqrt{s}}\right)
\end{gathered}
$$

$$
\text { and } \operatorname{Im} \operatorname{In}=-\pi \text { for } s \text { real, }>4
$$

(Chew-Madelstam function) Could still satisfy U if replace "constant" by function with no RH cut e.g. K^{-1}. K-matrix with C-M phase space.

Actually $T(s)$ has "LH" cut $s \leq s_{\mathrm{L}}$ as well

$$
T(s)=\frac{\mathrm{e}^{\mathrm{i} \delta} \sin \delta}{\rho}=\frac{N(s)(\mathrm{L})}{D(s)(\mathrm{R})}
$$

$D_{+}-D_{-}=N\left(T_{+}^{-1}-T_{-}^{-1}\right)=-2 \mathrm{i} \rho N$

$$
=-2 \mathrm{i} D_{+} \mathrm{e}^{\mathrm{i} \delta} \sin \delta
$$

$$
\Rightarrow D_{+}=D_{-} \mathrm{e}^{-2 \mathrm{i} \delta}
$$

Take log of both sides

$$
D\left(s_{+}\right)=\exp \left\{-\int_{4}^{\infty} \frac{\delta\left(s^{\prime}\right)}{s^{\prime}-s_{+}} \mathrm{d} s^{\prime}\right\}
$$

N.B. $\frac{1}{s^{\prime}-s-\dot{\mathbf{i}} \epsilon}=\frac{P . V .}{s^{\prime}-s}+\mathbf{i} \pi \delta\left(s^{\prime}-s\right)$
1.3.2 Two-hadron fsi

$$
D_{+}=D_{-} \mathrm{e}^{-2 \mathrm{i} \delta}
$$

$$
F_{+}=\left(1+2 \mathrm{i} T_{+} \rho\right) F_{-}=\mathrm{e}^{2 \mathrm{i} \delta} F_{-}
$$

Hence $F_{+} D_{+}=F_{-} D_{-} \Rightarrow F(s)=C(s) / D(s)$ where $C(s)$ is regular at $s=4$.

Now suppose we want to include "background" term (e.g. Deck) with L cut In this case, can write

$$
F(s)=B(s)+\frac{1}{\pi} \int_{4}^{\infty} \frac{T^{*}\left(s^{\prime}\right) \rho\left(s^{\prime}\right) F\left(s^{\prime}\right)}{s^{\prime}-s} \mathrm{~d} s^{\prime}
$$

which is an integral equation for F. Remarkably, exact solution exists
(Muskhelishvili-Omnès)

M-O solution:

$$
\begin{gathered}
\operatorname{disc}_{\mathrm{R}}(D F-D B)=D_{+} F_{+}-D_{-} F_{-}-\left(D_{+}-D_{-}\right) B \\
=-\left(D_{+}-D_{-}\right) B=2 \mathrm{i} \rho N B .
\end{gathered}
$$

Hence
$D_{+}\left(F_{+}-B\right)=\frac{1}{\pi} \int_{4}^{\infty} \frac{\rho\left(s^{\prime}\right) N\left(s^{\prime}\right) B\left(s^{\prime}\right)}{s^{\prime}-s-\mathrm{i} \epsilon} \mathrm{d} s^{\prime}$
or
$F(s)=B(s)+\frac{1}{\pi D(s)} \int_{4}^{\infty} \frac{\rho^{\prime} N^{\prime} B^{\prime}}{s^{\prime}-s-\dot{\epsilon} \epsilon} \mathrm{d} s^{\prime}+C(s) / D(s)$

Muskhelishvili-Omnès solution
M.G.Bowler et al. N.P. B97, 227 (1975); Deck + direct + rescattering for $a_{1}(1260)$

