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FIG. 1. Dominant contributions to the J/ψ photoproduction. The nonresonant background is modeled by an effective Pomeron
exchange (a) while the resonant contribution of the Pc(4450) in the direct channel (b) is modeled by a Breit-Wigner amplitude.

I. FORMALISM

This section follows closely our publication in Ref. [1].
The processes contributing to γ p → J/ψ p are shown in Fig. 1. The nonresonant background is expected to be

dominated by the t-channel Pomeron exchange, and we saturate the s-channel by the Pc(4450) resonance. In the
following we consider only the most favored JPr = 3/2− and 5/2+ spin-parity assignments for the resonance. We adopt
the usual normalization conventions [4], and express the differential cross section in terms of the helicity amplitudes
〈λψλp′ |Tr |λγλp〉,

dσ

d cos θ
=

4πα

32πs

pf
pi

1

4

∑
λγ ,λp,λψ,λp′

|〈λψλp′ |T |λγλp〉|2 . (1)

Here, pi and pf are the incoming and outgoing center-of-mass frame momenta, respectively, θ is the center-of-mass
scattering angle, and W =

√
s is the invariant mass.

Note that the electric charge
√

4πα is explicitly factored out from the matrix element. The contribution of the
Pc(4450) resonance is parametrized using the Breit-Wigner ansatz [3],

〈λψλp′ |Tr |λγλp〉 =
〈λψλp′ |Tdec |λr〉 〈λr|T †em |λγλp〉

M2
r −W 2 − iΓrMr

. (2)

The numerator is given by the product of photo-excitation and hadronic decay helicity amplitudes. The measured
width is narrow enough to be approximated with a constant, Γr = (39 ± 24) MeV. The angular momentum con-
servation restricts the sum over λr, the spin projection along the beam direction in the center of mass frame, to
λR = λγ − λp. The hadronic helicity amplitude Tdec, which represents the decay of the resonance of spin J to the
J/ψ p state, is given by

〈λψλp′ |Tdec |λr〉 = gλψλp′d
J
λr,λψ−λp′ (cos θ), (3)

where gλψλp′ are the helicity couplings between the resonance and the final state. There are three independent

couplings with λp′ = 1
2 , λψ = ±1, 0, being the other three related by parity. For simplicity, we assume all these

couplings to be equal, i.e. gλψλ′
p
≡ g. The helicity amplitudes and the partial decay width Γψp are related by

Γψp = Bψp Γr =
p̄f

32π2M2
r

1

2Jr + 1

∑
λR

∫
dΩ |〈λψλp′ |Tdec|λR〉|2 =

p̄f
8πM2

r

6g2

2Jr + 1
, (4)

with Bψp being the branching ratio of Pc → J/ψ p and p̄f the momentum pf evaluated at the resonance peak.
We assume that the Pc(4450) decay is dominated by the lowest partial wave, with angular momentum ` = 0 for
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JPr = 3/2− and ` = 1 for JPr = 5/2+. We recall that the following near-threshold behavior of the helicity amplitudes
holds: g ∝ p`f .

The helicity matrix elements of Tem are usually parametrized in terms of two independent coupling constants, A1/2

and A3/2, which are related to the matrix elements with λr = 1/2, 3/2, respectively. The other two helicities −1/2
and −3/2 are constrained by parity. Using the standard normalization convention, in which the helicity couplings

AλR have units of GeV−1/2 and are proportional to the unit electromagnetic charge,

〈λγλp |Tem|λR〉 =
W

Mr

√
8MNMrp̄i

4πα

√
p̄i
pi
AλR , (5)

with p̄i the momentum pi evaluated at the resonance peak. The electromagnetic decay width Γγ is given by

Γγ =
p̄2i
π

2MN

(2Jr + 1)Mr

[∣∣A1/2

∣∣2 +
∣∣A3/2

∣∣2] . (6)

The photon helicity amplitudes for a pentaquark are not known. To rely on data as much as possible, we start by
following Ref. [2] and assume a VMD relation for the transverse vector-meson helicity amplitudes

〈λγλp|Tem |λr〉 =

√
4παfψ
Mψ

〈λψ = λγ , λp|Tdec |λr〉 , (7)

with fψ being the J/ψ decay constant which is proportional to the electromagnetic current matrix elements,

〈0| Jµem(0) |J/ψ(p, λ)〉 =
√

4παfψMψε
µ(p, λ). The decay constant is related to the J/ψ wave function via the

Van Royen-Weisskopf relation, and can be estimated from the leptonic decay width of the J/ψ → l+l−, yield-
ing fψ = 280 MeV.

Finally, the VMD leads to

Γγ = 4παΓψp

(
fψ
Mψ

)2(
p̄i
p̄f

)2`+1

× 4

6
, (8)

with the factor 4/6 due to the fact that in Eq. (7) only the transverse polarizations of the J/ψ contribute. Again, we
use ` = 0 for JPr = 3/2− and ` = 1 for JPr = 5/2+.

With the help of Eqs. (6) and (8), one can constrain the size of the photocouplings.
The background in the resonance region is assumed to be dominated by diffractive production, which we parametrize

by an effective, helicity-conserving, Pomeron exchange model [5],

〈λψλp′ |TP |λγλp〉 = iA

(
s− st
s0

)α(t)
eb0(t−tmin)δλpλp′ δλψλγ . (9)

Here s0 = 1 GeV2 is fixed. Frequently s0 is chosen to match the average s of an experiment and that leads to
different values for the slope parameter. This is unphysical. The physical value of s0 is determined by the range of
interactions in the s-channel, which should be of the order of the hadronic scale. The Pomeron trajectory is given
by α(t) = α0 + α′ t, where α0 and α′ are parameters to be determined, as well as the normalization A, the effective
threshold parameter st, and the t-slope parameter b0.

There seems to be a rapid decrease of the cross section in the threshold region and the shift parameter st is
introduced to enable a smooth connection between the high energy, W ∼ O(100 GeV), and the threshold.

II. INPUT

We invite the users of this website to reproduce our plots with their own set of chosen parameters. In order to do
so, the possible choices are for:

• The fitting parameteres of the paper α0, α′, A, st, b0 and Bψp;

• The physical mass and width of the Pc(4450), Mr and Γr, to enable varying them within their errors;

• The spin assignment 3/2 or 5/2;

• The size of the smearing due to the experimental resolution;
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• The photocoupling assignment: we fix the value for A2
1/2 + A2

3/2 with vector-meson dominance, the user is

therefore allowed to choose the ratio A1/2/
√
A2

1/2 +A2
3/2;

• The user is to choose which observable he would like to plot: 1) the differential cross section in the forward
direction as a function of near-threshold energies, 2) the total cross section as a function of near-threshold
energies, 3) the angular behaviour of the differential cross section at the resonance energy.

• Finally, for observable 1), the user can choose up to which range in energies he wants the plot to be made. The
default is up to 11.5 GeV, just around the Pc(4450) peak. Any values above that can be chosen, as long as
no smearing is applied to the function, simultaneously. The reason for this is the too high computation time
needed online, were one to apply smearing for a wider range of energies on the website.
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