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I. INTRODUCTION

Code for the calculation of dσ
dΩ , P , and P dσ

dΩ observables for the following reactions:

K−p→ K−p ,K−p→ K̄0n ,K−p→ π0Λ ,K−p→ π−Σ+ ,K−p→ π+Σ− , K−p→ π0Σ0 .

II. SUMMARY OF THE FORMALISM

The full model, fitting procedure, and results are detailed in [1]. We report here only the main features of the
model.

A. Observables

The differential cross section and polarization observable for the processes K̄N, πΣ, . . .→ K̄N, πΣ, . . . are given by

dσ

dΩ
(s, θ) =

1

q2

[
|f(s, θ)|2 + |g(s, θ)|2

]
, (1)

P (s, θ) =
2 Im [f(s, θ) g∗(s, θ)]

|f(s, θ)|2 + |g(s, θ)|2
, (2)

where q is the center of mass momentum of the incoming kaon, θ is the scattering angle in the center of mass frame.
The amplitudes f(s, θ) and g(s, θ) give the contribution from no spin-flip and spin-flip, respectively.

Specifically, in this work we consider the following cases which have been measured (dropping the s and θ depen-
dence)

fK
−p→K−p =

1

2
f1
K̄N→K̄N +

1

2
f0
K̄N→K̄N , (3)

fK
−p→K̄0n =

1

2
f1
K̄N→K̄N −

1

2
f0
K̄N→K̄N , (4)

fK
−p→π−Σ+

=−1

2
f1
K̄N→πΣ −

1√
6
f0
K̄N→πΣ, (5)

fK
−p→π+Σ−

=
1

2
f1
K̄N→πΣ −

1√
6
f0
K̄N→πΣ, (6)

fK
−p→π0Σ0

=
1√
6
f0
K̄N→πΣ, (7)

fK
−p→π0Λ =

1√
2
f1
K̄N→πΛ, (8)

and similarly for g(s, θ).
These amplitudes are related to the s-channel isospin I = 0 and I = 1 amplitudes through a general relation

f(s, θ) = α0 f0
kj(s, θ) + α1 f1

kj(s, θ), (9)

g(s, θ) = α0 g0
kj(s, θ) + α1 g1

kj(s, θ), (10)

where f Ikj(s, θ) and gIkj(s, θ) are the isospin amplitudes. Here α0 and α1 are the corresponding Clebsch-Gordan

coefficients for isospin zero and one, respectively, and kj label the initial (k) and final (j) state, respectively.
Partial wave expansion of isospin amplitudes is given by

f Ikj(s, θ) =

∞∑
`=0

[
(`+ 1)RI,kj`+ (s) + `RI,kj`− (s)

]
P` (θ) , (11)

gIkj(s, θ) =

∞∑
`=1

[
RI,kj`+ (s)−RI,kj`− (s)

]
P 1
` (θ) , (12)
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where P` (θ) is the Legendre polynomial with P 1
` (θ) = sin θdP` (θ) /d cos θ, RI,kj`τ (s) (τ = ±) are the partial waves

which are to be considered as kj elements of the channel-space matrix R`τ (s) as defined below, ` is the orbital angular

momentum of the partial wave and J = ` + τ/2 is the total angular momentum for RI,kj`τ (s). The orbital angular

momentum ` coincides with the orbital angular momentum of the initial K̄N state in RI,kj`τ (s) but it is not necessarily
the orbital angular momentum of other possible initial states. For example, for the I = 1, ` = 0 partial wave it is
possible to have K̄∆(1232) in a D wave state (L = 2) as initial (final) state.

Finally, the total cross section can be expressed in terms of the partial waves

σ(s) =
4π

q2

∞∑
`=0

[
(`+ 1)|R`+(s)|2 + ` |R`−(s)|2

]
, (13)

where R`τ (s) = α0R0,kj
`τ (s) + α1R1,kj

`τ (s).

B. Partial wave scattering matrix

For a given partial wave we write the scattering amplitude as a matrix in the channel-space

S` = I + 2iR`(s) = I + 2i [C`(s)]
1/2

T`(s) [C`(s)]
1/2

, (14)

where I is the identity matrix, C`(s) is a diagonal matrix which accounts for the phase space and T`(s) is the analytical
partial wave amplitude matrix. We write T`(s) in terms of a K matrix to ensure unitarity

T`(s) =
[
K(s)−1 − iρ(s, `)

]−1
. (15)

For real s, K(s) is a real symmetric matrix and ρ(s, `) is a diagonal matrix. To ensure that ρ(s, `) is free from
kinematical cuts and has only the square-root branch point demanded by unitarity, we write it as a dispersive integral
over the phase space matrix C`(s), ¡i¿a.k.a.¡/i¿ as the Chew-Mandelstam representation,

iρ(s, `) =
s− sk
π

∫ ∞
sk

C`(s
′)

s′ − s
ds′

s′ − sk
. (16)

Here sk is the threshold center of mass energy squared of the corresponding channel k and we define

C`(s) =
qk(s)

q0

[
r2q2

k(s)

1 + r2q2
k(s)

]`
. (17)

The first factor on the r.h.s is related to the breakup momentum near threshold. For a meson-baryon pair with
masses m1 and m2, respectively, sk = (m1 +m2)2 , and

qk(s) =

√
(s− (m1 +m2)2)(s− (m1 −m2)2)

2
√
s

'
√
m1m2

(m1 +m2)

√
s− sk. (18)

The remaining factor ensures the threshold behavior and introduces the effective interaction radius, r = 1 fm.
Finally, q0 = 2 GeV is a normalization factor for the momentum in the resonance region. Evaluation of the dispersive
integral can be found in [1].

C. Construction of the K(s) matrix

We define the K(s) matrix as the addition of Ka(s) matrices

[K(s)]kj =
∑
a

xak Ka(s) xaj , (19)

where Ka(s) can be of two kinds, pole and background:

[KP (s)]kj = xPk
MP

M2
P − s

xPj , (20)

[KB(s)]kj = xBk
MB

M2
B + s

xBj , (21)
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Each partial wave employs a different amount of pole and background K matrices as well as a different amount of nC
channels. This information is summarized in Table I of Ref. [1].

The K(s) and T (s) matrices are connected through

[T (s)]kj =
1

D(s)

∑
a,b

xak cab(s) x
b
j , (22)

where D(s) and cab(s) for the combination of up to six K matrices can be found in the Appendix in Ref. [1].

III. FORTRAN CODE

- Contact person: Cesar Fernández-Ramı́rez

- Last update: September 2015

A. Zip File Content

- README file: README.tex and README.pdf

- Fortran Source File: kndxsecef.f

- Input File: file.inp

- Parameter files (contain the parameters for each partial wave):

- parameters.s01.inp

- parameters.p01.inp

- parameters.p03.inp

- parameters.d03.inp

- parameters.d05.inp

- parameters.f05.inp

- parameters.f07.inp

- parameters.g07.inp

- parameters.s11.inp

- parameters.p11.inp

- parameters.p13.inp

- parameters.d13.inp

- parameters.d15.inp

- parameters.f15.inp

- parameters.f17.inp

- parameters.g17.inp

B. Input File

Example of input file (file.inp):

prk-toprok-
1
2.5
0
180
100

mailto:cefera@gmail.com
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- The first line indicates the process, the options are:

- K−p→ K−p: prk-toprok-

- K−p→ K̄0n: prk-toneuk0

- K−p→ π0Λ: prk-tolapi0

- K−p→ π−Σ+: prk-tos+pi-

- K−p→ π+Σ−: prk-tos-pi+

- K−p→ π0Σ0: prk-tos0pi0

- The second line indicates the fixed kinematical variable, the options are:

- s (GeV2): 1

- plab (GeV): 2

- Elab (GeV): 3

where s is energy squared in the center of mass frame, and plab and Elab are, respectively, the momentum and
the energy of the incoming K− in the laboratory frame.

- The third line indicates the value of fixed the kinematical variable.

- The fourth line indicates the initial value of the angular range in degrees.

- The fifth line indicates the final value of the angular range in degrees.

- The sixth line indicates the the amount of points to calculate.There is a limit of 1000 points. It can be changed
modifying variable max data points=1000 in module resonancesizes.

IV. OUTPUT

The online and the downloadable versions produce an output file (output.txt) which contains nine columns:

1. s (GeV2),

2. Elab (GeV),

3. plab (GeV),

4. the center of mass incoming momentum squared q2 (GeV2),

5. angle (degrees),

6. cosine of the angle,

7. differential cross section in microbarn/sr,

8. P dσ
dΩ in microbarn/sr, and

9. P asymmetry (adimensional).

V. JPAC WEBPAGE

Further information and latest version of the code can be found at: JPAC Webpage. An online version of the code
can also be run at the same webpage.

http://www.indiana.edu/~jpac/
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VI. DISCLAIMERS

- This code follows the garbage in, garbage out philosophy. If your parameters do not make sense, the output will
not make sense either.

- You can use, share and modify this code under your own responsability.

- This code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

- No PhD students or postdocs were severely damaged during the development of this project.
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