Processing math: 100%

Joint Physics Analysis Center projects website

                                         
This project is supported by U.S. DOE, U.S. NSF, CONACYT, and PAPIIT-DGAPA

γpη()p

We present the model published in [Mat17a] concerning th beam asymmetry of η and η beam asymmetries.
We report here only the main features of the model.
The code can be downloaded in Resources section and simulated in the Simulation section.

Denoting η and η quantities by bare and primed symbols respectively, the beam asymmetry is defined by Σ()=dσ()dσ()dσ()+dσ(), with dσ and dσ denoting the differential cross section with a photon polarization parallel and perpendicular to the reaction plane. Natural exchanges ρ,ω and ϕ contribute to dσ and unnatural exchanges b,h and h contribute to dσ. The other unnatural exchanges ρ2,ω2 and ϕ2 also contribute to dσ. We separate the contribution from natural and unnatural exchanges kN=dσdσ,kU=dσdσ. and rewrite the ratio of η and η beam asymmetries as ΣΣ=1+1Σ2ΣkNkU(1+Σ)kN+(1Σ)kU,1+ϵ We use the CGLN invariant amplitudes Ai defined in [Chew57a].
The scalar amplitudes Ai=V,A,EAVi+AAi+AEi receive contribution from V=ρ,ω,ϕ, A=b,h,h and E=ρ2,ω2,ϕ2. For the natural Regge poles V=ρ,ω,ϕ (with s expressed in GeV2): A()V1(s,t)=tβ()V1(t)1eiπαV(t)sinπαV(t)sαV(t)1A()V2(s,t)=(1/t)A()V1(s,t)A()V4(s,t)=tβ()V4(t)1eiπαV(t)sinπαV(t)sαV(t)1A()V3(s,t)=0 The factor t in A()V1 comes from the factorization of the Regge pole residues and conservation of angular momentum.
The unnatural exchange contribution are A=b,h,h and E=ρ2,ω2,ϕ2 A()A2(s,t)=β()A2(t)1eiπαA(t)sinπαA(t)sαA(t)1A()A1(s,t)=A()A3(s,t)=A()A4(s,t)=0A()E3(s,t)=β()E2(t)1eiπαE(t)sinπαE(t)sαE(t)1A()E1(s,t)=A()E2(s,t)=A()E4(s,t)=0
In this webpage we propose the following flexible parametrization for the residues and trajectories (ommitting the index V,A,E) β()i(t)=g()iγgiNebit(1γi,1t)(1γi,2t)α(t)=α0+α1t
The observables are expressed with the scalar amplitudes (K is an irrelevant kinematical factor): dσ()(s,t)=K[|A()1|2t|A()4|2],dσ()(s,t)=K[|A()1+tA()2|2t|A()3|2] so that the relevant quantities are kN=|A1|2t|A4|2|A1|2t|A4|2,kU=|A1+tA2|2t|A3|2|A1+tA2|2t|A3|2.

References

[Chew57a]
G.F. Chew, M.L. Goldberger, F.E. Low and Y. Nambu,
``Relativistic dispersion relation approach to photomeson production,'' Phys. Rev. 106, (1957) 1345.

[Mat17a]
V. Mathieu, J. Nys, C. Fernandez-Ramirez, A. Jackura, M. Mikhasenko, A. Pilloni, A. P. Szczepaniak and G. Fox (JPAC),
``On the η and η Photoproduction Beam Asymmetries,'' arXiv:1704.07684 [hep-ph],

Resources

  1. param.txt: The first line is the beam energy (in the lab frame) in GeV
    The next 3x3 lines corresponds to the ρ,ω and ϕ exhchanges.
    There are 3 lines for each exchange with the format:
    • gηγ gηγ α0 α1
    • g1 b1 g4 b4
    • γ1,1 γ1,2 γ4,1 γ4,2
    The next 6x2 lines corresponds to the b,h,h and ρ2,ω2,ϕ2 exhchanges.
    There are 2 lines for each exchanges with the format:
    • gηγ gηγ α0 α1
    • g2(3) b2(3) γ2(3),1 γ2(3),2
  2. EtaBA.txt: The data for γpηp t(GeV2)cosθdσdt(μb/GeV2)dσdΩ(μb)Σ The total cross sections σ(π±p) are in milli barns.
  3. EtaP-BA.txt: The results of the simulations in the format t(GeV2)Σ(η)kVkA104ϵΣ(η)1+ϵ

Simulation

For each exchange, the user can supply parameters (residues and trajectories).
The parameters from [Mat17a] are the default values.
The simulation displays the beam asymmetries, their ratio Σ/Σ and, kV and kA.

Beam energy in the lab frame (target rest frame):


gρηγ : gρηγ: α0,ρ: α1,ρ:
g1ρ : b1ρ: g4ρ : b4ρ:
γρ1,1 : γρ1,2: γρ4,1 : γρ4,2:
t
gωηγ : gωηγ: α0,ω: α1,ω:
g1ω : b1ω: g4ω : b4ω:
γω1,1 : γω1,2: γω4,1 : γω4,2:
t
gϕηγ : gϕηγ: α0,ϕ: α1,ϕ:
g1ϕ : b1ϕ: g4ϕ : b4ϕ:
γϕ1,1 : γϕ1,2: γϕ4,1 : γϕ4,2:

gbηγ : gbηγ: α0,b: α1,b:
g2b : b2b: γb2,1 : γb2,2:
t
ghηγ : ghηγ: α0,h: α1,h:
g2h : b2h: γh2,1 : γh2,2:
t
ghηγ : ghηγ: α0,h: α1,h:
g2h : b2h: γh2,1 : γh2,2:

gρ2ηγ : gρ2ηγ: α0,ρ2: α1,ρ2:
g2ρ2 : b2ρ2: γρ22,1 : γρ22,2:
t
gω2ηγ : gω2ηγ: α0,ω2: α1,ω2:
g2ω2 : b2ω2: γω22,1 : γω22,2:
t
gϕ2ηγ : gϕ2ηγ: α0,ϕ2: α1,ϕ2:
g2ϕ2 : b2ϕ2: γϕ22,1 : γϕ22,2: